High-Throughput Fixed-Point Object Detection on
FPGAs

Xiaoyin Ma *, Walid Najjar ¥ and Amit Roy-Chowdhury *
*Department of Electrical Engineering
TDepartment of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521, USA

Abstract— Computer vision applications make extensive use of
floating-point number representation, both single and double preci-
sion. The major advantage of floating-point representation is the very
large range of values that can be represented with a limited number
of bits. Most CPU, and all GPU, designs have been extensively op-
timized for short latency and high-throughput processing of floating-
point operations. On an FPGA, the bit-width of operands is a major
determinant of its resource utilization, the achievable clock frequency
and hence its throughput. By using a fixed-point representation
with fewer bits, an application developer could implement more
processing units and a higher-clock frequency and a dramatically
larger throughput. However, smaller bit-widths may lead to inaccurate
or incorrect results.

Object and human detection are fundamental problems in com-
puter vision and a very active research area. In these applications a
high throughput and an economy of resources are highly desirable
features allowing the applications to be embedded in mobile or field-
deployable equipment. The Histogram of Oriented Gradients (HOG)
algorithm [1], developed for human detection and expanded to object
detection, is one of the most successful and popular algorithm in its
class. In this algorithm, object descriptors are extracted from detection
window with grids of overlapping blocks. Each block is divided
into cells in which histograms of intensity gradients are collected
as HOG features. Vectors of histograms are normalized and passed
to a Support Vector Machine (SVM) classifier to recognize a person
or an object.

HOG algorithm for object detection achieves a high detection
accuracy but delivers just under 1 frame-per-second (fps) on a high-
end CPU. Previous FPGA implementations [2]-[4] of HOG either
do not use fixed-point, or used fixed-point with large word size that
results in large FPGA resource usage. In this work we explore the
effects of reduced bit-width on the accuracy and performance of the
HOG algorithm when implemented on an FPGA. We have used six
pedestrian detection benchmarks suites, totaling 10,000 frames, all
with known ground-truth to evaluate our fixed-point HOG detection
[51-(8].

In traditional fixed-point object detection implementation, the
ideal fixed-point data size is determined by applying both fixed-point
and floating-point object detectors to windows known as objects or
background windows for detection rate comparison. However, this
approach may not correctly predict the actual detection performance
when consider the entire frame across multiple image scales. Usually
a post-processing step is performed on all positive windows across
the image at all scales to merge nearby windows. This step can
significantly reduce the number of false positive windows found
by the detector. Thus, our work applied the full image evaluation
methodology proposed by Dollar et al. [7], [9] for the fixed-point
detection evaluation used in this paper. By applying the state of the
art computer vision object detection evaluation metric on 10,000
frames, we show that reducing the bit-width to 12 bits preserves
the same detection accuracy as the original floating-point and even

enhances it. Finally, we chose 13-bits in our hardware implementation
as it provides a balance between precision and recall and consistent
performance across all benchmarks.

The FPGA implementation of HOG on the Convey Computers
HC-2ex using a single Xilinx Virtex-6 LX760 using 13-bits fixed-
point is 271 stage pipeline occupying 3.3% of the FPGA resources.
It shows a 4.7x and 11.6x reductions in registers and LUTs used, and
a 2.8x increase in clock frequency and 16x higher throughput than
the floating-point implementation on the same FPGA. The throughput
results are shown in I'

TABLE I
HOG DETECTION THROUGHPUT COMPARISON.
CPU IPP FPGA-fp GPU FPGA-fix13
FPS 0.993 | 1.138 2.314 13.397 36.496
Speed-up | 1.000 | 1.146 2.331 13.497 36.770

Index Terms—Computer vision; fixed-point; pedestrian detec-
tion; histogram of oriented gradients;

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition (CVPR). IEEE
Conf. on, vol. 1, 2005, pp. 886-893.

[2] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and
Y. Nakamura, “Hardware architecture for HOG feature extraction,” in
Intelligent Information Hiding and Multimedia Signal Processing (IIH-
MSP), 5th Int. Conf. on, 2009, pp. 1330-1333.

[3] C. Blair, N. Robertson, and D. Hume, “Characterizing a heterogeneous
system for person detection in video using histograms of oriented
gradients: Power versus speed versus accuracy,” Emerging and Selected
Topics in Circuits and Systems, IEEE J. on, vol. 3, no. 2, 2013.

[4] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, “Deep pipelined one-
chip FPGA implementation of a real-time image-based human detection
algorithm,” in Field-Programmable Technology (FPT), Int. Conf. on,
2011, pp. 1-8.

[5] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” Pattern Analysis and Machine Intelligence, IEEE Trans.
on, vol. 31, no. 12, pp. 2179-2195, 2009.

[6] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian
detection,” in Computer Vision and Pattern Recognition (CVPR), IEEE
Conf. on, 2009, pp. 794-801.

[7]1 P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A
benchmark,” in Computer Vision and Pattern Recognition (CVPR), IEEE
Conf. on, 2009, pp. 304-311.

[8] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision
system for robust multi-person tracking,” in Computer Vision and Pattern
Recognition (CVPR), IEEE Conf. on, 2008, pp. 1-8.

[9] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” Pattern Analysis and Machine
Intelligence, IEEE Trans. on, vol. 34, no. 4, pp. 743-761, 2012.

IFPGA-fp refers to the floating-point implementation of HOG on the FPGA.

