
Exploring Irregular Memory Accesses on FPGAs

Robert J. Halstead
CSE Dept.

UC Riverside
Riverside, California 92521

rhalstea@cs.ucr.edu

Jason Villarreal
Jacquard Computing

Riverside, California 92507
jason@jacquardcomputing.com

Walid Najjar
CSE Dept.

UC Riverside
Riverside, California 92521

najjar@cs.ucr.edu

ABSTRACT
Algorithms that exhibit irregular memory access patterns
are known to show poor performance on multiprocessor ar-
chitectures, particularly when memory access latency is vari-
able. Many common data structures, including graphs, trees,
and linked-lists, exhibit these irregular memory access pat-
terns. While FPGA-based code accelerators have been suc-
cessful on applications with regular memory access patterns,
they have not been further explored for irregular memory
access patterns. Multithreading has been shown to be an
e↵ective technique in masking long latencies. We describe
the compiler generation of concurrent hardware threads for
FPGAs with the objective of masking the memory latency
caused by irregular memory access patterns. We extend the
ROCCC compiler to generate customized state information
for each dynamically generated thread.

Categories and Subject Descriptors
B.4.4 [Input/Output and Data Communications]: Per-
formance Analysis and Design Aids—Formal Models

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Algorithms exhibiting irregular memory accesses are noto-

riously di�cult to parallelize. Because of poor locality they
do not benefit from caching. Their performance degrades
considerably when run on NUMA multiprocessors. Multi-
threaded architectures, where memory latency is masked by
the rapid switching between independent concurrent threads,
have been shown to be particularly adapted to these algo-
rithms.

Field Programmable Gate Arrays (FPGAs) are well known
for their speed and e�ciency on regular algorithms that op-
erate on massive data sets. In an FPGA-based hardware
acceleration the most frequently executed computation(s)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

IAAA’11, November 13, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-1121-2/11/11 ...$10.00.

is synthesized as a customized data path through which the
data is streamed. Applications that have been demonstrated
to benefit from FPGA acceleration include signal and image
processing, computer vision, data mining, bioinformatics, fi-
nancial analysis, etc.

This paper describes a first attempt at a compiler gen-
erated hardware multithreading execution on FPGAs. We
extend the ROCCC compiler toolset to support the initia-
tion of multiple long latency memory accesses. The compiler
generates the necessary hardware structures to synchronize
the results with the related threads. The paper is organized
as follows: Section 2 summarizes the related work. The
ROCCC toolset is described in Section 3. The implementa-
tion of the compiler generated multithreaded execution on
the FPGA is described in Section 4. The results of the ex-
perimental evaluation on the Convey Computers HC-1 are
reported in Section 5.

2. RELATED WORK

2.1 Multithreaded Architectures
In the late 1980’s research into multi-processor systems

with large shared memory was being conducted. The Hori-
zon architecture [6, 9] was built with 256 custom processors.
Research showed an average of 50-80 clock cycles per mem-
ory accesses, and most all memory request were completed
within 128 cycles. The processor in the Horizon architec-
ture was thus built to manage the state information for 128
concurrent thread. Hence support up to 128 outstanding
memory requests masking the memory latency caused by
having 256 processors sharing a common memory.

In the early 90’s the Tera Corporation, building upon the
experience acquired with the Horizon machine, built the
Tera MTA [2, 1]. The MTA design consisted of 256 pro-
cessors sharing 64 GB of memory organized as a distributed
NUMA architecture. Its interconnection network allowed
better scaling to a larger number of processors. It also forced
instruction requests through a shared cache lowering the net-
work tra�c. Custom processors supported the issuing of one
memory request per thread per cycle. The maximum mem-
ory latency from any processor to any memory module was
128 cycles. Each processor could support up to 128 active
threads. The MTA design [8] was later evolved into the Cray
XMT [4]. While the MTA still had 256 processors the XMT
machine has 8192 processors. The shared memory was also
increased from 1TB to 128TBs for the MTA, and the clock
speed was improved from 220MHz to 500MHz.

31

2.2 Heterogeneous Platforms
The 1980’s also saw reconfigurable fabrics being integrated

into large supercomputers. These include a large number of
cutting edge CPUs coupled with a number of FPGA devices
with full or partial sharing of memory. Notable among these
is the Cray XD1. The Cray XD1 evaluated by the Naval Re-
search Laboratory [7] consisted of 432 dual-core processors
with 144 Virtex-II FPGAs and six Virtex-4 FPGAs. The
machine consisted of 150 nodes each with one FPGA, two
processor cores and 8GBs of shared memory. Of these, 144
had one Virtex-II, and another six had one Virtex-4 FPGA.

The Convey Computers HC-1 [3] is the first heterogeneous
machine to support cache coherent shared virtual memory
accesses from both the software (CPU execution) and the
hardware (FPGA execution). This virtual memory allows
an application to switch execution between software and
hardware. Without the need to o✏oad data this switch can
be made with little overhead. The HC-1 has four Virtex-
5 LX330 FPGAs further allowing multiple sections of an
application to be written to a FPGA without need of recon-
figuration at runtime. In the HC-1ex the Virtex 6 LX760 is
used instead of the Virtex 5.

3. ROCCC TOOLSET
ROCCC [10, 5] is a C to VHDL compiler toolset specif-

ically designed for the generation of FPGA-based code ac-
celerators. Its distinguishing features are its extensive set of
compiler transformations and optimizations. ROCCC was
not designed to create hardware for entire applications, but
instead focuses on the critical regions of large software sys-
tems. The critical regions typically consist of a loop nest
performing extensive computation on large amounts of data.
Hence, the ROCCC code takes advantage of the extensive
amount of parallelism available on FPGAs and the ability to
implement large computational pipelines on streams of data
while attempting to minimize o↵-chip memory fetches and
control flow, which are better handled on microprocessors.

Among the ROCCC design goals: maximize throughput,
minimize memory accesses, minimize the size of the gen-
erated circuit, support code reuse through the import of
modules in C, VHDL or as IP cores, generate platform in-
dependent code and support fast design space exploration.

In its current design ROCCC supports codes that have
memory accesses whose order is compile-time determinable.
These can be in one, two or N dimensional arrays. In this
paper we describe an extension to ROCCC that supports
irregular memory accesses. This extension is currently de-
signed for the Convey HC-1 but could be extended to other

Algorithm 1 Summation written for ROCCC

void summation (int ⇤⇤A, int ⇤B, int ⇤C,
int m, int p) {

int i , j ;

for (j = 0 ; j < m; ++j) {
for (i = 0 ; i < p ; ++i) {

C[j] += A[j] [B[i]] ;
}

}
}

platforms that can support multiple outstanding memory
request and where the masking memory latency can be ben-
eficial.

4. IMPLEMENTATION
In this section we first describe the general model of la-

tency masking threads in hardware. Next we describe our
test application that requires irregular memory accesses and
then the extensions made to the ROCCC compiler to sup-
port this application.

4.1 Latency Masking Threads
Using concurrent threads to mask memory latency is not

a new idea. As memory accesses became the bottleneck of
many architectures they moved to models that can handle
multiple outstanding memory requests for masking the la-
tency. Traditionally, FPGAs circuits have taken a slightly
di↵erent approach. Circuits are designed as pipelines han-
dling data in a predefined order. Knowing the order allows
the data to be fetched beforehand and streamed directly
as needed. But this streaming approach cannot be applied
to circuits requiring irregular memory accesses. Concurrent
threads is an unexplored option for these designs. However,
with much slower clock frequencies than CPUs and GPUs
it is vital to mask long memory latencies when considering
performance in spite of the FPGAs massive parallelism.

Figure 1: Multithreaded execution support frame-
work. Threads will wait in either a CAM accessed
with a unique id, or a FIFO ordered as threads make
memory requests.

In the proposed multithreading framework, as shown in
Figure 1, each thread is suspended after a memory read
operation is performed. Outgoing requests are assigned a
unique tag, and the thread waits in a CAM until data is
returned. This approach requires the memory system to
return data with the appropriate tag to index the CAM.
State information about the thread can be stored in the
CAM directly, or as a pointer to on-chip memory with the
state data. While this is not the only model, as will be
elaborated next, it is the most general.

32

Figure 2: Summation of a single row. Values are first
fetched from B. Processing these values determines
a new location in A. The value stored at this location
is accumulated into the final result. This is repeated
for each row in A.

Optimizations can be applied to the framework if an ar-
chitecture permits. A CAM is necessary when returned data
could arrive out of order. If the architecture the FPGA is in
supports in order memory access we can replace the CAM
with a FIFO data structure. The FPGA can dispense with
the memory tags because threads could be pushed into the
FIFO based on the order of memory requests. Systems like
the Convey HC-1 can be made to reorder data returned from
memory, and have been done so for the experiments done in
this paper.

4.2 Example Application
The example we use to describe the proposed system is

expressed by Equation 1 and its code shown in Algorithm
1. It takes a two dimensional array A[m,n] of values, and
a list of indexes B[p] as input. Where all values in B are
less than n. The application runs through the rows, m, of A
summing the values at the indices provided in B and storing
each result into the corresponding element of C.

C[m] =
pX

i=1

A[m,B[i]] (1)

For this paper we implemented a summation data-path,
but the it could have, just as easily, been a comparator or
any other synthesizable data-path. The goal of this paper is
not the data-path generation, but the generation of VHDL
for irregular memory accesses. The sample application re-
quests addresses into A based on data retrieved from B.

4.3 ROCCC Extension
The ROCCC compiler is modified to detect and support

irregular memory accesses. In its traditional use, the ROCCC
compiler instantiates an address generator, based on the
loop and array parameters, that issues memory addresses.
The returned data is treated as a stream. In our extension
the address generator is similarly used however the returned
data is a stream of addresses to be resubmitted to the mem-
ory system. Furthermore, the returned data, indirectly ad-
dresses, is matched to and used by its generating thread. In
the above example, each innermost loop constitutes a thread
that generates a specific C[j].

The above example is synthesized into three major com-
ponents as shown in Figure 2. Knowing the size of B allows
the increment component to generate indexes in sequential
order. Receiving the values fetched from B the address path
can generate a new index into A based on the current row

being accessed. Finally the values fetched from A enter the
data-path summing a result that will be returned once all
values have been processed.

Figure 3 shows the implementation where the outermost
loop is unrolled allowing the concurrent evaluation of mul-
tiple values in C. The only limiting factor on the degree of
unrolling of the loop is the availability of memory controllers
interfacing to the memory subsystem.

4.4 Implementation on FPGA
To handle irregular memory accesses our extension con-

nects between ROCCC’s address generation, and the data-
path. Instead of data being retrieved and sent directly
into the data-path it is rerouted to another address gen-
erator. This address generator requests a new memory lo-
cation based on this incoming data, and the current state
of the application. For the example presented in this paper
the address generator will know the current row being pro-
cessed, and the total number of columns n in A. The base
o↵set is computed inside our addresses generator based on
these values. As data is streamed it gets added to this o↵set
to produce the index into A. After retrieving this data from
memory it is then feed into the data-path.

With addresses being generated dynamically for A it is
impossible to predict subsequent memory accesses, hence
successive accesses cannot be streamed from the memory to
the data path. The only form of parallelism left, in addition
to the operation parallelism within the thread itself, would
be by unrolling the outer loop on the rows on A. Because
each row is independent we can processes multiple rows at
the same time without conflicting data. We could also un-
roll along the columns. Fetching multiple memory locations
from B and process them in parallel.

5. EXPERIMENTAL EVALUATION
Testing of our application was done on the Convey HC-

1. The FPGA memory interface for this machine is lim-
ited to 150 MHz. While a standalone version of our circuit
synthesized to over 200 MHz we had to adopt the HC-1’s
speed limitation. The Convey’s memory interface consists
of 16 memory channels per FPGA for input or output data
streams. Each memory channel supports a maximum of 256
outstanding memory requests. Our experiments use only
one of the four available FPGAs.

As shown in Algorithm 1 the number of columns in A is
set to the length of B: it maximizes the number of memory
requests based on the memory allocated, and makes the code
easier to read. We could allow A to have an independent
number of columns from B by creating another parameter.
The index into A would then compute its base location with
the new parameter and current row. The o↵set would still
rely on data coming from B.

We have explored the e↵ects of unrolling our design. At

Table 1: FPGA and Software Execution Time
Data Size SW FPGA

(106) no unroll unroll 2 unroll 7
1 0.08 0.08 0.02 0.02

10 0.72 0.65 0.09 0.04
100 7.23 6.24 0.78 0.25
200 13.71 12.45 1.53 0.47

33

(a) Multiple Input Streams (b) Multiple Output Streams

Figure 3: Unrolled implementation. When unrolling the design along j creates multiple address generators
for A and multiple summation datapaths. B runs along i so its values are not unrolled, but input data is
duplicated and processed by the address generators for A.

this stage of our design we do not yet support the multiplex-
ing of multiple streams, of data or addresses, on a physical
memory channel, the limiting factor is the number of mem-
ory channels. B, A and C each requires one memory chan-
nel. When the outer loop is unrolled the data from B can
be shared by each instance of the loop, so the maximum un-
rolling is seven concurrent loop iterations (15 channels being
used). We report the data for no unrolling, two and seven
concurrent loop bodies.

Because the Convey machine shares the same memory
structures for both hardware and software we opted to do
our software implementation on the Xeon cores of the HC-1.
This gives us a more accurate measure on how memory re-
quests a↵ect overall execution time. The HC-1 uses an Intel
Xeon CPU, and Xilinx Virtex5 LX330 FPGAs.

In Table 1 we compare the execution time of software
to our FPGA implementations. As expected the FPGA’s
performance improves as the data set’s size increases. With
1 million elements the startup time has more e↵ect on the
overall execution time. For this reason the implementation
unrolled by a factor of two was fastest. When data sets grow
to 100 million elements software begins taking significant
time. In this data range the FPGA is still executing under
1 sec, and the speedup for the FPGA is over 29X.

6. CONCLUSION
We have described the extensions to the ROCCC com-

piler toolset that can generate a multithreaded accelerator
on an FPGA. We evaluate this implementation on the Con-
vey Computer HC-1 considering the state of the cache on
overall execution time. Using only one Virtex 5 LX330 we
achieve a speedup over 29X. Noticing that overall speedup
on our application improves as the data size increases. The
kernel code used to demonstrate the implementation and
evaluate the speed-up is a very simple code. We expect that
more complex applications, relying on complex memory ac-
cesses and/or having more elaborate inner loop computa-
tions, would achieve a much larger speed-up over traditional
software.

Acknowledgments
This work has been supported in part by NSF Awards 0905509
and 0811416, by Jacquard Computing Inc. and by the Air
Force Research Lab.

7. REFERENCES
[1] G. Alverson, R. Alverson, D. Callahan, B. Koblenz,

A. Porterfield, and B. Smith. Exploiting heterogeneous
parallelism on a multithreaded multiprocessor. In
Proc. of the 6th Int. Conf. on Supercomputing, ICS
’92, pages 188–197, New York, NY, USA, 1992. ACM.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera Computer
System. In Proc. of the 4th Int. Conf. on
Supercomputing, ICS ’90, pages 1–6, New York, NY,
USA, 1990. ACM.

[3] T. M. Brewer. Instruction set innovations for the
Convey HC-1 computer. IEEE Micro, 30:70–79, March
2010.

[4] J. Feo, D. Harper, S. Kahan, and P. Konecny.
ELDORADO. In Proceedings of the 2nd Conference
on Computing Frontiers, CF ’05, pages 28–34, New
York, NY, USA, 2005. ACM.

[5] http://roccc.cs.ucr.edu/.
[6] J. Kuehnand and B. Smith. The Horizon

supercomputing system: architecture and software. In
Proc. of the 1988 ACM/IEEE Conf. on
Supercomputing, Supercomputing ’88, pages 28–34,
Los Alamitos, CA, USA, 1988. IEEE Computer
Society Press.

[7] J. Osburn, W. Anderson, R. Rosenberg, and
M. Lanzagorta. Early experiences on the NRL Cray
XD1. In Proc. of the HPCMP Users Group
Conference, pages 347–353, Washington, DC, USA,
2006. IEEE Computer Society.

[8] A. Snavely, L. Carter, J. Boisseau, A. Majumdar,
K. S. Gatlin, N. Mitchell, J. Feo, and B. Koblenz.
Multiprocessor performance on the Tera MTA. In
Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, Supercomputing ’98, pages 1–8,
Washington, DC, USA, 1998. IEEE Computer Society.

[9] M. R. Thistle and B. J. Smith. A processor
architecture for Horizon. In Proc. of the 1988
ACM/IEEE Conf. on Supercomputing,
Supercomputing ’88, pages 35–41, Los Alamitos, CA,
USA, 1988. IEEE Computer Society Press.

[10] J. Villarreal, A. Park, W. Najjar, and R. Halstead.
Designing modular hardware accelerators in c with
roccc 2.0. In Field-Prog. Custom Comp. Machines
(FCCM), 2010 18th IEEE Annual International
Symposium on, pages 127 –134, may 2010.

34

