
CAMs as Synchronizing Caches for Multithreaded
Irregular Applications on FPGAs

Invited Paper

Skyler Windh, Prerna Budhkar, Walid A. Najjar
Department of Computer Science

University of California, Riverside
{windhs, pbudh001, najjar}@cs.ucr.edu

Abstract—Irregular applications, by their very nature, suffer
from poor data locality. This often results in high miss rates for
caches, and many long waits to off-chip memory. Historically, long
latencies have been dealt with in two ways: (1) latency mitigation
using large cache hierarchies, or (2) latency masking where
threads relinquish their control after issuing a memory request.
Multithreaded CPUs are designed for a fixed maximum number
of threads tailored for an average application. FPGAs, however,
can be customized to specific applications. Their massive
parallelism is well known, and ideally suited to dynamically
manage hundreds, or thousands of threads. Multithreading, in
essence, trades memory bandwidth for latency. Therefore, to
achieve a high throughput, the system must support a large
memory bandwidth. Many irregular application, however, must
rely on inter-thread synchronization for parallel execution. In-
memory synchronization suffers from very long memory latencies.
In this paper we describe the use of CAMs (Content Addressable
Memories) as synchronizing caches for hardware multithreading.
We demonstrate and evaluate this mechanism using graph
breadth-first search (BFS).

Keywords—FPGA; Multithreading; bandwidth; CAM;
synchronizing caches.

I. INTRODUCTION
Very large memory latency is the central problem facing

computer designers. The traditional solution, in CPU
architectures, relies on massive cache hierarchies (L1 to L4) to
mitigate the memory latency. This approach, however, is too
costly for FPGA-based systems. Hardware-based
multithreading relies on latency masking by switching execution
to a ready thread while the memory access is performed.
Multithreaded CPUs, such as the Tera MTA (Cray XMT) [1]
and the Oracle SPARC T series [2], are designed for a fixed
number of hardware contexts (threads) and each context is fully
provisioned with all the registers required to support a general
purpose execution.

Irregular applications suffer from very poor spatial and
temporal localities but also exhibit a very large degree of
parallelism the exploitation of which is hampered by the long
memory latency. FPGA-based hardware multithreading, such as
the MT-FPGA model (Section II-B), relies on latency masking
to increase the throughput and hence exploit the available
parallelism. However, unlike multithreaded CPUs, it configures

a custom data-path for each application and hence the state of
the computation that must be saved for each thread is kept to a
minimum and the number of active threads can be dynamically
increased as required by the application within the limits of the
available on-chip storage.

Some irregular applications, such as sparse linear algebra,
can be executed without having to rely on inter-thread
synchronization. Graph algorithms in general, and specifically
Breadth-First Search (BFS), do require such synchronization.
However, the long memory latency makes in-memory
synchronization prohibitively expensive. In this paper we
explore the use of CAMs (Content Addressable Memories) as
on-chip synchronizing caches: each thread maintains locally, in
its own CAM, the list of nodes it has visited hence avoiding
unnecessary memory accesses. In the top-down BFS
implementation, all the nodes adjacent to a visited node are
marked as visited, in parallel. This approach may result in an
exponential growth of work most of it redundant, i.e. accessing
already visited nodes. Caching these in a CAM results in a
significant reduction of memory accesses and hence a higher
throughput.

The main contribution of this paper is the exploration of
CAMs as synchronizing caches for hardware multithreaded
irregular applications on FPGAs, to our knowledge the first such
study1.

The rest of this paper is organized as follows - Section II
covers the background and motivation of multithreaded
architectures and the BFS algorithm. Section III discusses the
use of CAMs on FPGAs and the design costs and tradeoffs in
that space. Section IV demonstrates a motivating example of
how to implement a multi-threaded FPGA BFS using CAMs as
synchronizing caches. Section V covers the implementation of
the design and the resource utilization. The paper then concludes
with Section VI.

II. BACKGROUND AND MOTIVATION
This section presents a background on general multithreaded

architectures, the MT-FPGA execution model and its use in
sparse linear algebra and database applications, and a review of
the previous work on accelerating the BFS algorithm on FPGAs.

1. An expanded version of this study is available at
http://www.cs.ucr.edu/~windhs/iccad2015.html

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 331

A. Multithreaded Architecture
Tera Corporation built the Tera MTA (Multi-threaded

Architecture) in the early 90s [1]. This design had 256
processors and 64 GB of shared memory organized as a
distributed NUMA architecture. The interconnection network
allowed better scaling to a larger number of processors. These
custom processors supported the issuing of one memory request
per thread per cycle. The maximum memory latency from any
processor to any memory module was 128 cycles. Each
processor could support up to 128 active threads. The MTA
design [1] [3] was later evolved into the Cray XMT. While the
MTA had only 256 processors the XMT machine could support
up to 8,192 processors, but the largest ones built had 512
processors. The shared memory was also increased from 1 TB
to 128 TBs for the MTA and the clock speed was improved from
220 MHz to 500 MHz.

B. MT-FPGA Execution Model
The MT-FPGA (Multithreading on FPGAs) [4] is an

execution model that combines the memory masking ability of
multithreaded execution with a customized data path. This
execution model suspends the thread as soon as it performs a
read and ready threads are given chance to execute. It performs
decoupling by buffering the returned data in the order it was
requested. This execution model exhibits following advantages:

1. Can support hundreds of outstanding memory
requests, hence massive parallelism

2. Full utilization of the datapath

3. The state of the thread is extremely small, and can
therefore cater to more number of pending threads,
stored on a FIFO.

A new tool called CHAT (Compiled hardware Accelerated
Threads) uses MT-FPGA model. This compilation tool
generates customized hardware support for multithreaded
execution on FPGAs and claims to ease the hardware
development effort for complex irregular kernels. CHAT was
tested and demonstrated using Sparse Vector Matrix
Multiplication (SpVM). Using just one accelerator FPGA,
CHAT shows a speed-up of up to 50x over a single Intel Xeon
on simple irregular kernels.

The first end-to-end in-memory implementation of hash join
using a MT-FPGA model is discussed in [5]. In this work FGPA
uses massive multithreading during the build and probe phases
to mask long memory delays, while it concurrently manages
hundreds of thread states locally. Throughput results show a
speedup between 2x and 3.4x over the best multi-core
approaches with comparable memory bandwidths on uniform
and skewed datasets. This work was then extended to perform
aggregation operation on the relational database [6]. It
implements a simple aggregation computing scheme based on
hashing and used the multi-threaded architecture on FPGA to
deploy it. The performance of this scheme ranges between 300
and 600 MTuples/sec depending on the key distribution in the
dataset. Many real world applications demand high performance
and power efficient graph algorithms.

C. Accelerating BFS
Graphs are the most natural and efficient way to represent

social and biological systems, where nodes represent entities
such as people, web sites and genes whereas edges represent the
interactions (relationship, communication and regulations). As
these problems grow in scale, parallel computing resources are
required to meet their computational and memory requirements.
This has motivated a substantial amount of work that deals with
the design and optimization of graph exploration algorithms, in
particular BFS designs, either for commodity processors [7] [8]
[9] [10] [11] or for dedicated hardware [12] [13] [14] [14] [15]
[16] [17] [18].

A multi-threaded graph engine was developed by [7] which
implements a semantic graph database on commodity clusters.
They have addressed the issue of irregular memory accesses by
using lightweight software multi-threading and data
aggregation. This implementation was able to maintain constant
query throughput with the scaling of dataset size.

A parallelized BFS algorithm was described by [19] on
multi-core architectures. They used a bitmap to keep track of
visitation status of a node and demonstrated speedup over
previous work. A significant speedup was shown by [20] on
distributed memory machines. GPUs have also been chosen by
some to speedup computations in variety of applications,
including graph processing. A level synchronous BFS kernel for
GPUs was proposed in [21] and showed improved performance
over previous implementations. A slightly different approach
was used in [22] to elevate the graph processing performance.
This method used a prefix sum approach for cooperative
allocation. In [17], the authors have presented a GPU
programming framework for improving GPU-based graph
processing algorithms. Another graph processing framework
was proposed by [18]. This method uses G-shards and
concatenated window representation to store graphs in GPU
global memory and provide better performance over other state-
of-art implementations.

With the advent of heterogeneous machines, such as Convey
HC-1/HC-2 [15], which support cache coherent shared virtual
memory accesses from both the software (CPU execution) and
the hardware (FPGA execution), application acceleration has
become much more feasible . For example, the Convey HC-2
has four Virtex-6 LX760 FPGAs, further allowing multiple
sections of an application to be written to a FPGA without need
of reconfiguration at runtime. A reconfigurable architecture for
parallel BFS is presented in [13]. This method worked well for
graphs with out-degree up to 32, but does not scale to outperform
the approach in [14] for higher degrees. It uses level-
synchronous BFS algorithm and uses a customized CSR
representation to achieve a high throughput.

The design approach, proposed in [14] is based upon
serializing execution and processing of data within an engine
and parallelizing access to off-chip memory. The processing
engine sequentially issues multiple requests to memory and use
on-chip RAM to store data from memory.

There are multiple reference implementations of the BFS
implementation. In the top-down approach, each parent vertex
in the current queue visits all its children and adds them to a next

332

queue – then next becomes current. In the bottom-up approach,
the processor continually checks each unvisited vertex to see if
it has a neighbor that was visited during the previous level. The
work presented in [23] emphasized that both top-down and
bottom-up approaches are beneficial when applied to different
parts of the graph. This method starts with top-down traversal
on the host side and switches to bottom-up on the coprocessor
after a specific cut-off level. Based on the similar observation
[12] came up with a hybrid approach to perform breadth first
search with concurrent processing on both the host and the
coprocessor and achieved significant performance. This method
initially starts with the top-down approach on the host, copies
the result in the coprocessor memory, which is later used by
BFS. For larger frontiers, bottom-up BFS is said to be more
efficient [23] because once the vertex has found a parent it need
not check rest of its neighbors.

In this work we have tried to improve the performance of
top-down approach by using synchronizing caches. These
caches help us to avoid some atomic operations thereby reducing
the traffic to the off-chip memory and reduce the amount of
redundant work done in the graph traversal.

III. CAM MECHANISM ON FPGAS
As we discussed in Section II, there has been a growing body

of work using the MT-FPGA model. Moreover, like most
models dealing with multiple, concurrent threads, there must be
some consideration for synchronizing threads. With the high
cost of trying to synchronize threads through the memory
system, this works explores using CAMs as on-chip
synchronizing caches.

A recent work describing Near-Associative Memories [24]
provides many insights into the uses and challenges with CAMs.
Also known as associative memories, CAMs provide a conflict-
free mapping from an input key to a data value. CAMs typically
operate in the inverse behavior of a Random Access Memory
(RAM). Where in a RAM the user provides an address and the
memory provides the data at that location, with a CAM, the user
specifies the data and the CAM will return a match if the data is
stored. Generally, CAMs are configurable to return all matching
addresses as well.

However, that ability to do a content-based search comes at
high energy and area cost – the hardware must support
programmable and parallel matches over the entire memory
structure. This limitation generally means that only shallow
CAMs are feasible. Nonetheless, even shallow CAMs have
proven very useful in domains such as networking and FPGA
database operations.

Dhawan et al. [24] showed that a 512 entry CAM with 40 bit
keys requires 60 Xilinx Block RAMs (BRAMs) on a Virtex 6
FPGA. That implies a 60x overhead over the stored memory
capacity to implement the match logic. It also cites work that
shows the overhead in Altera generated CAMs is about
equivalent to that of Xilinx generated CAMs. The overhead
shows that CAMs are difficult to implement on reconfigurable
fabrics. Current FPGAs offer little custom hardware support (i.e.
BRAMs, DSPs, etc) for CAMs. In addition, the parallel search
within a single cycle results in large fan-out rates that grow
quickly with CAM size.

The proposed near-associative memories are a great step in
improving the usability and scalability of CAMs on FPGAs. A
512-entry memory only consumes 6 BRAMs instead of the
Xilinx 60. However, the multiple cycle write latency can be a
limiting factor for some high-throughput designs and kept our
design to using custom CAMs.

IV. HARDWARE MULTITHREADED BFS
We designed the BFS kernel for large-scale graphs that

would be too large to store locally on the FPGA. Since memory
requests incur long latencies, we use the MT-FPGA approach to
mask latency and utilize the available bandwidth. The
implementation also uses custom CAMs as on chip
synchronizing caches to reduce the number of memory requests
and redundant jobs. We accomplish this by allowing the kernels
to merge any requests to the same node into a single job. This is
an important optimization for handling nodes the have multiple
shared children.

Figure 4 shows the flow chart of one job through the BFS
engine. The left half of Figure 3 shows the in-memory graph
representation. Much of the previous work on BFS relies on
using a CSR representation for increased memory density.
However, we argue that this representation is limiting to the
representational power of graphs. This is evident with the recent
growth in node-based graph databases and models like the
Property Graph Model [25]. Our graphs our formed with the
property graph model in mind, thus we use an adjacency-list
style representation. It would only require a minor modification

Figure 1- BRAM layout of a CAM using Xilinx tools [25]. As width grows
beyond 10-bits, more BRAMs are added in parallel

Figure 2 - Example graph for BFS

 333

of the kernel to fetch additional key-value pairs from within the
node object and support filtered graph searches.

Each edge in the graph is a unique job and assigned a thread
on the FPGA. We start by initializing the engine with the start
node in the graph. Following the example graph in Figure 2 that
would be node 0. The software hand-off to the FPGA initializes
the start id to 0 and sets the level to 0. The scheduler assigns the
node to its designated kernel (0 in this case) by doing the
modulus of the number of engines. Since this is in binary and
the number of engines is a power of two, modulus is simply a
bitwise-and.

The kernel starts by adding an entry into its CAM for (id:0,
level:1). It then requests the node data from memory. This will
bring the stored level, count of neighbors, and the pointer to the
neighbor list. Once all requests have been made, we set the level
for the arriving nodes (node 0’s level + 1) in a queue and the
thread can write node 0’s level to memory and terminate.

 Following the graph, the requests that node 0 made to
memory would return nodes 1 and 6. Those return to the
scheduler with the updated level information from node 0 and
are scheduled to their respective engines. The same process
happens for those nodes in parallel, and both request node 5.
Eventually, both requests for node 5 are scheduled into kernel 5,
where the jobs will merge in the internal CAM.

 One of the general limitations of a top-down approach to
BFS is the chance of enumerating multiple redundant edges as
nodes can have multiple common siblings. Using CAMs in this
way can compress each of those possible jobs into a single job.
This provides a mechanism to synchronize these threads on the
FPGA instead of having to block on each thread finishing a level

and writing out to memory. As long latency requests to memory
are costly, so is synchronizing in memory.

V. IMPLEMENTATION AND RESULTS
In this paper, we implemented the FPGA designs for the

Convey HC-2ex platform; however, the designs are platform
independent and only require in-order responses to memory

Figure 4 - A flow chart for a BFS job through the kernel

Figure 3 - A flow chart for a BFS job through the kernel.

Figure 3 - FPGA BFS engine

334

requests to port to other platforms. The HC-2ex provides 4
Virtex 6 FPGAs with 16 independent memory channels
connected through a full cross-bar with a theoretical peak
bandwidth of 20 GB/s. Table 1 shows the resource utilization
(registers, LUTs and BRAMs used) of the design using 4
kernels. Peak performance is dependent on the number of
kernels used and the clock frequency. Since the kernel runs at a
150 MHz system clock, assuming no stalls, using 4 kernels and
taking into account our 2 word node representation would
provide a throughput of 300 MNodes/s per FPGA. Since each
kernel occupies only one memory channel, this design can scale
to 16 independent kernels per FPGA, giving a theoretical peak
of 1.2 GNodes/s per FPGA.

The right portion of Figure 3 shows the layout and memory
channels of the BFS engine. Our implementation uses a master
scheduler to dictate the work of each kernel. This allows the
kernels to work independently and not individually coordinate

with each other. The kernel design is comprised of several
FIFOs for coordination, a CAM, a BRAM, and a custom unit we
call GATHER_NEIGHBORS. A job enters the kernel and first
checks the CAM if it can merge and terminate. Otherwise, it
continues in the kernel fetching node information from memory.
Once the memory responds, the kernel flushes the job from the
CAM, checks if the node has already been visited, and either
terminates the job or sends the neighbor list address to
GATHER_NEIGHBORS and writes the nodes level value to
memory. GATHER_NEIGHBORS, issues requests for all the
ids in the neighbor list and sends the responses back to the
scheduler with the previous nodes level plus one. The layout can
be seen in Figure 5.

VI. CONCLUSION
In this paper, we have motivated the use of CAMs as

synchronizing caches for irregular applications. In conjunction
with using a highly multithreaded datapath to support hundreds
of threads masking memory latency, the CAMs can take
advantage of this long latency to merge jobs and reduce the
number of memory requests overall. We demonstrated this
design using a breadth first search through a graph, using a graph
representation that could easily expand to support the property
graph model and richly annotated graphs. This work showed the
resource usage and estimated performance of a few engines on
a single FPGA, and showed that it could scale to using all the
FPGAs on the Convey HC-2ex to completely utilize all available
memory bandwidth and provide good throughput for graph-
based algorithms. We are currently looking at how we could
expand this technique to improve the throughput of a bottom up
approach to BFS.

ACKNOWLEDGMENT
 This work was supported in part by NSF Grants CCF-
1219180 and NSF IIS-1161997.

REFERENCES

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield and
B. Smith, "The Tera Computer System," in 4th Int. Conf. on
Supercomputing, ICS ‘90, New York, NY, 1990.

[2] R. Jordan and P. Golla, "T4: A Highly Threaded Server-on-a-Chip with
Native Support for Heterogeneous Computing," in Hot Chips, 2011.

[3] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin, N.
Mitchel, J. Feo and B. Koblenz, "Multi-processor Performance on the
Tera MTA," in Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, Washington, DC, USA, 1998.

[4] R. J. Halstead, J. R. Villarreal and W. A. Najjar, "Compiling irregular
applications for reconfigurable systems," Int. J. of High-Performance
Computing and Networking , vol. 7, no. 4, pp. 258-268, 2014.

[5] R. J. Halstead, I. Absalyamov, W. A. Najjar and V. J. Tsotras, "FPGA-
based Multithreading for In-Memory Hash Joins," Conference on
Innovative Data Systems Research , 2015.

[6] R. J. Halstead, "Using Multithreaded Techniques to Mask Memory
Latency on FPGA Accelerators," 2015.

[7] A. Morari, V. Castellana, D. Haglin, J. Feo, J. Weaver, A. Tumeo and
O. Villa, "Accelerating semantic graph databases on commodity
clusters," in Big Data, 2013 IEEE International Conference on , 2013.

[8] A. Morari, V. Castellana, O. Villa, A. Tumeo, J. Weaver, D. Haglin, S.
Choudhury and J. Feo, "Scaling Semantic Graph Databases in Size and
Performance," IEEE Micro, vol. 34, no. 4, pp. 16-26, July 2014.

[9] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson and U.
Catalyurek, "A Scalable Distributed Parallel Breadth-First Search
Algorithm on BlueGene/L," in Supercomputing, 2005. Proceedings of
the ACM/IEEE SC 2005 Conference , 2005.

[10] P. Harish and P. J. Narayanan, "Accelerating Large Graph Algorithms
on the GPU Using CUDA," in Proceedings of the 14th International
Conference on High Performance Computing , 2007.

[11] D. Scarpazza, O. Villa and F. Petrini, "Efficient Breadth-First Search on
the Cell/BE Processor," Parallel and Distributed Systems, IEEE
Transactions on , vol. 19, no. 10, pp. 1381-1395, October 2008.

[12] K. Wadleigh, J. Amelio, K. Collins and G. Edwards, "Hybrid Breadth
First Search Implementation for Hybrid-Core Computers},," in High

Kernels

Registers LUTs BRAMs

1 6,595 (0.7%) 12,790 (2%) 3 (0.1%)

4 27,011 (2%) 56, 673 (11%) 10 (1%)

16 104,776 (11%) 216,215 (45%) 40 (5%)

Table 1- FPGA Resource Utilization

Figure 5 - Kernel FPGA design

335

Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion, Piscataway, NJ, USA, 2012.

[13] O. G. Attia, T. Johnson, K. Townsend, P. Jones and J. Zambreno,
"CyGraph: A Reconfigurable Architecture for Parallel Breadth-First
Search," in Proceedings of the 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops, Washington, DC, USA,
2014.

[14] B. Betkaoui, Y. Wang, D. B. Thomas and W. Luk, "A Reconfigurable
Computing Approach for Efficient and Scalable Parallel Graph
Exploration," in Application-Specific Systems, Architectures and
Processors (ASAP), 2012 IEEE 23rd International Conference on, 2012.

[15] J. D. Bakos, "High-Performance Heterogeneous Computing with the
Convey HC-1," Computing in Science and Engineering, vol. 12, no. 6,
pp. 80-87, November 2010.

[16] S. Hong, S. K. Kim, T. Oguntebi and K. Olukotun, "Accelerating CUDA
Graph Algorithms at Maximum Warp," SIGPLAN Notes, vol. 46, no. 8,
pp. 267-276, February 2011.

[17] J. Zhong and B. He, "An Overview of Medusa: Simplified Graph
Processing on GPUs," SIGPLAN Notes, vol. 47, no. 8, pp. 283-284,
February 2012.

[18] F. Khorasani, K. Vora, R. Gupta and L. N. Bhuyan, "CuSha: Vertex-
centric Graph Processing on GPUs," in Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed
Computing, New York, NY, USA, 2014.

[19] V. Agarwal, F. Petrini, D. Pasetto and D. A. Bader, "Scalable Graph
Exploration on Multicore Processors," in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, Washington, DC, USA, 2010.

[20] S. Beamer, K. Asanović and D. Patterson, "Searching for a Parent
Instead of Fighting Over Children: A Fast Breadth-First Search
Implementation for Graph500," 2011.

[21] S. Hong, S. K. Kim, T. Oguntebi and K. Olukotun, "Accelerating CUDA
Graph Algorithms at Maximum Warp," SIGPLAN, vol. 46, no. 8, pp.
267-276, feb 2011.

[22] D. Merrill, M. Garland and A. Grimshaw, "Scalable GPU Graph
Traversal," SIGPLAN, vol. 47, no. 8, pp. 117-128, February 2012.

[23] S. Beamer, A. Buluc, K. Asanovic and D. Patterson, "Distributed
Memory Breadth-First Search Revisited: Enabling Bottom-Up Search,"
in Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum,
Washington, DC, USA, 2013.

[24] U. Dhawan and A. Dehon, "Area-Efficient Near-Associative Memories
on FPGAs," ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 4,
pp. 30:1-30:22, jan 2015.

[25] tinkerpop, "Property Graph Model · tinkerpop/blueprints Wiki ·
GitHub," [Online]. Available:
https://github.com/tinkerpop/blueprints/wiki/property-graph-model.
[Accessed 2 August 2015].

[26] i. 2. Xilinx, "Parameterizable Content-Addressable Memory," Xilinx,
Inc., 2011. [Online]. Available:
http://www.xilinx.com/support/documentation/application_notes/xapp1
151_Param_CAM.pdf. [Accessed 23 July 2015].

[27] J. Zhong and B. He, "An Overview of Medusa: Simplified Graph
Processing on GPUs," SIGPLAN, vol. 47, no. 8, pp. 283-284, February
2012.

[28] S. Hong, T. Oguntebi and K. Olukotun, "Efficient Parallel Graph
Exploration on Multi-Core CPU and GPU," in Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on
, 2011.

[29] D. Merrill, M. Garland and A. Grimshaw, "Scalable GPU Graph
Traversal," SIGPLAN Notes, vol. 47, no. 8, pp. 117-128, February 2012.

[30] Q. Wang, W. Jiang, Y. Xia and V. Prasanna, "A message-passing multi-
softcore architecture on FPGA for Breadth-first Search," in Field-
Programmable Technology (FPT), 2010 International Conference on ,
2010.

336

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20150619150348
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

