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Abstract—Irregular applications, by their very nature, suffer 
from poor data locality. This often results in high miss rates for 
caches, and many long waits to off-chip memory. Historically, long 
latencies have been dealt with in two ways: (1) latency mitigation 
using large cache hierarchies, or (2) latency masking where 
threads relinquish their control after issuing a memory request. 
Multithreaded CPUs are designed for a fixed maximum number 
of threads tailored for an average application. FPGAs, however, 
can be customized to specific applications. Their massive 
parallelism is well known, and ideally suited to dynamically 
manage hundreds, or thousands of threads. Multithreading, in 
essence, trades memory bandwidth for latency. Therefore, to 
achieve a high throughput, the system must support a large 
memory bandwidth. Many irregular application, however, must 
rely on inter-thread synchronization for parallel execution. In-
memory synchronization suffers from very long memory latencies. 
In this paper we describe the use of CAMs (Content Addressable 
Memories) as synchronizing caches for hardware multithreading. 
We demonstrate and evaluate this mechanism using graph 
breadth-first search (BFS). 

Keywords—FPGA; Multithreading; bandwidth; CAM; 
synchronizing caches. 

I. INTRODUCTION  
Very large memory latency is the central problem facing 

computer designers. The traditional solution, in CPU 
architectures, relies on massive cache hierarchies (L1 to L4) to 
mitigate the memory latency. This approach, however, is too 
costly for FPGA-based systems. Hardware-based 
multithreading relies on latency masking by switching execution 
to a ready thread while the memory access is performed. 
Multithreaded CPUs, such as the Tera MTA (Cray XMT) [1] 
and the Oracle SPARC T series [2], are designed for a fixed 
number of hardware contexts (threads) and each context is fully 
provisioned with all the registers required to support a general 
purpose execution. 

Irregular applications suffer from very poor spatial and 
temporal localities but also exhibit a very large degree of 
parallelism the exploitation of which is hampered by the long 
memory latency. FPGA-based hardware multithreading, such as 
the MT-FPGA model (Section II-B), relies on latency masking 
to increase the throughput and hence exploit the available 
parallelism. However, unlike multithreaded CPUs, it configures 

a custom data-path for each application and hence the state of 
the computation that must be saved for each thread is kept to a 
minimum and the number of active threads can be dynamically 
increased as required by the application within the limits of the 
available on-chip storage. 

Some irregular applications, such as sparse linear algebra, 
can be executed without having to rely on inter-thread 
synchronization. Graph algorithms in general, and specifically 
Breadth-First Search (BFS), do require such synchronization. 
However, the long memory latency makes in-memory 
synchronization prohibitively expensive. In this paper we 
explore the use of CAMs (Content Addressable Memories) as 
on-chip synchronizing caches: each thread maintains locally, in 
its own CAM, the list of nodes it has visited hence avoiding 
unnecessary memory accesses. In the top-down BFS 
implementation, all the nodes adjacent to a visited node are 
marked as visited, in parallel. This approach may result in an 
exponential growth of work most of it redundant, i.e. accessing 
already visited nodes. Caching these in a CAM results in a 
significant reduction of memory accesses and hence a higher 
throughput. 

The main contribution of this paper is the exploration of 
CAMs as synchronizing caches for hardware multithreaded 
irregular applications on FPGAs, to our knowledge the first such 
study1. 

The rest of this paper is organized as follows - Section II 
covers the background and motivation of multithreaded 
architectures and the BFS algorithm. Section III discusses the 
use of CAMs on FPGAs and the design costs and tradeoffs in 
that space. Section IV demonstrates a motivating example of 
how to implement a multi-threaded FPGA BFS using CAMs as 
synchronizing caches. Section V covers the implementation of 
the design and the resource utilization. The paper then concludes 
with Section VI. 

 

II. BACKGROUND AND MOTIVATION 
This section presents a background on general multithreaded 

architectures, the MT-FPGA execution model and its use in 
sparse linear algebra and database applications, and a review of 
the previous work on accelerating the BFS algorithm on FPGAs. 

1. An expanded version of this study is available at  
http://www.cs.ucr.edu/~windhs/iccad2015.html 
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A. Multithreaded Architecture 
Tera Corporation built the Tera MTA (Multi-threaded 

Architecture) in the early 90s [1]. This design had 256 
processors and 64 GB of shared memory organized as a 
distributed NUMA architecture. The interconnection network 
allowed better scaling to a larger number of processors. These 
custom processors supported the issuing of one memory request 
per thread per cycle. The maximum memory latency from any 
processor to any memory module was 128 cycles. Each 
processor could support up to 128 active threads. The MTA 
design [1] [3] was later evolved into the Cray XMT. While the 
MTA had only 256 processors the XMT machine could support 
up to 8,192 processors, but the largest ones built had 512 
processors. The shared memory was also increased from 1 TB 
to 128 TBs for the MTA and the clock speed was improved from 
220 MHz to 500 MHz. 

B. MT-FPGA Execution Model 
The MT-FPGA (Multithreading on FPGAs) [4] is an 

execution model that combines the memory masking ability of 
multithreaded execution with a customized data path. This 
execution model suspends the thread as soon as it performs a 
read and ready threads are given chance to execute. It performs 
decoupling by buffering the returned data in the order it was 
requested. This execution model exhibits following advantages: 

1. Can support hundreds of outstanding memory 
requests, hence massive parallelism 

2. Full utilization of the datapath 

3. The state of the thread is extremely small, and can 
therefore cater to more number of pending threads, 
stored on a FIFO. 

A new tool called CHAT (Compiled hardware Accelerated 
Threads) uses MT-FPGA model. This compilation tool 
generates customized hardware support for multithreaded 
execution on FPGAs and claims to ease the hardware 
development effort for complex irregular kernels. CHAT was 
tested and demonstrated using Sparse Vector Matrix 
Multiplication (SpVM). Using just one accelerator FPGA, 
CHAT shows a speed-up of up to 50x over a single Intel Xeon 
on simple irregular kernels.  

The first end-to-end in-memory implementation of hash  join 
using a MT-FPGA model is discussed in [5]. In this work FGPA 
uses massive multithreading during the build and probe phases 
to mask long memory delays, while it concurrently manages 
hundreds of thread states locally. Throughput results show a 
speedup between 2x and 3.4x over the best multi-core 
approaches with comparable memory bandwidths on uniform 
and skewed datasets. This work was then extended to perform 
aggregation operation on the relational database [6]. It 
implements a simple aggregation computing scheme based on 
hashing and used the multi-threaded architecture on FPGA to 
deploy it. The performance of this scheme ranges between 300 
and 600 MTuples/sec depending on the key distribution in the 
dataset. Many real world applications demand high performance 
and power efficient graph algorithms.  

C. Accelerating BFS  
Graphs are the most natural and efficient way to represent 

social and biological systems, where nodes represent entities 
such as people, web sites and genes whereas edges represent the 
interactions (relationship, communication and regulations). As 
these problems grow in scale, parallel computing resources are 
required to meet their computational and memory requirements. 
This has motivated a substantial amount of work that deals with 
the design and optimization of graph exploration algorithms, in 
particular BFS designs, either for commodity processors [7] [8] 
[9] [10] [11] or for dedicated hardware [12] [13] [14] [14] [15] 
[16] [17] [18].  

A multi-threaded graph engine was developed by [7] which 
implements a semantic graph database on commodity clusters. 
They have addressed the issue of irregular memory accesses by 
using lightweight software multi-threading and data 
aggregation. This implementation was able to maintain constant 
query throughput with the scaling of dataset size.   

A parallelized BFS algorithm was described by [19] on 
multi-core architectures. They used a bitmap to keep track of 
visitation status of a node and demonstrated speedup over 
previous work. A significant speedup was shown by [20] on 
distributed memory machines. GPUs have also been chosen by 
some to speedup computations in variety of applications, 
including graph processing. A level synchronous BFS kernel for 
GPUs was proposed in [21] and showed improved performance 
over previous implementations. A slightly different approach 
was used in [22] to elevate the graph processing performance. 
This method used a prefix sum approach for cooperative 
allocation. In [17], the authors have presented a GPU 
programming framework for improving GPU-based graph 
processing algorithms. Another graph processing framework 
was proposed by [18]. This method uses G-shards and 
concatenated window representation to store graphs in GPU 
global memory and provide better performance over other state-
of-art implementations. 

With the advent of heterogeneous machines, such as Convey 
HC-1/HC-2 [15], which support cache coherent shared virtual 
memory accesses from both the software (CPU execution) and 
the hardware (FPGA execution), application acceleration has 
become much more feasible . For example, the Convey HC-2 
has four Virtex-6 LX760 FPGAs, further allowing multiple 
sections of an application to be written to a FPGA without need 
of reconfiguration at runtime. A reconfigurable architecture for 
parallel BFS is presented in [13]. This method worked well for 
graphs with out-degree up to 32, but does not scale to outperform 
the approach in [14] for higher degrees. It uses level-
synchronous BFS algorithm and uses a customized CSR 
representation to achieve a high throughput.  

The design approach, proposed in [14] is based upon 
serializing execution and processing of data within an engine 
and parallelizing access to off-chip memory. The processing 
engine sequentially issues multiple requests to memory and use 
on-chip RAM to store data from memory. 

There are multiple reference implementations of the BFS 
implementation. In the top-down approach, each parent vertex 
in the current queue visits all its children and adds them to a next 
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queue – then next becomes current. In the bottom-up approach, 
the processor continually checks each unvisited vertex to see if 
it has a neighbor that was visited during the previous level. The 
work presented in [23] emphasized that both top-down and 
bottom-up approaches are beneficial when applied to different 
parts of the graph. This method starts with top-down traversal 
on the host side and switches to bottom-up on the coprocessor 
after a specific cut-off level. Based on the similar observation 
[12] came up with a hybrid approach to perform breadth first 
search with concurrent processing on both the host and the 
coprocessor and achieved significant performance. This method 
initially starts with the top-down approach on the host, copies 
the result in the coprocessor memory, which is later used by 
BFS. For larger frontiers, bottom-up BFS is said to be more 
efficient [23] because once the vertex has found a parent it need 
not check rest of its neighbors. 

In this work we have tried to improve the performance of 
top-down approach by using synchronizing caches. These 
caches help us to avoid some atomic operations thereby reducing 
the traffic to the off-chip memory and reduce the amount of 
redundant work done in the graph traversal. 

III. CAM MECHANISM ON FPGAS 
As we discussed in Section II, there has been a growing body 

of work using the MT-FPGA model. Moreover, like most 
models dealing with multiple, concurrent threads, there must be 
some consideration for synchronizing threads. With the high 
cost of trying to synchronize threads through the memory 
system, this works explores using CAMs as on-chip 
synchronizing caches.  

A recent work describing Near-Associative Memories [24] 
provides many insights into the uses and challenges with CAMs. 
Also known as associative memories, CAMs provide a conflict-
free mapping from an input key to a data value. CAMs typically 
operate in the inverse behavior of a Random Access Memory 
(RAM). Where in a RAM the user provides an address and the 
memory provides the data at that location, with a CAM, the user 
specifies the data and the CAM will return a match if the data is 
stored. Generally, CAMs are configurable to return all matching 
addresses as well.  

However, that ability to do a content-based search comes at 
high energy and area cost – the hardware must support 
programmable and parallel matches over the entire memory 
structure. This limitation generally means that only shallow 
CAMs are feasible. Nonetheless, even shallow CAMs have 
proven very useful in domains such as networking and FPGA 
database operations. 

Dhawan et al. [24] showed that a 512 entry CAM with 40 bit 
keys requires 60 Xilinx Block RAMs (BRAMs) on a Virtex 6 
FPGA. That implies a 60x overhead over the stored memory 
capacity to implement the match logic. It also cites work that 
shows the overhead in Altera generated CAMs is about 
equivalent to that of Xilinx generated CAMs. The overhead 
shows that CAMs are difficult to implement on reconfigurable 
fabrics. Current FPGAs offer little custom hardware support (i.e. 
BRAMs, DSPs, etc) for CAMs. In addition, the parallel search 
within a single cycle results in large fan-out rates that grow 
quickly with CAM size.  

The proposed near-associative memories are a great step in 
improving the usability and scalability of CAMs on FPGAs. A 
512-entry memory only consumes 6 BRAMs instead of the 
Xilinx 60. However, the multiple cycle write latency can be a 
limiting factor for some high-throughput designs and kept our 
design to using custom CAMs.  

 

IV. HARDWARE MULTITHREADED BFS 
We designed the BFS kernel for large-scale graphs that 

would be too large to store locally on the FPGA. Since memory 
requests incur long latencies, we use the MT-FPGA approach to 
mask latency and utilize the available bandwidth. The 
implementation also uses custom CAMs as on chip 
synchronizing caches to reduce the number of memory requests 
and redundant jobs. We accomplish this by allowing the kernels 
to merge any requests to the same node into a single job. This is 
an important optimization for handling nodes the have multiple 
shared children.  

Figure 4 shows the flow chart of one job through the BFS 
engine. The left half of Figure 3 shows the in-memory graph 
representation. Much of the previous work on BFS relies on 
using a CSR representation for increased memory density. 
However, we argue that this representation is limiting to the 
representational power of graphs. This is evident with the recent 
growth in node-based graph databases and models like the 
Property Graph Model [25]. Our graphs our formed with the 
property graph model in mind, thus we use an adjacency-list 
style representation. It would only require a minor modification 

 
Figure 1- BRAM layout of a CAM using Xilinx tools [25]. As width grows 
beyond 10-bits, more BRAMs are added in parallel 

 

 

 
Figure 2 - Example graph for BFS 
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of the kernel to fetch additional key-value pairs from within the 
node object and support filtered graph searches. 

Each edge in the graph is a unique job and assigned a thread 
on the FPGA. We start by initializing the engine with the start 
node in the graph. Following the example graph in Figure 2 that 
would be node 0. The software hand-off to the FPGA initializes 
the start id to 0 and sets the level to 0. The scheduler assigns the 
node to its designated kernel (0 in this case) by doing the 
modulus of the number of engines. Since this is in binary and 
the number of engines is a power of two, modulus is simply a 
bitwise-and.  

The kernel starts by adding an entry into its CAM for (id:0, 
level:1). It then requests the node data from memory. This will 
bring the stored level, count of neighbors, and the pointer to the 
neighbor list. Once all requests have been made, we set the level 
for the arriving nodes (node 0’s level + 1) in a queue and the 
thread can write node 0’s level to memory and terminate.  

 Following the graph, the requests that node 0 made to 
memory would return nodes 1 and 6. Those return to the 
scheduler with the updated level information from node 0 and 
are scheduled to their respective engines. The same process 
happens for those nodes in parallel, and both request node 5. 
Eventually, both requests for node 5 are scheduled into kernel 5, 
where the jobs will merge in the internal CAM.  

 One of the general limitations of a top-down approach to 
BFS is the chance of enumerating multiple redundant edges as 
nodes can have multiple common siblings. Using CAMs in this 
way can compress each of those possible jobs into a single job. 
This provides a mechanism to synchronize these threads on the 
FPGA instead of having to block on each thread finishing a level 

and writing out to memory. As long latency requests to memory 
are costly, so is synchronizing in memory.  

 

V. IMPLEMENTATION AND RESULTS 
In this paper, we implemented the FPGA designs for the 

Convey HC-2ex platform; however, the designs are platform 
independent and only require in-order responses to memory 

 
Figure 4 - A flow chart for a BFS job through the kernel 

 
 

 
Figure 3 - A flow chart for a BFS job through the kernel. 

 
 

 
Figure 3 - FPGA BFS engine 
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requests to port to other platforms. The HC-2ex provides 4 
Virtex 6 FPGAs with 16 independent memory channels 
connected through a full cross-bar with a theoretical peak 
bandwidth of 20 GB/s.  Table 1 shows the resource utilization 
(registers, LUTs and BRAMs used) of the design using 4 
kernels. Peak performance is dependent on the number of 
kernels used and the clock frequency. Since the kernel runs at a 
150 MHz system clock, assuming no stalls, using 4 kernels and 
taking into account our 2 word node representation would 
provide a throughput of 300 MNodes/s per FPGA. Since each 
kernel occupies only one memory channel, this design can scale 
to 16 independent kernels per FPGA, giving a theoretical peak 
of 1.2 GNodes/s per FPGA.  

The right portion of Figure 3 shows the layout and memory 
channels of the BFS engine. Our implementation uses a master 
scheduler to dictate the work of each kernel. This allows the 
kernels to work independently and not individually coordinate 

with each other. The kernel design is comprised of several 
FIFOs for coordination, a CAM, a BRAM, and a custom unit we 
call GATHER_NEIGHBORS. A job enters the kernel and first 
checks the CAM if it can merge and terminate. Otherwise, it 
continues in the kernel fetching node information from memory. 
Once the memory responds, the kernel flushes the job from the 
CAM, checks if the node has already been visited, and either 
terminates the job or sends the neighbor list address to 
GATHER_NEIGHBORS and writes the nodes level value to 
memory. GATHER_NEIGHBORS, issues requests for all the 
ids in the neighbor list and sends the responses back to the 
scheduler with the previous nodes level plus one. The layout can 
be seen in Figure 5. 

VI. CONCLUSION 
In this paper, we have motivated the use of CAMs as 

synchronizing caches for irregular applications. In conjunction 
with using a highly multithreaded datapath to support hundreds 
of threads masking memory latency, the CAMs can take 
advantage of this long latency to merge jobs and reduce the 
number of memory requests overall. We demonstrated this 
design using a breadth first search through a graph, using a graph 
representation that could easily expand to support the property 
graph model and richly annotated graphs. This work showed the 
resource usage and estimated performance of a few engines on 
a single FPGA, and showed that it could scale to using all the 
FPGAs on the Convey HC-2ex to completely utilize all available 
memory bandwidth and provide good throughput for graph- 
based algorithms. We are currently looking at how we could 
expand this technique to improve the throughput of a bottom up 
approach to BFS. 
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