21st IEEE Int. Symp. on Field-Programmable Custom Computing Machines (FCCM)

April 28-30, 2013, Seattle, Washington

A High Throughput No-Stall Golomb-Rice Hardware Decoder

Roger Moussalli, Walid Najjar, Xi Luo, Amna Khan
Dept. of Computer Science and Engineering
University of California Riverside
Riverside, USA
Email: {rmous, najjar, luox, akhan015}@cs.ucr.edu

Abstract—Integer compression techniques can generally be
classified as bit-wise and byte-wise approaches. Though at the
cost of a larger processing time, bit-wise techniques typically
result in a better compression ratio. The Golomb-Rice (GR)
method is a bit-wise lossless technique applied to the compres-
sion of images, audio files and lists of inverted indices. However,
since GR is a serial algorithm, decompression is regarded as
a very slow process; to the best of our knowledge, all existing
software and hardware native (non-modified) GR decoding
engines operate bit-serially on the encoded stream. In this
paper, we present (1) the first no-stall hardware architecture,
capable of decompressing streams of integers compressed using
the GR method, at a rate of several bytes (multiple integers)
per hardware cycle; (2) a novel GR decoder based on the
latter architecture is further detailed, operating at a peak rate
of one integer per cycle. A thorough design space exploration
study on the resulting resource utilization and throughput of
the aforementioned approaches is presented. Furthermore, a
performance study is provided, comparing software approaches
to implementations of the novel hardware decoders. While
occupying 10% of a Xilinx V6LX240T FPGA, the no-stall
architecture core achieves a sustained throughput of over 7
Gbps.

Keywords-FPGA; Golomb-Rice; compression; decompres-
sion; inverted index

I. INTRODUCTION

The goal of data compression techniques is to reduce the
storage space and/or increase the effective throughput from
the data source (such as a storage medium). Other critical
performance factors considered include code complexity
and memory offloading requirements. Various compression
techniques can be combined and are tailored to perform best
within certain classes of applications, where assumptions
on the data (format, range, occurrence, etc) hold. Examples
of the latter are Run-Length Encoding (RLE) [1] as used
by image compression (JPEG), and Lempel-Ziv-Welsch [2]
(LZW) for text data.

Compression techniques can be mainly categorized as
being lossy or lossless. Generally, lossy techniques result
in a higher compression ratio, and/or a faster processing
(compression/decompression) time. Lossy techniques are
hence preferred when the original data does not have to be
exactly retrieved from the compressed data, and differences
with the original data are tolerable or non-noticeable (such
is the case with audio, video, etc).

Moreover, compression techniques can be further clas-
sified as being bit-wise or byte-wise. Byte-wise (or byte-
aligned) approaches typically result in a lower compression
ratio due to the coarser granularity, but offer a considerably
higher compression/decompression throughput.

The work presented in this paper focuses on the accelera-
tion of the decompression of integers compressed using the
lossless bit-wise Golomb-Rice [1], [3] (GR) entropy method.
GR compression is designed to achieve high compression
ratios on input streams with small integer ranges [4]; it is
deployed in several applications, such as image compression
([41, [5], [6], [7], [8], [9]), audio compression ([10], [11]), as
well as the compression of streams of inverted indices ([12],
[13], [14], [15]), and ECG signals ([16], [17], [18]). Inverted
indexes require very fast processing, and operate under low
timing budgets as they are utilized in the querying of high-
volume data, as in (web) search engines [19]; however, even
though GR offers high compression ratios, other approaches
are preferred due to the gap in decompression performance
[14]. Similarly, with the augmented resolution standards
on video processing and displays (Full-HD, Quad Full-
HD), faster decompression is a must. Finally, the complex
processing of the increasing amounts of ECG data can be
further reduced using high-performance decoders, with de-
compression being a first step once data is received. In all of
the aforementioned applications, inefficient decompression
limits the input throughput to the computational pipelines.

We present a novel highly-parallel hardware core capable
of decompressing streams of GR-coded integers at wire
speed with constant throughput, operating on raw unmod-
ified GR data. To the best of our knowledge, hardware and
software (CPU-based) GR decoders assuming unmodified
GR data operate bit-serially on the compressed stream,
which highly bounds the achievable decompression speeds.
On the other hand, modifications to the algorithm and
assumptions on the compressed format allow the application
of efficient optimizations ([5], [14], [6]), though the limiting
assumptions cannot be generalized (see Section III). The
proposed no-stall hardware solution is shown to outper-
form state-of-the-art software and hardware approaches, and
achieves up to 7.8 Gbps sustained decompression throughput
while occupying 10% of the available resources on a Xilinx
Virtex 6 LX240T, a mid- to low-size FPGA.

The contributions of this work can be summarized as
follows:

o The first hardware architecture capable of decompress-
ing streams of raw unmodified Golomb-Rice data at a
constant rate of several bytes per cycle, with no incurred
stalls, and no assumptions on the compressed data.

« A novel decompression engine based on the latter
architecture is further detailed, operating at a peak rate
of one integer per cycle.

« An extensive design space exploration studying the
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resulting resource utilization and throughput of the
aforementioned approaches on a Xilinx Virtex 6 FPGA.

o A performance study comparing state-of-the-art CPU-

based approaches to implementations of the novel hard-
ware decoders.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of Golomb-Rice compression;
Section III describes prior art; the novel architectures are
detailed in Section IV; experimental results are provided in
Section V, and finally, conclusions are listed in Section VI.

II. GOLOMB-RICE COMPRESSION OVERVIEW

In this section, the Golomb-Rice compression technique
is described, followed by the challenges imposed in parallel
decompression.

A. Algorithm Description

Golomb-Rice, or simply GR, or Rice coding is a lossless
bit-granularity integer compression approach, which per-
forms best with datasets where the probability of occurrence
of small numbers far exceeds that of large values. It is
shown that for such input sets, GR coding has compression
efficiency close to the more complex arithmetic coding, and
comparable to Huffman coding, while no code tables are
required, formerly a potential bottleneck in the hardware
compression/decompression process [4].

In Golomb coding, given a divisor d, each input integer
is encoded into two parts: a unary quotient ¢, and a binary
remainder r. GR coding is a subset of Golomb coding,
restricting divisors to powers of two. This implies that for a
given d, the number of bits required to encode the remainder
portion is fixed to k = loga(d) bits (otherwise variable with
Golomb coding). This simple assumption/restriction has a
practical negligible negative impact on compression ratio,
and greatly simplifies the encoding/decoding process, by
allowing the use of simple shift operations instead of the
more complex division. Good choices of d (hence k) greatly
affect the compression ratio, and d is generally picked as
factor of the average of the input integer set [19], [14]; this
discussion is however out of the scope of this paper.

Resulting from GR coding is the fact that integers smaller
than d are encoded using k£ + 1 bits, being a single unary
bit and the remainder bits; furthermore, the compression of
(infrequent) large numbers can result in more bits than the
original uncompressed number, due to the inefficient coding
of the unary quotient.

B. Parallelism and Challenges

GR-coded streams offer great opportunity for parallel
decompression, since integers can be decoded independently.
However, finding the end of a compressed integer and the
start of the next is non-trivial, and cannot be determined
without knowledge of all prior stream contents.

Figure 1 shows a snapshot of a chunk of bits in a GR-
encoded stream, with k£ = 3 (remainder) bits. Integers are
coded as the unary quotient (variable number of 1’s followed
by a 0) followed by the binary remainder bits, from right to
left.

The first O bit in Figure 1 starting from the right (un-
derlined) could reflect the last unary quotient bit, which
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Figure 1. Snapshot of a chunk of bits in a GR-encoded stream. Assuming
integers are coded as the unary quotient followed by the k = 3 bits binary
remainder (from right to left), the above chunk can be decompressed in

several ways (two of which are shown); the correct decoding cannot be
determined without knowledge of all prior stream contents.

would result in the reconstruction of integers i and i+/ as
illustrated under the stream (note that unary values end with
a 0 bit). On the other hand, this O bit could reflect the second
remainder bit, leading to integers i and i+ as depicted above
the stream.

In other words, a decoder processing an N-bit chunk
of compressed data per cycle cannot assume independent
chunks, since compressed integers are not contained within
these chunks (integers span across chunks). Furthermore, in
order to process a given N-bit chunk, the decoder has to
process all previous compressed data in the stream.

To the best of our knowledge, no (hardware and/or soft-
ware) approach in the literature allows the processing of
stream chunks in parallel. Section IV details our proposed
mechanism which overcomes this challenge.

III. RELATED WORK

The FPGA-led performance boost up of compres-
sion/decompression has long been an active field of research,
with the main focus on speeding up low-latency storage
access [20], [21], [22]. In this section, we focus on pro-
viding an overview of the application and implementation
of Golomb-Rice coding in several fields.

Inverted indexes: [12] and [15] provide an overview
of inverted index querying, as well as the description and
performance of several compression techniques, such as
variable length integers, Elias Gamma, Delta coding and
Golomb-Rice. The authors in [13], [14] provide a thorough
performance and compression ratio study of several com-
pression approaches, as applied to the inverted index prob-
lem. A novel compression technique is presented with focus
on performance, combining PForDelta with GR coding. The
intuition is to partition input integers into blocks, such that
the compressed output of each block contains all remainder
bits first, followed by the unary quotients. This allows
the fast retrieval of the fixed-length remainders through
simple lookups. The extraction of the contiguous variable-
length unary quotient values is also achieved through smart
lookup functions. However, this approach is limited by
the scalability of the lookup (limited further performance
enhancements), as well as the modifications to the input
format required. All the implementations of this work are
open source, and will be used in the performance evaluation
of our proposed hardware architecture.

Image/video: [4] proposes the use of GR coding to
compress the Discrete Cosine Transform (DCT) coefficients
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Figure 2. High-level overview of the no-stall GR decompression architecture, capable of sustaining a processing rate of N bits per cycle.

found in JPEG-LS (lossless). The authors in [6], [9] propose
novel frame-recompression algorithms targeting MPEG-2
and H.264 videos, respectively. The MPEG-2 FPGA-based
decoder makes use several assumptions to implement a
parallel GR decoder; for instance, integers are compressed
into words of fixed size 21 bits, containing exactly 7 inte-
gers each; furthermore (importantly), the boundary of com-
pressed integers is fixed within these 21 bits, and a (small)
maximum unary size is assumed. While these assumptions
hold in this case, they are not characteristics of GR streams.
Similarly, [5] presents a GR-based novel color image FPGA
CODEC. A parallel decoder is presented, assuming modified
compressed GR format, as well as small independent words
containing a fixed number of compressed integers each.
The authors in [7] describe the hardware implementation
of a novel proposed compression codec targeting advanced-
HD video, utilizing GR coding. FELICS, a lossless image
compression format utilizing GR coding was introduced in
[8].

Audio: [10] describes the use of GR coding in the the
lossless audio MPEG-LS format; similarly, the Free Lossless
Audio Codec (FLAC) [11] uses GR compression internally.

ECG signals: [16] and [17] detail the compression of
DCT coefficients in Electrocardiography (ECG) signals us-
ing the lossless GR method. The work in [18] describes
the FPGA implementation of a multi-bit per cycle GR
compressor of ECG signals. Note that compression is or-
thogonal to decompression (the problem studied in this
paper). The described FPGA decompressor operates in a bit-
serial manner.

Miscellaneous: [23] thoroughly studies the adaptive com-
bination of Run-Length to Golomb-Rice coding; the intuition
is that unary quotients resulting from GR consist of long
streams of 1’s, and can be efficiently compressed with run-
length encoding. The authors in [24] propose the use of
GR coding in conjunction with A/D converters. A detailed
CMOS-level implementation is provided, showing the ease
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Figure 3.  Functionality and high-level implementation overview of a
delimiter insertion block. Given a chunk of GR-encoded data, delimiter
flags, and remainder flags, a delimiter insertion block is tasked with
updating the input flags by marking the last bit (delimiter) and remainder
bits of the next integer in the chunk, if any.

and advantages of integration of A/D converters with GR
encoders.

IV. HARDWARE GOLOMB-RICE DECOMPRESSION

In this section, an overview of how parallel GR decom-
pression can be achieved is provided, followed by an in-
depth description of the proposed parallel hardware GR
decompression engine.

A. Parallel Extraction of Compressed Integers

As described in Section II-B, a decoder cannot process an
N-bit chunk of compressed data without any knowledge on
prior contents of the compressed stream. Hence, processing
an N-bit chunk should be delayed after all previous data is
decoded. In reference to Figure 1, this would indicate the
property (unary or remainder) of the highlighted O bit.

However, given that k=3 (number of remainder bits), the
highlighted O bit can only one of the following: (1) a unary
bit, the last to be exact; (2) the first remainder bit; (3) the
second remainder bit; and (4) finally, the third and last
remainder bit. Note that option (2) is trivially dismissed
since the previous bit is a 1, which cannot indicate the end
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Figure 4. Functionality and high-level implementation overview of the
selector and spanning bits marker stage. This stage is tasked with selecting
the output of one of the delimiters insertion pipelines (left), based on
knowledge of previously processed chunks (see the FSM transitions). All
bits spanning into the current chunk are marked as such using the outputted
Spanning flag bit vector (top).

of a unary (unaries end with a 0). However, for the sake of
a generic example, any given (0 or 1) bit in a stream can
have one of only k+1/ properties, as indicated earlier.

Assuming a decoder capable of processing a chunk of
N GR-compressed bits in parallel: the i*" chunk of size N
bits can be speculatively processed in k+/ ways, where each
would be an assumption on the property of the first bit in
that chunk. Once the previous i — 1" chunk is decoded, k
computations are dismissed and one is committed. This will
in turn allow the ¢ + 1** chunk to commit, and so on, for
the remainder of the compressed stream.

Since GR coding mainly targets integers with small
ranges, k is generally kept small; it is theoretically maxi-
mally less than the integer bit size (64 for double precision).
Therefore, the k+1 design space is limited. The choice of
N depends on several physical constraints and performance
requirements, as detailed in this section and Section V.

Encoded integers potentially span across (two or more)
chunks, either because their encoding starts towards the end
of a chunk, and/or because the unary portion is long. This
will require some data of consecutive chunks to be combined
in order to reconstruct compressed integers.

B. No-Stall Architecture Overview

The remainder of this section details a parallel no-stall
hardware GR decompression architecture based on the ob-
servations described above.

1) Delimiters Insertion: Figure 2 illustrates a high level
overview of the proposed architecture, of which the first por-
tion is delimiters insertion. As an N-bit chunk of compressed

GR data is received, it is forwarded to k+1 pipelines. Each of
these pipelines holds an assumption on the input chunk, and
receives masks (labeled remainder flags) indicating whether
each chunk bit is a remainder or a unary. This mask naturally
differs from one pipeline to the next, as illustrated in Figure
2. The top pipeline assumes that the unary of the previous
chunk spans into the received chunk (remainder flag is all
0’s). The pipeline below it assumes that only one remainder
bits spans (remainder flag of all 0’s and a single 1); and so on
until the bottom pipeline which assumes that all remainder
bits span from the previous chunk (remainder flag of all
0’s first, then k 1’s). Given its respective assumption, each
pipeline outputs the received data chunk, alongside a mask
(flags) indicating all remainder bits in the received data
chunk, as well as a mask indicating the delimiters (last bit)
of each encoded integer in the chunk. These masks would
allow the fast extraction of individual integers in a chunk,
as detailed in later stages.

As depicted in Figure 2, each of the delimiters insertion
pipeline consists of { Y w blocks, where the latter indicates
the maximum number of encoded integers in a chunk (an
encoded integer consists of at least k remainder bits and one
unary bit). A ceiling notation is used to reflect the case of a
compressed integer spanning into the next chunk, of which
less than k+/ bits are in this chunk.

The functionality and high-level implementation overview
of each block is shown in Figure 3. Given a chunk of
GR-encoded data, delimiter flags, and remainder flags, a
delimiter insertion block is tasked with updating the input
flags by marking the last bit (delimiter) and remainder bits of
the next integer in the chunk, if any. Having [ 25| delimiter
insertion blocks per pipeline guarantees that all delimiters
and remainder bits in the input chunk will be marked.

Note that for the sake of delimiters insertion, the case
of a chunk with no bits spanning into it is treated as a
chunk with unary bits spanning into it (top-most delimiters
insertion pipeline).

2) Selector (and Spanning Bits Marker) Stage: This is
the next stage in the decompression pipeline, following the
delimiters insertion. As the name indicates it, it is tasked
with selecting the output of one of the delimiters inser-
tion pipelines, based on knowledge of previously processed
chunks.

The first chunk received by this stage is fully aligned,
meaning that there are no bits spanning into it from the
previous chunk. Therefore, the (flag vectors) output of the
top-most delimiters insertion pipeline is selected, where the
unary was assumed to be spanning. Then, by inspecting
the last delimiter flag bit, the last data bit, and the last
k-1 remainder flag bits, the selector FSM can determine
the state (hence multiplexer select value) respective to the
next received chunk. This process is then repeated for every
chunk received.

Figure 4 details the functionality and high-level imple-
mentation of the selector stage. The left hand side represents
the output of each delimiters insertion pipeline, labeled with
the initial assumption of every pipeline (unary spanning, one
remainder bit spanning, etc). The output of the pipelines
is multiplexed using the selector FSM. The latter can be



Datain Forward data out

Data valid in Forward data valid iri
v
Spanning flags Forward spanning flags
Delimiter flags Forward delimiter flags
Remainder flags Forward remainderﬂags)
— . - —
| v -
1 For each bit, setif it is
1
1 valid, not spanning and if v
: it has no non-spanning
) I . delimiters before it Validation
{ If the last data bit is selected and doesn’t ", fon- - ”
i have a delimiter, then spanningyjp spanning Stage
next state = SELECT SPANNING BITS
iElse nextstate=SELECTFIRSTVALD | | state
H NON-SPANNING BITS ~.:4
B 3 i
— — v -
IV Vv
Through mux-ing, extract Unary and
the remainder bits and the remainder
unary remainder flag bits - .
extraction
remainderi  suuenins . stage
P -
P -
| ) '& Integer
v H .
. [ ] i = reconstruction
PO stage
Integer was & Reconstructed -
integer

spanning

Figure 5. Functionality and high-level implementation overview of the
integer builder block. In the validation stage, one compressed integer from
the input chunk is selected for reconstruction, then invalidated when passed
to the following integer builder (if any). The unary quotient is converted to
binary using a ones counter, whereas the remainder is simply multiplexed
using the remainder flags.

in one of k+2 states (fully aligned, unary spanning, one
remainder bit spanning, two remainder bits spanning, etc),
and the conditions for transitions across states are as shown
in Figure 4.

The selector stage is further tasked with flagging spanning
bits (bits in this chunk belonging to an integer starting in a
previous chunk); the use of this flag will be clearer in the
next decompression stages. Depending on the state of the
current chunk, a set of spanning flags is chosen from, as
shown in the top portion of Figure 4. In case the current
chunk is fully aligned, then no bits span into it, and the
spanning flag is set to all 0’s. If remainder bits spans into
the chunk, then depending on the number of remainder bits
spanning, some of the least significant bits of the flag are set
to 1. A constant flag exists for each of the aforementioned
cases. On the other hand, when the (variable length) unary
is spanning, the number of spanning bits is unknown, and
has to be computed on the fly. As shown in Figure 4, a data
bit is unary and spanning if there are no delimiters before
it (which for every compressed data bit, is equivalent to
looking for data bits with value O before it).

The output of the selector stage consists of a data chunk,
delimiter, remainder and spanning flag vectors respective
to each of the data bits. These signals are forwarded to a
pipeline of integer builders.

3) Integer Builders: As shown in Figure 2 following the
selector stage, a pipeline of (l1 integer builder blocks is

E+1
deployed. The task of each integer builder is to reconstruct

one of the integers in the chunk. Making use of {,%_J
blocks guarantees the handling of all potential integers in
a chunk. Each integer builder selects one integer from the
chunk for reconstruction, then invalidates it, and forwards
the chunk with updated valid flags to the next integer builder.
Invalidating an integer to be decoded ensures that no two
integer builder process the same integer. Rules for choosing
a compressed integer to decode are described below. Note
that depending on the input stream, some integer builders are
potentially idle in many cycles; that is because not all input
chunks will contain bits of [kjil] compressed integers.

Figure 5 details the implementation of an integer builder.
The latter comprises of three main stages, namely the
validation, unary and remainder extraction, and integer re-
construction stages.

In the validation stage, a compressed integer from the
input chunk is selected, and its corresponding valid bit flags
are cleared then forwarded alongside the data chunk to the
next integer builder (if any). Initially, an integer builder
picks the first non-spanning (valid) integer in the chunk.
In case that integer is found to span (the last data bit is
not delimited), then the integer builder will next select the
spanning integer, in order to complete the reconstruction.
This approach guarantees that no two integer builders will
target the same compressed integer.

Once a compressed integer is selected (if spanning then
through multiple cycles), the unary portion is converted
back to binary through a one’s counter. The remainder
bits are selected using the remainder flag bits. The integer
reconstruction stage handles the case of integers potentially
spanning across multiple chunks.

The output of the integer builder block is a reconstructed
integer (concatenated binary quotient and remainder), along-
side a single bit flag indicating whether the compressed
integer was spanning across two or more input chunks. This
flag is used by the (next) output alignment block.

4) Output Alignment Block: The output alignment block
adds buffers after every integer builder, such that the output
of all integer builders in a given cycle reflects the processing
of the same input data chunk. The number of buffers after
an integer builder is simply the number of integer builders
following it. Furthermore, reconstructed integers are re-
ordered such that the integer spanning in the chunk is placed
before others from that chunk. This is achieved using the
was-spanning flag outputted with every reconstructed integer
(Figures 2 and 5). Note that only one integer can be spanning
in a given chunk. Also, even though the spanning integer is
the first in a chunk, it is not necessarily processed by the
first builder, since its processing could have started by a later
builder with the previous chunk. Since some integer builders
are idle in certain cycles, their output is disregarded by the
output alignment block.

C. One-Integer Per Cycle Decoder Overview

Based on the no-stall architecture, a smaller one-integer
per cycle architecture is presented, as depicted in Figure 6.
The main difference from the no-stall approach is the use of
a single (modified) integer builder, as well as the FIFOs
and respective controllers highlighted in dark grey. As a
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data chunk is received, the number of integers it contains
is computed, and that many cycles are spent processing
it, prior to moving onto the next chunk. Therefore, wire
speed throughput is not maintained, and a FIFO (with
corresponding controller FSM) is inserted between the (mod-
ified) integer builder and the delimiter insertion pipelines.
A back pressure signal is propagated from that FIFO to the
controller of another FIFO at the input of the decompression
block, with the goal of avoiding dropping compressed data
chunks.

This architecture is presented and studied as it requires
less resources than a no-stall decoder accepting similar-
sized input chunks; furthermore, it outperforms the bit-serial
implementation (the only implementation in the literature
with no assumptions on the compressed stream).

This one-integer-per-cycle architecture is mainly useful
when the remainder size k is comparable to N. For instance,
the one-integer-per-cycle decoder assuming chunks of size
N uses less resources than a similar no-stall due to the
fewer integer builders. The minimum throughput offered by
the one-integer-per-cycle decoder is comparable to that of
a no-stall accepting chunks of size k; and depending on
the dataset, the one-integer-per-cycle could provide higher
effective throughput than the latter.

D. Decoder Generator

A (C++) tool has been developed to generate the HDL of
the decompression pipeline, using certain parameter inputs.
These include the input bit-width N (chunk size); the GR
parameter k (number of remainder bits); whether to make use
of a no-stall decoder, a single integer builder, or a bit-serial
decoder (for testing purposes); the option to further pipeline
certain stages; the option to deploy a multi-integer per cycle
arbiter at the output, to match the bit-width of the interface
of the block following the decompression pipeline (RAM,
PCle, computational core, etc); as well as other knobs useful
to hardware designers. This (7000 lines of C++) tool was
implemented from scratch and can be obtained by contacting
the authors.
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Figure 7. Resource utilization (a) and throughput (b) of the hardware
decoders are shown, targeting a Xilinx VOLX240T FPGA, with k=3. The
naive bit-serial implementation is considered for comparison purposes. The
no-stall decoder processing 32 bits per cycle occupies only 10% of the
(mid- to low-sized) FPGA, and achieves a 7 Gbps throughput.

V. EXPERIMENTAL EVALUATION

In this section, an experimental evaluation of the proposed
hardware GR decoder is carried out. A performance study
versus state-of-the-art software decoders is further detailed.

A. Resource Utilization Study

The hardware decoders were tested on a Pico Computing
M-501 board [25], connected to a host CPU via PCle. The
M-501 board includes a Xilinx Virtex 6 LX240T FPGA,
which is assumed for the remainder of this study.

Figure 7 (a) reports the resulting (post-place and route)
resource utilization of the no-stall decoders, on the target
V6LX240T FPGA. The Xilinx ISE v14.4 tools are used for
synthesis/place and route, with the optimization goal set to
speed (normal).

With the number of remainder bits k=3, each decoder is
tailored for N, being the number of bits processed per cycle.
A bit-serial decoder is included for comparison purposes.

The fully parallel no-stall architectures processing 8 and
16 bits per cycle occupy minimal FPGA resources (< 3%).
Generally, as N is doubled, the resulting decoder is around
4X larger, with the exception of No_stall-128. In the case
of the latter, we suspect that the effort of the tools was
higher for area, due to the size of the design (potentially not
fitting). Furthermore, this 128-bit pipeline cannot be used
on the target FPGA, though it fits; this is because any logic
connecting the FPGA to peripheral devices (ethernet, DDR,
PCle, etc) would potentially require more than the remaining
resources.

Figure 8 shows the resource utilization of a (32 bit) no-
stall hardware decoder as the number of remainder bits k
is varied. As k increases, the number of delimiter insertion
pipelines (k+1) directly increases; conversely, the number of
stages in each pipeline ([klﬂ]) directly decreases. Hence,
the total number of delimiter insertion stages remains con-
stant (equal to N) as k varies. On the other hand, as k
increases, the number of integer builders ((k—i’lb decreases,
thus leading to a considerable drop in resource utilization (up
to 40%). The effect of varying k on the operational frequency
is marginal; as k increases, the critical paths in the delimiter
insertion logic and integer builder increase (data omitted for
brevity).
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Figure 8. The resource utilization of a (32 bit) no-stall hardware decoder
is studied as the number of remainder bits k is varied. Place and Route
results are shown targeting a Xilinx VOLX240T FPGA. As k increases, the
number of delimiter insertion pipelines directly increases, but the number
of stages in each pipeline directly decreases. Hence, the total number of
delimiter insertion stages remains constant as k varies. On the other hand,
as k increases, the number of integer builders decreases, thus leading to a
(considerable) drop in resource utilization.

Resource utilization of the one-integer-per-cycle decoders
(Section IV-C) is comparable to that of a no-stall decoder
of the same bit-width, with large k assumed. For instance, a
32-bit one-integer-per-cycle decoder occupies around 6.5%
of the FPGA logic, comparable to a 32-bit no-stall decoder
with k=21. On the other hand, since a single integer builder
block is used, and because varying k has no effect on
the number of delimiter insertion stages, k has minimal
impact on the overall resource utilization of the one-integer-
per-cycle decoders. Data has been omitted due to space
limitations.

B. Performance Evaluation

In this section, throughput is measured at the input of the
studied decoders. In other words, it is measured as a function
of the time required to process a compressed document,
regardless of the rate at which uncompressed integers are
generated at the output. The latter has been used (in addition
to the former) as s metric in some studies such as in [14].

The performance of the bit-serial and no-stall architecture
hardware decompression cores is studied, as shown in Figure
7 (b), where k=3. Throughput is measured as a function of
the operational frequency, and the number of bits processed
per cycle; throughput does not increase linearly with the
number of bits processed per cycle, due to the negative
impact on the operational frequency of the decompression
circuit.

The critical path of the no-stall decoders resides in the
unary and remainder extraction stage of the integer builder.
Specifically, the extraction of the remainder bits limits per-
formance. Nonetheless, this block can be trivially pipelined
further. The next long wire is found in the delimiter insertion
stage; the latter can also be trivially pipelined, as it contains
no control logic. Since the developed decoders achieve good
performance, further pipelining is not applied here, due to
the added penalty on resources.

Note that the performance of the one-integer-per-cycle
decoders depends on the data set; here, the sustained
throughput is bound by k+1/ bits per cycle (the minimum
compressed integer size) and N (the number of bits read per
cycle).
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Figure 9. Throughput (Gbps) achieved by software and hardware decoders,
as the number of remainder bits k is increased. The performance of two
hardware decoders is reported here, namely (HW) No-stall 32 and No-
stall 64, each processing 32 and 64 bits per hardware cycle, respectively.
PFOR is considered as it has shown the best decompression performance
in the literature [14]. TurboRice was introduced in [14] as a new approach
combining the compression ratio of GR with the performance of PFOR.

We next compare the performance of the proposed de-
coders to state-of-the-art high performance CPU-based soft-
ware decoders. We make use of the open source (C++)
software decoders described in [14]. Three software de-
coders are considered, namely (1) Rice, a highly efficient
implementation of the base GR coding; (2) TurboRice, a
newly proposed approach in [14], combining the compres-
sion ratio benefits of GR coding, with the performance of
the PFOR method; (3) PFOR, a compression mechanism that
targets blocks of integers at a time (hence neither bit- nor
byte-granularity). Other CPU-based approaches were studied
(variable byte, S9, S16), and their performance was within
the range or Rice, TurboRice, and PFOR; hence, only the
latter are reported here.

All CPU-based approaches were ran on a CentOS 5 server
with an Intel Xeon processor running at 2.53 GHz, with
8MB of L3 cache, and 36 GB of RAM. Synthetic datasets
containing 500 million integers each were generated, while
varying the range of the integers (hence k). A large set
of integers is assumed in order to ensure that steady-state
performance is measured. Throughput is measured as a
function of the wall-clock time, such that the compressed
and resulting uncompressed data reside in the CPU RAM.
Moreover, throughput is measured as a function of the size of
the compressed data, respective to each software approach.

Figure 9 shows the throughput (Gbps) achieved by soft-
ware and hardware decoders, as the number of remainder
bits k is increased. The performance of two hardware
decoders is reported here, namely (HW) No-stall 32 and
No-stall 64. As discussed earlier, varying k has marginal
impact on the performance of the hardware decoders. On
the other hand, CPU-based approaches perform better as k
increases. As k is increased from 3 to 15, the throughput
of the CPU approaches increases by an average of 4X. This
is because the implementation of the CPU-based approaches
processes encoded data 4 bytes at a time (one integer). As the
remainder size increases, the number of (individual) unary
bits to be processed per 4 bytes decreases. Nonetheless,
data to be compressed by GR is generally small, and large
remainder values are not assumed.

The proposed no-stall 32 and 64 architectures provide



a higher throughput than PFOR (average of 3X and 4.7X
speedup respectively), as well as TurboRice (average of
6.8X and 10.4X speedup respectively). Furthermore, the
only software approach that operates on unmodified GR
data is Rice, where the no-stall 32 and 64 architectures are
respectively up to 52X and 79X faster, as well as respectively
34X and 51.5X faster on average.

VI. CONCLUSIONS

A novel highly-parallel hardware core capable of decom-
pressing streams of Golomb-Rice-coded integers at wire
speed (no-stall) with constant throughput is presented, op-
erating on raw unmodified GR data. To the best of our
knowledge, hardware and software (CPU-based) GR de-
coders assuming unmodified GR data operate bit-serially on
the compressed stream, which highly bounds the achievable
decompression speeds. Hence, even though GR offers high
compression ratios, other approaches are preferred due to the
gap in decompression performance. The presented decoder,
capable of processing several bytes per cycle, is shown to
outperform an efficient GR CPU-based implementation by
up to 52X, while utilizing 10% of resources available on a
Xilinx V6LX240T FPGA. Furthermore, when operating on
64 bits per cycle, the presented decoder provides average
speedups of 4.7X and 10.4X when respectively compared to
a software implementation of the high-performance PFOR
and TurboRice de/compression methods.
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