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Abstract— In recent years, XML-based Publish-Subscribe Sys-
tems have become popular due to the increased demand of timely
event-notification. Users (or subscribers) pose complex profiles on
the structure and content of the published messages. If a profile
matches the message, the message is forwarded to the interested
subscriber. As the amount of published content continues to grow,
current software-based systems will not scale. We thus propose
a novel architecture to exploit parallelism of twig matching on
FPGAs. This approach yields up to three orders of magnitude
higher throughput when compared to conventional approaches
bound by the sequential aspect of software computing. This
paper, presents a novel method for performing unordered holistic
twig matching on FPGAs without any false positives, and whose
throughput is independent of the complexity of the user queries
or the characteristics of the input XML stream. Furthermore,
we present experimental comparison of different granularities of
twig matching, namely path-based (root-to-leaf) and pair-based
(parent-child or ancestor-descendant). We provide comprehensive
experiments that compare the throughput, area utilization and
the accuracy of matching (percent of false positives) of our
holistic, path-based and pair-based FPGA approaches.

I. INTRODUCTION

With the recent advent of social networking and blogging
services, the Publish/Subscribe (or simply pub-sub) paradigm
is being utilized for timely event-notification. A pub-sub
system is an asynchronous event-based dissemination system
which consists of three components: publishers, who feed a
stream of messages into the system, subscribers, who post
their interests (also called profiles), and an infrastructure for
matching profiles with published messages and forwarding the
messages to the interested subscriber. Pub-sub systems have
evolved from simple topic-based [1], to content-based systems
[2], [3], [4], to recent XML-based systems [5], [6], [7], [8],
[9], [10]. Given the adoption of XML as the standard format
for data exchange, in this paper we focus on XML-based pub-
sub systems. In XML-based pub-sub, messages are encoded as
XML documents and profiles are expressed using XML query
languages, such as XPath [11]. Such systems take advantage of
the powerful querying that XML query languages offer, since
profiles describe requests on structure as well as content.

Many software approaches have been presented to solve
the XML filtering problem [5], [6], [7], [8], [9], [10]. These
memory-bound approaches, however, suffer from the Von
Neumann bottleneck and are unable to handle a large volume
of input streams. On the other hand, Field Programmable Gate
Arrays (FPGAs) have been shown to be particularly suited

for stream processing applications and do not suffer from the
memory bottleneck faced by software implementations [12],
[13], [14]. In [13] we presented a proof-of-concept approach
for the use of FPGAs for the XML filtering problem that ex-
pressed path queries using regular expressions and built a NFA
in hardware to facilitate the query matching. The proposed
approach, however, does not account for recursive elements in
XML documents or wildcards(‘*’) in the XPath expressions. In
[14] we presented a new approach for matching complex path
profiles that supports the /child:: axis and /descendant-or-self::
axis 1, wildcard (‘*’) node tests and accounts for recursive
elements in the XML document. This approach proved very
efficient for matching path profiles, but is unable to match
profiles expressed as a twig structure. In this paper, we present
a new approach for processing twigs on FPGAs in a holistic
manner. In addition, we provide experimental comparison
between the different granularities of twig matching, namely,
holistic twig matching, path matching, and pair matching all
within the FPGA framework.

The main contributions of this paper can be summarized as
follows:

• We present a novel dynamic programming approach for
holistic twig matching on FPGAs without false positives.
Our solution is based on mapping profiles into custom
Push and Pop stacks in hardware.

• We present a comparison between the different granu-
larities of twig matching, namely holistic twig matching,
root-to-leaf path matching and parent-child or ancestor-
descendant pair matching, on FPGAs.

• We present a thorough experimental evaluation of
throughput and area utilization of the three FPGA-based
proposed approaches. We then evaluate the throughput
gain and area utilization of the various approaches against
the accuracy of matching (percentage of false positives
returned).

• We finally present additional evaluation of the FPGA-
based approaches against the state of the art software
counterparts, namely FiST and YFilter. Our methods offer
up to three orders of magnitude improvement.

1In the rest of the paper we shall use ‘/’ and ‘//’ as shorthand to denote the /child::
axis and /descendant-or-self:: axis, respectively.



The rest of the paper is organized as follows: Section II
presents related work. Section IV provides an in depth descrip-
tion of the proposed architectures targeted for XPath query
matching. Section V discusses an alternative twig matching
approached based on breaking twigs into paths or pairs. Exper-
imental evaluation of the FPGA-based holistic twig matching
approach compared to twig matching via pair/path join as well
as a comparison of the FPGA-based approaches to the state of
art software counterparts appears in Section VI. A discussion
of future work appears in Section VII, while conclusions are
discussed in Section VIII.

II. RELATED WORK

A. Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are integrated
circuits consisting of up to hundreds of thousands of small
(in the order of 3,4-input) memory blocks and numerous
configurable interconnects. Each N-input memory block, also
known as a Look Up Table (LUT), can be used to implement
any N-input boolean function. Figure 1 shows a 2-input LUT
configured as an AND gate. When combined, LUTs can
represent more complex logic functions. We show in Figure 2
the implementation of the 3-input logic function f(A,B,C) =
(A AND B) OR C, using two 2-input LUTs. For the purpose
of more generic platforms, this is achieved through the use of
the configurable interconnects, also known as switch matrices.

As hardware designers express the functionality of their
circuit in a hardware descriptive language, their code (descrip-
tion) is passed through complex tools that will analyze the
user’s circuit description, optimize it for the FPGA at hand,
and map it to the available hardware resources. The bit file is
now the list of initialization bits of all LUTs and configuration
bits of switch matrices.

The performance advantages of such platforms arise from
the ability to execute thousands of computations in parallel,
relieving the application at hand from the sequential limi-
tations of software execution on Von-Neumann based plat-
forms. The processor ”instructions” are the logic functions
processing the input data. Another strong advantage of FPGAs
is the ability to process streamed data at wire speed, thus
resulting in a minimal memory footprint. The aforementioned
advantages are shared with Application Specific Integrated
Circuits (ASIC). FPGAs however can be reconfigured, are
more adaptable to changes in applications and specifications,
and hence exhibit a faster time to market. This comes at a
slight cost in performance and a considerable one in area,
where one functional circuit would run faster on a tailored
ASIC, and would require fewer gates.

As traditional platforms are increasingly hitting limitations
when processing high volumes of streaming data, researchers
are investigating FPGAs for database applications. The Glacier
component library is presented in [15] which includes logic
circuits of common operators such as selection, aggregation,
and grouping for stream processing. In [16] the authors investi-
gated the speedup of the frequent item problem using FPGAs,
while in [17] they utilize FPGAs for complex event detection

Fig. 1. Implementing a 2-input AND gate using a 2-input LUT.

Fig. 2. Implementing f(A,B,C)=(A AND B) OR C, a 3-input boolean function,
using two 2-input LUTs.

which uses regular expressions to represent events. The use
of FPGAs in a distributed network system for traffic control
information processing is demonstrated in [18]. Predicate-
based filtering on FPGAs was investigated by [19] where user
profiles are expressed as conjunctive set of boolean filters. Our
focus differs from this work since we consider XML streams
and complex query profiles expressed using a fragment of the
XPath query language, which includes complex relationships
between elements, such as parent-child, ancestor-descendant
and wildcards.

B. XML Filtering

The popularity of XML has triggered research efforts to
build efficient XML filtering systems. Several software-based
approaches have been proposed and can be broadly classified
into three categories: (1) FSM-based, (2) Sequence-based, and
(3) other.

Finite State Machine(FSM)-based approaches use a single
or multiple machines to represent the user profiles [5], [6],
[7], [20], [9]. An early work, XFilter [5], proposed building
an FSM for each profile, such that each element in the XPath
expression becomes a state in the FSM. The FSM transitions
are executed as XML tag events are generated. An open-tag
event drives the FSM to the next state, while a close-tag event
drives the FSM back to the previous state. The profile is deter-
mined as a match when the final state of its FSM is reached.
YFilter [6] built upon the work of XFilter and proposed a Non-
Deterministic Finite Automata (NFA) representation of user
profiles (path expressions) which combines all profiles into a
single machine, thus reducing the number of states needed to
represent the set of user profiles. Although, YFilter is scalable
with the number of profiles, the throughput of the system
decreases as the size of the XML document increases. Where
as YFilter exploits prefix commonalities, the BUFF system
builds the FSM in a bottom-up fashion to take advantage
of suffix commonalities in profiles [9]. Several other FSM-
based approaches were introduced that use different types of



state-machines, such as [7], [21], [22], [23]. Green et. al. [7]
proposed a lazy Deterministic Finite Automata (DFA) which
has a constant throughput with respect to the size of the query
workload; however, lazy-DFA may suffer from state explosion
depending on the number of elements and level of recursion
in the XML document, and the maximum depth of the XPath
expressions. XPush [21] builds a single deterministic push
down automaton using a lazy approach, while [23] builds
a transducer, which employs a DFA with a set of buffers,
and [22] employs a hierarchical organization of push down
transducers with buffers.

Sequence-based approaches as in [8], [10] transform the
XML document and user profiles into sequences and employ
subsequence matching to determine which profiles have a
match in the XML sequence. FiST [8] was the first to propose
a sequence-based XML filtering system using Prufer sequence
encoding. This approach was shown to be more efficient
than automata-based approaches since whole twig profiles
are processed at once, where as FSM-based approaches tra-
ditionally break the twig profiles into paths then perform
a join. However, sequence-based approaches are limited to
ordered-XPath filtering. Furthermore, the FiST system requires
a post-processing phase to filter false positives returned in the
subsequence matching phase.

Several other approaches have been proposed [24], [25],
[26]. XTrie [24] uses a trie-based data structure to index
common sub-strings of XPath profiles, but it only supports
the /child:: axis. AFilter [25] exploits both prefix and suffix
commonalities in the set of XPath profiles. More recently,
Gou and Chirkova [26] have proposed two stack-based stream-
querying (and filtering) algorithms, LQ and EQ, which are
based on lazy strategy and eager strategy, respectively.

Previous works [27], [28], [29] that have used FPGAs
for processing XML documents have mainly dealt with the
problem of parsing and validation of XML documents. An
XML parsing method which achieves a processing rate of two
bytes per clock cycle is presented in [28]. This approach is
only able to handle a document with a depth of at most 5,
and assumes the skeleton of the XML is preconfigured and
stored in a content-addressable memory. These approaches,
however, only deal with XML parsing and do not address
XPath matching.

The work in [29] proposed the use of a mixed hard-
ware/software architecture to solve simple XPath queries hav-
ing only parent-child axis. A finite state machine implemented
in FPGAs is used to parse the XML document and to provide
partial evaluation of XPath predicates. The results are then re-
ported to the software for further processing. This architecture
can only support simple XPath queries with only parent-child
axis.

When considering FPGAs, a tempting solution is to im-
plement previously proposed XML filtering approaches on
hardware without modification. However, although a given
approach maybe efficient for the XML filtering problem on
traditional platforms, the same approach may not be the

best implementation in hardware, given that FPGAs have
completely different design constraints. For instance, DFA was
shown to provide advantages over NFA-based approaches like
YFilter for XML filtering [7]. However, FPGAs are limited by
area and DFAs may suffer from state explosion, thus NFAs
are a better approach when considering FPGAs. In [13] we
adopted an NFA approach to XML filtering by representing
queries as a regular expressions, but this approach did not
handle XML documents with recursive elements, which is an
important construct in the XML data model. Thus, in the paper
we consider a new approach to XML filtering that supports a
core fragment of the XPath query language as well as recursive
elements in XML documents, takes advantage of parallelism
found in the XML filtering problem, and takes FPGA design
constraints into consideration.

C. Previous Research and Current Contributions

Mitra el. al [13] were the first to propose a pure-hardware,
FPGA-based solution to the XML filtering problem by effi-
ciently evaluating path profiles with different types of navi-
gation directions (‘/’ as well as ‘//’ axis) over the streaming
XML documents. Query profiles were represented as regular
expressions and each profile compiled to a NFA. The FPGA,
with a processing rate of one byte at a time, assumed a
stream of sequential XML documents. As each document
is being parsed, all NFAs were operating in parallel, which
helped achieve considerable throughput when compared to the
software counterparts. However, the presented method suffered
from false dismissals in the presence of recursive tags in the
XML document. Furthermore, it supported simple absolute
paths (not twigs) and did not handle wildcards (‘*’) in query
profiles.

In [14], we presented a stack-based approach to XPath
processing which allows for ‘/’ and ‘//’ axis, as well as
wildcard nodes in the query profile, and recursion in the
XML document. This method proved to consume less area on
the FPGA and provide higher throughput, when compared to
the implementation proposed in [13]. However, to process a
complex twig structure, the twig must be broken into root-
to-leaf paths and a extra join step is required to join the
results. The YFilter system takes such an approach by breaking
twigs into absolute paths and inserting each path into the
NFA to be matched. The match location for each path is
recorded and utilized during the post-processing phase, where
the Nested Path Filter is applied to join the paths. However,
we are unable to adopt such an approach since the match
location for each step in the XPath expression must be stored,
and FPGAs have limited resources. In this paper, we present
a method which performs twig matching holistically on the
FPGA by compiling each query profile into a hardware circuit.
We also provide a dynamic programming formulation for the
stack operations, as explained in Section IV. We compared
this approach against other FPGA-based possible approaches,
such as root-to-leaf path matching or parent-child/ancestor-
descendant pair matching. These approaches require less area,



Fig. 3. Supported query grammar represents a core fragment of the XPath
query language, where ‘name’ denotes element/tag labels, while ‘/’, ‘//’ and
‘*’ denote the child axis, descendant axis and wildcard node test, respectively.

however, introduce false positives. This comparison covers the
full spectrum of granularity matching when considering XML
filtering on FPGAs.

III. XML FILTERING

XML filtering is the core problem in a Pub-Sub system.
Formally, given a collection of user profiles (expressed in the
XPath query language) and a stream of XML documents, the
objective of the filtering algorithm is to determine, for each
document D, the set of XPath expressions that have at least
one match in D.

A. XML Streams

XML documents are received in a streaming fashion, where
they are parsed by a SAX parser [30]. The SAX parses the
input stream and generates two core SAX events, startEle-
ment(name) and endElement(name), which are generated, re-
spectively, when an open or close tag of a element arrives.
For presentation simplicity, in this paper we treat attributes
and elements similarly.

B. Query Language

XPath [11] is a popular language for querying XML data. In
this paper, we address a core fragment of XPath that includes
element labels, wildcards, and the /child:: and /descendant-
or-self:: axis. The grammar of the supported query language
is given in Figure 3. The query consists of a sequence of
location steps, where ‘/’ denotes the child axis, ‘//’ denotes the
descendant axis, and ‘*’ is the wildcard node test. Extending
the supported grammar to include equality-based predicates
is straightforward, however, supporting complex value-based
predicates is a challenging problem which we reserve for
future work.

IV. HOLISTIC TWIG MATCHING

In this section, we present both a high-level and a detailed
overview of the proposed filtering mechanism.

A. High-Level System Overview

Field Programmable Gate Arrays (FPGAs) are a suitable
platform for a range of applications that can be parallelized.
Using custom (and reconfigurable) circuitry tailored for the
application at hand, speedup can be achieved when com-
pared to the software counterpart, the latter suffering from
the sequential aspect of computing, and from being memory

Fig. 4. High-Level XML Filtering System.

bound. Figure 4 depicts the underlying system and components
that are mapped to the FPGA at hand. Here, streaming
the XML document, parsing, and filtering for thousands of
queries is simultaneously achieved. In addition to inter-query
parallelism, we are able to extract parallelism internal to
each query, where the matching of all tags belonging to the
query is achieved simultaneously. Moreover, with the proposed
approach supporting, but not being limited to, a streaming
XML interface, the memory footprint is virtually non-existent.
Once the stream of the XML document is complete, the
matching states of all twig filtering engines are reported.

B. Parsing Sub-Structure

Looking at Figure 4, the parser consists of four main
components: a hardware implementation of a SAX-like parser,
a Top Of Stack (TOS) address generator, the Tag Decoder, and
the Global Stack. The task of the SAX parser is to recognize
XML delimiters, such as ‘<’, ‘</’, and ‘>’; this is achieved
through the help of a finite state machine: when a new tag
is opened, the TOS address generator is notified from the
state machine, and will translate that event into a push event,
thus incrementing the current TOS address. Similarly, a closed
tag event is seen as a pop event, thus decrementing the TOS
address.

Alongside the SAX parser is a tag decoder, which notifies
the twig matching engines and the Global Stack of the tag ID
respective to the open/close event that had just occurred. The
tag decoder is implemented through a Content Addressable
Memory (CAM) - a fully associative memory, requiring a
single hardware cycle to search through all memory contents.
When initially programming the FPGA, each CAM entry is
initialized to a unique tag, such that all CAM entries cover
the set of tags used across all twigs. Each CAM line outputs a



Fig. 5. An event by event overview of the matching of path a/c/a//s.

single bit, indicating whether or not the buffered tag matches
the stored information in the line. Centralizing the tag decoder
helps reducing the redundancy across twig matching engines.
Moreover, making use of a decoded tag ID is highly beneficial,
where a single bit indicates whether or not a given tag was
found.

Finally, a global stack is introduced, where, in case of a
push, the tag ID is stored in the stack address as noted by the
TOS address generator. The number of bits representing the
tag ID is the number of unique tags. The top of the global
stack (TOGS) is forwarded to all twig matching engines.

C. Push Stacks for Path Matching

Matching for a twig consists of two parts working con-
jointly, namely, matching the root-to-leaf paths of the twig
(Section IV-C), and appropriately joining the matched paths
while reporting back to the root (Section IV-D).

The matching of each root-to-leaf path requires what we
refer to as a push stack. We next explore the motivation,
functionalities and properties of the push stack.

1) Root-to-Leaf Path Matching: In order to successfully
match a twig, the partial matching of every path from root
to leaf belonging to that twig should be achieved. In order to
match a single path, we employ a novel dynamic programming
approach, where the dynamic table is a stack, whose top of
stack address is given by the TOS address generator operating
as explained earlier. Every stack column represents a path
node, and every stack row represents a document node.

The recurrence equation applied to each cell Ci,j on a push
event, is given by:

Ci,j =


1 if


Ci−1,j−1 = 1 && tag of the node mapped

to the jth column was opened
OR

Ci−1,j = 1 && the node mapped to the jth

column is followed by // in the path
0 otherwise

where:
• 1 ≤ i ≤ maximum XML document depth
• 1 ≤ j ≤ number of Path nodes

When the jth stack column stores a ‘1’, this would indicate
that a path of length j, from root to the jth node has matched.
A path starting from the root and being of length j + 1, can

only be matched if a path starting from the root and being of
length j has matched; thus the common sub-problem property.
When the last column in a stack stores a ‘1’, the entirety of
the path would have been matched successfully.

Note that the root node of the path does not require the
propagation of the match state stored at Ci−1,j−1. Moreover,
when a wildcard is mapped to a specific column, there is no
need to check for the tag of the node mapped to that column,
as any tag is a valid one - thus the added level of freedom
offered by wildcards.

Figure 5 depicts an event-by-event example of the matching
of the path a/c/a//s, as a sample XML document is being
traversed. Notice how, from the 3rd to the 4th event, a ‘1’ was
allowed to propagate horizontally upwards in the 3rd column.
More on the matching of ancestor-descendants is covered in
Section IV-C.3.

2) Push Stack Properties: When matching all the root-
to-leaf paths in a given twig, all the paths are mapped to
a single push stack, where every node in the twig appears
exactly once. Furthermore, the diagonal propagation of a ‘1’
does not necessarily propagate between two adjacent columns,
rather from the column of a parent (ancestor) to the column
of its child (descendant). The properties of Push Stacks are
summarized as follows:

• Push stacks update on push events only.
• A ‘1’ propagates diagonally upwards from and to any

column connecting a parent or ancestor to a child or
descendant, respectively.
• Only in a ‘//’ column, a ‘1’ propagates vertically upwards,

to indicate matches to all descendants.
• A query node could require two push stack columns, one

for ‘/’ and another for ‘//’, and this arises when:
− The node in question has at least one child and at least

one descendant in the query (thus requiring both a ‘/’ and
a ‘//’ column)
− Or, if the node has only descendants, and is itself the

direct child (not descendant) of its parent node. The node
requires a ‘//’ column by default, having descendants. A
‘/’ column helps in determining exactly where that node
occurred in the XML document, a feature needed when
reporting matches using pop stacks 2 (Section IV-D).

3) Supporting Ancestor/Descendant Relationships: The
matching state of a sub-path ending in a ‘//’ relation should be
reported to any node in the XML tree, after the leaf (followed
by ‘//’) of the sub-path has been matched, and prior to popping
it.

In Figure 6, sub-trees numbered according to the order by
which they are encountered while streaming the XML doc.
Moreover:

• The Matched Sub-Path can consist of 1 or more nodes.

2If the node N has only descendants, but is itself a descendant of another node R,
then a ‘//’ column suffices, since any tag similar to N’s in the XML document, following
a matched R, is a valid one. Here an extra check needs to be made, to ensure the tag
being parsed is the same as N’s, and that is unless N is a wildcard.



Fig. 6. Generic view of any XML document with regards to any matched
path.

• Any of T0 . . . T6 could consist of zero or more nodes.
• The Path To Root can consist of 0 or more nodes.

Reporting the matched state of sub-paths having a leaf that
is followed by ‘//’ to descendants using push stacks takes place
as such:
• T0, T1, and T2 will not see a matched sub-path because
by then the latter would have not matched; even after being
in a match state, none of those subtrees are visited again.
• T3 is visited after the matched sub-path is matched, and
the matched state of that sub-path is visible to this subtree,
since push stacks report matches on pop, and T3 is reached
after a series of push events.
• T4, T5, and T6 are visited after the matched sub-path is
matched, and following a series of pop events. However, the
matched state of the matched sub-path is also not visible
here, as the leaf of the latter would be popped then, and the
matched state of the sub-path with it.

Thus, the matched state can only be seen by any node visited
after the leaf of the matched sub-path, and prior to popping
the leaf of the latter.

4) Mapping Algorithm: So far, mapping twig nodes to
stack columns has been achieved through a one-to-one map-
ping. Nonetheless, considerable FPGA resources can be saved
through stack compaction, when several twig nodes are
mapped to the same stack column. Some extra checks will
be needed to insure the correct propagation of a ‘1’ from a
parent to its child. In [14], we witnessed a 30% average saving
in resource utilization for paths matching.

Algorithm 1 refers to the twig node to stack column
mapping algorithm, with column compaction enabled. The
basic rules state that nodes followed by ‘//’, and wildcards,
map to their own restricted columns. Moreover, nodes having
similar tags are not allowed to map to the same column. Nodes
that are followed by both ‘/’ and ‘//’ in a twig are ones that
require two push stack columns.

This algorithm returns the required stack width for a given

query, and the mappings of the nodes to stack columns.

Algorithm 1 Twig Node to Push Stack Column Mapping
1 GLOBAL stack width ← 0 {Number of Push Stack

Columns}
2 for every query node N do
3 if the node requires a single Push Stack column then
4 if the node is a wildcard, and-or is an ancestor of

other query node(s) then
5 stack width + +
6 Assign a new column restricted to this node
7 else
8 Map to the column given by Mapper(tag of N)
9 end if

10 else
11 • With regards to N// :
12 stack width + +
13 Assign a new restricted column
14 • With regards to N/, map to the column

given by Mapper(tag of N)
15 end if
16 end for

Procedure 2 Mapper(tag T)
1 R← 0
2 Set R to be the stack column corresponding to the most

recent occurrence of T/ in the push stack
3 for each stack column C, s.t. R < C ≤ stack width do
4 if no ancestor or wildcard nodes map to this column

then
5 return C
6 end if
7 end for
8 stack width + +
9 return stack width

D. Pop Stacks for Joins

Recall that matching a twig consists of two parts working
conjointly, namely the push stack , and the pop stack, as seen
in Figure 8. Using the push stack, matching any root-to-leaf
path is achieved. However, matching all paths in a twig does
not imply matching the twig, unless all paths match in the
correct positions in order to form the twig at hand. The pop
stack helps us achieve this task.

For the remainder of this section, we show why a pop stack
is needed, and its properties.

1) Leaf-to-Split Node Matched Path Reporting: Let us
assume a simple twig of the form a[b/c]/d/e that appears in
a streamed XML document. Thus, (assuming) the path a/b/c
will be visited first, then each of c and b will be popped (in
that order), thus rendering the twig root node a at the top of
the stack again. At this point, there is no way to tell whether
the twig will be found in the document, since the path a/d/e



Fig. 7. An event by event overview of the reporting of the matched state of
path a/c/a//s.

would not have matched yet. However, when the leaf node
c was encountered, it was noted in the push stack that the
first path matched. This information has been lost when c was
popped. A pop stack is needed here to report back to the twig
root that the first path matched.

For instance, Figure 7 illustrates an event-by-event example
of the reporting of the matched state of path a/c/a//s, following
what was shown in Figure 5.

In more generic terms, the initial task of the pop stack is to
report the matched state of a root-to-leaf path, to the nearest
split node, corresponding to the leaf of that path. In a pop
stack, a split node is in a matched state only if all of its
children/descendants have been reported as being matched.

We achieve this task using dynamic programing, where the
dynamic programming table is a stack, whose top of stack
address is given by the address generator. Every stack column
represents a path node, and every stack row represents a
document node.

For simplicity, let us assume that queries are broken down
into P exclusive split-node (or inclusive root) to inclusive split-
node (or leaf) paths. Let us also assume that each path utilizes
its own push and pop stacks.

Each path K is mapped to both the Kth push and Kth pop
stacks, and is of length NK .

For the Kth path, the recurrence equation applied to each
cell Di,j,k of the pop stack- representing the reported match
state of node nj,k - on a pop event is given by:

Di,j =

8>>>>>>>>>><>>>>>>>>>>:
1 if

8>>>>>>>><>>>>>>>>:

8>>>>><>>>>>:

(a)Ci+1,NK ,K = 1 if ((j = NK ) and
nNK ,K is a twig leaf)

(b)Di+1,0,L = 1 ∀ L ∈ {children of nNK ,K}
if ((j = NK ) and
nNK ,K is a split node)

(c)Di+1,j+1,K = 1 if (j < NK )
OR
(d)Di+1,j,K = 1 && nNK ,K is preceded by //

0 otherwise

where:
• Ci,j,K represents a cell in the Kth push stack
• 1 ≤ i ≤ maximum XML document depth
• 1 ≤ j ≤ NK

The recurrence equation encapsulates four main cases to
report matches on a pop. If a node is a leaf in the twig (a),

then a match is reported by propagating the corresponding
output from the push stack. If a node is a split node (b), then
a match can be reported only if all of its children/descendants
in the twig respectively report matches. Otherwise (c), a match
is reported by propagating the reported match state of the
node’s single child/descendant. Matching for unordered twigs
is supported, since in (b), checking for all children is achieved
with no enforced order.

Only if a node is preceded by ‘//’ (d), then the reported
match state is allowed to propagate vertically downwards.

Figure 8 illustrates a high-level view of the underlying
matching mechanism when targeting the matching of a twig
as a whole. Here, a single push stack is required, the width of
which is defined by the mapping algorithm (introduced in IV-
C.4), and a single pop stack, the width of which is the number
of nodes in the twig. The split nodes matching logic consists
of the AND-ing logic as noted in (b) as part of the recurrence
equation. This logic further requires some cells from the push
stack to help determining the exact position of the split node
in the document.

2) Pop Stack Properties: Here are the properties of Pop
Stacks:
• Pop stacks update both on push and pop events, s.t.:

• On a push, always force writing a ‘0’ (to reset to a new
state).

• On a pop, only a ‘1’ can propagate downwards, but
never a ‘0’ (in order to not erase previous states).

• A ‘1’ propagates diagonally from and to any column
connecting a parent or ancestor to a child or descendant,
respectively.
• Only in a ‘//’ column, a ‘1’ propagates vertically down-

wards, to indicate matches to all ancestors residing only on
the path from root to the node mapped in that respective
column (see Section IV-D.3 and the supporting Figure 6).

3) Supporting Ancestor/Descendant Relationships: Re-
porting the matching state of a sub-path preceded by a ‘//’
should be visible to the ancestor of that sub-path. Referring
to Figure 6, using pop stacks, reporting matched path rooted
by a node preceded by ‘//’ occurs as such:
• T0, T1, and T2 will not see a matched path because by

then the latter would have not matched; even after being in
a match state, none of those subtrees are visited again.
• T3 is visited after the matched path is matched; however,
the matched state of that path is not visible to this subtree,
since pop stacks report matches on pop, and T3 is reached
after a series of push events.
• T4, T5, and T6 are visited after the matched path is
matched, and following a series of pop events. However,
the matched state of the matched path is also not visible
here, as some push events are required to go into the tree
nodes, and pop stack contents do not propagate on pushes.

Thus, the matched state can only be seen by the root and the
path to root as illustrated above, given that this path includes



Fig. 8. Generic view of a holistic twig matching engine, using a push and
a pop stacks.

the ancestor of the sub-path.
4) Mapping Algorithm: Here, the mapping of twig nodes

to pop stack columns is kept simple, where each node maps
to its own respective column. Thus, the width of pop stacks
is defined by the number of nodes to each twig mapping
to that stack. We keep the exploration of pop stack column
compaction as part of our future work.

V. BREAKING TWIGS INTO PATHS AND/OR PAIRS

In this section, instead of processing a twig holistically, we
consider different granularities of twig matching. Based on
the following approach, the twig profile is decomposed into
smaller parts, and the ‘filtering’ algorithm is performed on the
smaller parts. We have considered two methods:
• Path matching: Each twig profile is broken down into

root-to-leaf paths. For instance, the twig {a/b[c]//a} is
broken down into paths {a/b/c} and {a/b//a}.

• Pairs matching: Each twig profile is broken down into
parent-child or ancestor-descendant pairs. For instance,
the twig {a/b[c]//a} is broken down into pairs {a/b},
{b/c} and {b//a}.

Note that for both methods, paths and pairs may be common
among twig profiles; specifically, pairs are more common
among twigs, than are paths. Thus, this approach exploits
commonality among profiles.

Figure 9 provides an overview of the Path/Pair filtering
approach. Twigs are split into several root-to-leaf paths or
parent-child/ancestor-descendant pairs. Every path/pair match-
ing engine is followed by a match state buffer. In case
a path/pair match state is true, that state is held for the
document’s entirety. After the document is processed, a join
step is required to verify all parts (paths or pairs) that represent

Fig. 9. Generic view of any XML document with regards to any matched
path.

a twig profile were matched. Thus, every twig requires a
single AND gate in order to join all the partial paths/pairs
that constitute it. In case of a single path/pair not matching,
the twig’s matching state is marked as false.

A. Advantages

The path/pair approaches provide several advantages when
compared with holistic matching. Here, a push stack suffices to
match a path/pair, since no join step is required to match each
of the latter. Therefore, no pop stack is required. Moreover,
the smaller granularities constituting a twig profile may be
common across the profile collection, thus exploiting com-
monalities. Therefore, the representation of more paths/pairs
and ultimately more profiles on a single FPGA is achieved
when compared to the holistic approach.

Finally, since each of the matching engines requires simpler
hardware, a higher throughput can be achieved on the FPGAs.

B. Disadvantages

Although the path/pair approaches have advantages in area
utilization and higher throughput, false positives are also
introduced. Note, the join step performed is simply checking
that all parts (paths/pairs) of a profile were matched; however,
this step does not verify that these parts matched at the correct
locations. Hence, the reported set of matched profiles will
include a percentage of false positives. Thus, this technique
has advantageous for applications where false positives are
allowed or when the verification cost of the reduced profile
set is small.

VI. FILTERING SYSTEM EVALUATION

In this section, we evaluate the proposed hardware archi-
tectures, and compare them to two of the state-of-the-art
software counterparts, namely FiST[8] and YFilter[6]. For the
experiments, we utilized the DBLP DTD provided by [31] to
generate XML documents and user profiles. XML documents
and query profiles were generated using the ToXGENE XML
Generator[32] and YFilter query generator [6], respectively.
Furthermore, in all datasets, we set the number of unique
tags to 64, each consisting of two bytes. The experimental



Fig. 10. Experimental Parameters

parameters are listed in 10. We make use of four datasets,
namely:

• Dataset 1: the probability of occurrence of ‘*’ and ‘//’
in the queries is set to 5%.

• Dataset 2: the probability of occurrence of ‘*’ and ‘//’
in the queries is set to 10%.

• Dataset 3: the probability of occurrence of ‘*’ and ‘//’
in the queries is set to 15%.

• Dataset 4: the probability of occurrence of ‘*’ and ‘//’
in the queries is set to 20%.

A. Hardware System Evaluation

Our hardware platform consists of a Xilinx Virtex 5 LX330
FPGA[33]. All the push and pop stacks are implemented using
on-chip Distributed Memory (DMEM) blocks, available on
Xilinx FPGAs. We provide a thorough evaluation of the five
hardware approaches that have been presented so far in this
paper. These are:

• Holistic: each query is mapped onto both a push and pop
stack.
• Pairs offChip: each query is split into pairs, but the join

step is not implemented.
• Pairs onChip: each query is split into pairs, with the join
step implemented on the same FPGA.
• Paths offChip: each query is split into paths, but the join

step is not implemented.
• Paths onChip: each query is split into paths, with the join
step implemented on the same FPGA.

Excluding the join step in two of the designs is, first, aimed
at providing a better study of the effect of the join step on
resource utilization and throughput, and second, proposed for
designs where the join step is not needed, or can be performed
off chip on a second FPGA, or in software, depending on the
requirements of the application at hand.

We show in Figure 12(a) the resource utilization percentage
on the target FPGA, while doubling the number of twigs3.
The holistic approach is the least scalable, in contrast with
the breaking of twigs into paths and pairs, where the com-
monalities across queries are exploited. Naturally, there are
more common pairs than there are paths. However, looking
at Figure 11, the percentage of false positives is largest when

3In the remainder of Section VI-A, we make use of query dataset 2, having 10%
occurrence of ‘//’ and ‘*’.

Fig. 11. The percentage of true matches as reported from several hardware
approaches.

using pairs. The holistic approach, on the other hand, yields
no false positives.

In Figure 12(b), while doubling the number of queries, we
show the throughput of all proposed approaches, assuming
a stream of one byte per cycle. As the FPGA utilization
increases, the throughput decreases, as the task of placement
and routing of components on the FPGA is hardened. For a
given number of queries, the holistic approach exhibits the
lowest throughput, being the more complex of all five. The
pairs however, being the simplest, almost always demonstrates
a higher throughput for a given query set.

With regards to the pairs, excluding the join step shows to
benefit throughput by much when compared to the inclusive
join step approach. That behavior is however not always true
with paths, as there are fewer paths than pairs, and the effect
of the join step is not as harsh. Overall, almost all approaches
record a throughput higher than 150 MB/s, and averaging more
than 200 MB/s.

In order to further study all five approaches, we define the
true work per unit area as:

Throughput×Number of Queries× (1− False Positives(%))

Area Utilization(%)

Hence, as the throughput and the number of queries handled
increases, true work per unit area of a given approach in-
creases. Conversely, as the area utilization and the percentage
of false positives increases, the true work per unit area
decreases.

We plot this metric in Figure 12(c). As the Holistic approach
is mostly affected by high resource utilization across all query
sets, the true work per unit area is the least of all approaches..
On the other hand, the pairs approaches dominate, even while
exhibiting the highest percentage of false positives. The high
scalability aspect of this approach is due to both the low
resource utilization, and the superior throughput. The pairs
approaches’ depict an almost constantly boosting true work
per unit area with the number of queries increasing; as the
number of queries increases, for a given label set, the number
of common pairs across queries also increases, thus rendering
this approach the most scalable. However, it should be kept in
mind that offChip approaches do not perform a join step.



(a) Resource utilization of the proposed hardware architectures
on a V5LX330 FPGA.

(b) Throughput of the proposed hardware architectures on aV5LX330 FPGA.

(c) True work per unit area of the proposed hardware approaches.

Fig. 12. Area Utilization (a), Throughput (b) and True Work per Unit Area
(c) of the proposed hardware approaches for dataset 2 (10% occurrence of ‘//’
and ‘*’ in the queries). Note that the join step is not performed when using
off-chip filtering methods.

B. Hardware/Software Performance Evaluation

We provide a comparison of the proposed hardware ap-
proaches against two state of the art software approaches,
namely, YFilter[6] and FiST[8]. These approaches where
chosen since they represent the two main techniques used for
the XML filtering problem. The software approaches were run
on a quad core 2.33GHz Intel Xeon machine with 8GB of
RAM running Linux Red Hat 2.6. YFilter supports unordered
query matching by breaking twigs into root-to-leaf paths and

building a unified NFA over the set of paths. After path
matching, an additional join step is required to join the paths at
the split nodes. FiST, on the other hand, only supports ordered
query matching. The XML document and set of queries are
transformed into their Prufer sequence representation and
subsequence matching is performed to determine if a match
exists. FiST also requires a post-processing phase to filter false
positives.

The throughput of YFilter and FiST is shown in Figure
13. On average, YFilter achieves a throughput of 1.7, 1.2 and
0.3 MB/s for 5, 25 and 50 MB documents, respectively. FiST
achieves a higher throughput of 3.88, 2.58, 1.40 MB/s for
5, 25, and 50MB documents, respectively, since it processes
twigs in a holistic manner rather than processing individ-
ual paths. Although YFilter and FiST scale with increasing
query workload, it is clear, however, that both approaches do
not scale with increasing document size. In comparison, the
holistic FPGA-based approach achieves an average of 200x
speedup for 1K queries, and up to three orders of magnitude
speedup.

It should be noted that XML stream parsing is not the
bottleneck for the software approaches. For the given exper-
imental setup, using the Xerces Java parser, we were able to
achieve a throughput rate of 23.1, 57.5, and 72.2 MB/sec for
5, 25 and 50 MB documents, respectively. Thus, the profile
matching process is contributing to the low throughput of the
software approaches, not the XML parsing. Whereas, for the
FPGA-based approaches that we present, parsing is now the
bottleneck, as the overall throughput is directly proportional
to the number of bytes of XML that can be parsed per cycle.
The query matching engines can process up to one SAX event
per cycle; however, in practice, every event requires at least
three bytes of XML (‘<’, ‘>’, and a one-byte label). Never-
theless, the XML parsing problem is orthogonal to our current
research, and other researchers have proposed complex FPGA-
based parsers which are able achieve an average throughput of
two bytes of XML per cycle (a peak 4 bytes per cycle) [28].
Using the proposed approaches in this paper, we are able to
take advantage of all the effective bandwidth provided by the
parsers.

In Figure 14, we show the effect of increasing the prob-
ability of occurrence of ‘//’ and ‘*’ in the query dataset, on
software throughput, for a 25MB XML document. The perfor-
mance of both YFilter and FiST highly depends on the com-
plexity of the queries. As the occurrence of ‘//’ and ‘*’ reaches
15%, the software throughput degrades. Recall, both YFilter
and FiST are composed of two phases, query matching and
verification/join phase. High occurrence of ‘//’ and ‘*’ lends to
less selective queries and introduces more false positives in the
query matching phase, thus requiring more computation time
for the verification/join phase. Furthermore, high occurrence of
‘//’ and ‘*’ degrades performance of the software approaches
since expensive computations are performed to verify the
specified pattern is satisfied. This performance degradation is
not applicable to FPGA-based systems where the circuitry is
the same for dealing with any tag, or any relation. Here, at



Fig. 13. Throughput of FiST and YFilter when using 5, 25, and 50MB XML
documents, and queries for dataset 2 (10% occurrence of ‘//’ and ‘*’ in the
queries).

Fig. 14. Throughput of FiST and YFilter for a 25MB XML document, while
increasing the probability of occurrence of ‘//’ and ‘*’ in the queries.

1K queries of dataset 4, the holistic FPGA-based approach
yields an acceleration of 7000X and 2300X when compared
to YFilter and FiST, respectively. It should be noted that FiST
only deals with ordered twigs. While our current approach
addresses unordered twig matching, enforcing order can be
achieved through the addition of more checks at the recurrence
equation level.

VII. FUTURE WORK

In our future research, we will focus on two main tasks,
namely, supporting value based predicates and extending our
study of XML filtering to GPU platforms.

In order to support value based predicates, every condition
will be mapped to some hardware logic, and propagation of
match states in the dynamic programming table would also
depend on the condition assessment. Equality evaluation would
be achieved through the use of variable word length content
addressable memories; alternatively, inequality requires hard-
ware comparators. All these added components will affect
resource utilization, and we will be evaluating the impact
of value based predicates on both resource utilization and
performance (maximum achievable throughput).

Graphics Processing Units (GPUs) [34], [35] are being
increasingly used in scientific research, as they are able to
efficiently handle SIMD (Single Instruction Multiple Data),
memory-intensive streaming data applications [36], [37], [38],
[39]. GPUs incorporates several simple processing cores de-
signed for mathematical computation, and do not handle
control kernels efficiently. GPUs are programmed using high
level software languages [40].

XML filtering is one data intensive application that requires
many operations to be applied to every single data element;
checking for state transitions (updating the dynamic program-
ming table), joining partial matches, all for every node of
every query, are such operations that need to be performed
with the occurrence of every SAX event. XML filtering is
thus categorized as a MIMD (Multiple Instruction Multiple
Data) application, one that we suspect cannot be efficiently
mapped to GPUs. However, one advantage to GPUs is the
ability to support frequent query updates, where compiling and
reprogramming suffices to implement new queries, knowing
that compiling for GPUs requires negligible time when com-
pared to FPGA synthesis, placement and routing. We would
be looking into porting known XML filtering approaches to
GPUs, or designing a newer one that can be efficiently handled
by GPUs.

VIII. CONCLUSIONS

In this paper, we presented a novel FPGA-based architecture
to address the XML filtering problem. Using custom stack
generation, our architecture is the first providing full support
for twig pattern matching, including parent-child(‘/’) and
ancestor-descendant(‘//’) axes, wildcard nodes, and accounting
for recursion in the XML document and queries. Hardware
architectures do not suffer from the memory bottleneck prob-
lem (better known as the Von Neumann bottleneck), since
they are highly suitable for stream processing; they would
also not suffer from the limitations of sequential processing,
as the proposed architecture would support thousands of twig
matching engines operating in a parallel fashion. In addition to
being able to match thousands all queries in parallel, through
dynamic programming on FPGAs, we exploit parallelism by
simultaneously matching for all nodes in the query.

We were able to show that holistic twig matching on the
FPGA achieves an average of 175MB/s throughput for 1K
queries. Compared to state of the art software approaches, the
holistic FPGA-based approach yields up to three orders of
magnitude throughput increase. We note that the performance
of the software approaches do not scale when the size of the
input stream increases, and as the queries are more complex,
while the throughput of the FPGA-based approach is constant.

Furthermore, we presented a comparison of our holistic
FPGA-based approach against path-based and pair-based ap-
proaches, which break twigs into root-to-leaf paths and parent-
child/ancestor-descendant pairs, respectively. We compared the
various approaches based on the true work per unit area on
the FPGA. Our comprehensive experiments on the different



granularities of query matching considers throughput, area
utilization and false positives generated by the approaches,
thus allowing the selection of the most suited approach for
the application on hand. Future work will examine further
optimizations of the holistic twig matching architecture.
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