
 

Abstract — While the computational power of Field 
Programmable Gate Arrays (FPGA) makes them attractive as 
code accelerators, the lack of high-level language programming 
tools is a major obstacle to their wider use. Graphics Processing 
Units (GPUs), on the other hand, have benefitted from advanced 
and widely used high-level programming tools. This paper 
evaluates the performance, throughput and energy of both 
FPGAs and GPUs on image processing codes using high-level 
language programming tools for both.  

I. INTRODUCTION 

FPGAs are commonly used as execution platforms for 
signal and image processing applications because they provide 
a good tradeoff between the programmability of CPUs and 
DSPs and the performance of ASICs. However, their 
programmability remains a major barrier to their wider 
acceptance by application code developers. These platforms 
are typically programmed in a low-level hardware description 
language, such as VHDL or Verilog, a skill not common 
among application developers and a process that is often 
tedious and error-prone. The Riverside Optimizing Compiler 
for Configurable Circuits (ROCCC) is a C-to-VHDL 
compilation toolset designed to raise the abstraction of FPGA 
programming.  

GPUs, on the other hand, have seen the emergence of 
software tools (CUDA [5] and OpenCL [6]) that have bridged 
their programmability gap in recent years making them 
extremely attractive platforms for signal and image processing 
as well as high-performance computing. By extensively 
exploiting SIMD-style and multithreaded parallelisms they 
have demonstrated speed-ups over CPU that range in the two 
orders of magnitudes. 

In this paper we evaluate the performance, programmability 
and energy consumption and the tradeoffs implied in using 
FPGAs and GPUs on a large set of image applications. We 
find FPGAs and GPUs offer comparable performance, and 
programmability in terms of pixels being output per cycles 
taken for computation, and lines of code written. We look at 
ideal executions on higher end platforms for both FPGAs and 
GPUs. We also find the real execution times of the GPU will 
be, on average, 46 times longer than the ideal due to memory 
accesses. 

The rest of this paper is organized as follows. In Section II 
we explain the software we use to program our two platforms. 
Section 3 explains the benchmarks and the differences 
between their designs. Section 4 presents the data we 
collected, and some analysis explaining it. Section 5 provides 
conclusions.  

II. PLATFORMS AND LANGUAGES 

A. Programming FPGAs with ROCCC 
FPGAs are commonly programmed using low-level 

hardware description languages such as VHDL and Verilog.  
Such languages require complete timing information and low-
level details that software designers are traditionally 
unfamiliar with.  Hardware implementations, however, may 
provide critical speedup to software applications [2], 
necessitating a way to overcome the long development times 
and programming overhead normally required to create FPGA 
implementations.  

The Riverside Optimizing Compiler for Configurable 
Computing (ROCCC) [4] raises the level of abstraction for 
programming FPGAs to a subset of C, allowing developers to 
specify hardware designs in a familiar syntax.  Through 
extensive optimizations, ROCCC transforms a subset of C into 
VHDL code that achieves similar throughput to handwritten 
VHDL with little overhead [3].  The ability to program FPGAs 
in a higher-level language not only enables software 
developers to utilize available hardware, but also increases 
user productivity and enables design space exploration from a 
single high-level source. 

ROCCC supports the construction of hardware accelerators 
through a bottom-up design process where the user defines 
modular, reusable hardware blocks (referred to as modules) 
that can be combined and instantiated to create larger systems 
that process large amounts of streaming data.  Each module 
may be a concrete computational block described in C, or 
imported into ROCCC from a preexisting source such as an IP 
core or netlist.  All modules are stored in a database integrated 
with the compiler and managed by the Eclipse-based GUI. 
Module instantiations are available to be integrated directly 
into the high throughput hardware pipelines generated by 
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ROCCC as appropriate. 
ROCCC performs extensive optimizations and program 

transformations targeting hardware on the C code. The 
purpose of these transformations is to generate circuits that 
maximize the throughput, minimize the number of off-chip 
memory accesses, and minimize the area used. The user is 
given fine-grained control over the extent of these 
transformations, which allows for design space exploration 
from a singular C source. 

Many applications in signal, image and video processing 
consist of a sequence of well-defined and often standard 
operators applied to a data set or a stream of data. While it is 
possible to apply these compiler transformations to each 
operator separately, studies have shown that applying them to 
the whole application yields dramatically better results in 
terms of speed, area and throughput. 

By allowing the user to import modules under three forms, 
ROCCC not only improves productivity by supporting code 
reuse, it also reduces design variability by allowing the use of 
tested cores in the forms of netlists. However, importing a 
module as a netlist or a VHDL code prevents the compiler 
from applying the above mentioned program transformations 
to the whole application. 

ROCCC is not designed as a hardware description language 
and cannot be used to describe arbitrary circuits in C.  Instead, 
the focus of ROCCC is on generating high performance 
hardware accelerators that perform many computations on 
streams of data. 

Different platforms have different characteristics, including 
available area and bandwidth.  Applications must be tuned to 
take advantage of the platform specifics.  One of the most 
influential controls that ROCCC supports is through the 
control of loop unrolling.  Users may specify exactly which 
loops are unrolled by what amount, unlike in a traditional 
compiler where all of these decisions are made across the 
whole program.  Unrolling will adjust the number of data 
elements required per loop iteration, which in turn adjusts the 
necessary bandwidth for maximium throughput.  Also, the 
user can control the number of incoming channels on a 
stream-by-stream basis, ensuring that incoming and outgoing 

data rates are maximized.  The memory interface address 
generation and reuse of fetched data is handled by ROCCC. 

The examples used in this paper operate on images that are 
treated by ROCCC as two-dimensional streams.  Processing a 
sliding window on a two-dimensional stream is coded as a 
doubly nested for loop, with both the outer and inner loop’s 
unroll factor separately controllable by the user.  By unrolling 
either the outer or inner loop we can control the amount of 
data fetched each clock cycle in both the horizontal and 
vertical dimensions.  In Section IV, a design specified 4x8 has 
been unrolled 4 times in the horizontal direction and 8 times in 
the vertical direction, which will require a 4x8 window of data 
each cycle to achieve maximium throughput. 

B. Programming GPUs with CUDA 
CUDA is a C API that facilitates the programming of 

GPUs, and helps incorporate their computational power into 
software applications. GPUs are targeted toward designs that 
are highly parallel, and require the same set of instructions to 
be executed over large quantities of data, i.e the single 
instruction multiple data (SIMD) paradigm. CUDA has 
become and valid way for developers to program GPUs, and 
speedup their designs [1]. 

 Using CUDA a developer writes a computational kernel. 
This kernel is a set of instructions that should be executed on 
all necessary data. Each kernel reads data from global 
memory, executes the instructions and stores data back to 
global memory.  The data is offloaded from the host’s main 
memory to the GPU’s global memory. The GPU is evoked to 
process the data, and writes its output again to its own global 
memory. When done the host can then read the data back. 

A GPU will contain a number of Streaming Multiprocessors 
(SMs). These SMs are responsible for working on blocks of 
data. A GPU can have a different number of SMs. The Nvidia 
Tesla C1060 used in this work has 30 SMs. Each SM has a 
number of Streaming Processors (SP) that process threads of 
data inside each block, and unique caches for data and 
instructions.  Each SM also has some shared memory that 
allows communication and sharing of data between each SP.  

When writing a kernel for a GPU the developer must take 

 
Fig. 1.  The number of pixels that are output per cycle when varying the number of Streaming Multiprocessors on a GPU, and the data 

streamed in per cycle for the FPGA. 
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into consideration the number of SMs their GPU has, and how 
many SPs each SM has. The developer will then specify a 
number of blocks the data should be broken into, knowing that 
each of these blocks will go to one SM. They must also decide 
how many threads should exist in each block based on the 
capabilities of the GPU. These parameters determine how 
efficiently the developer is utilizing the GPU. 

III. BENCHMARKS 

In this paper, we make use of eight image-processing 
benchmarks (kernels) that we implement for both CUDA and 
ROCCC. 

The benchmarks fall in two categories. In the first, the 
algorithm operates on a sliding window (typically 3x3) over 
the image, therefore resulting with an image two columns and 
two rows smaller than the original input. Box Filter, Gaussian 
Blur, Median Filter, Pixelation, and Sobel are examples of this 
first category.  In the second category, the code operates on a 
single pixel at a time. Blend Filter, Brightness Filter and Color 
Extraction are the benchmarks in this second category. 

Median Filter requires finding the median value on a 
window of pixels, to do this we used a modified version of the 
Even-Odd sort implementation as described in [9].  

Pixelation lends itself easily to the explicit employment of 
the GPU’s shared memory (on each SM) through making use 
of the __shared__ CUDA construct. This resulted in 
considerable speedup over the base implementation that relies 
solely on global memory for shared content. On the other 
hand, on FPGAs, ROCCC detects data re-use and places 
common data in what is referred to as a smart buffer [3]. 

Finally, the C-like code is highly similar for both platforms 
(C for ROCCC and CUDA for GPUs), with minor exceptions 
such as the explicit instantiation of shared memory.  

IV. EXPERIMENTS, RESULTS, AND DISCUSSION 

In this section, we evaluate the computational performance 
and energy efficiency of several GPU and FPGA setups for 
each of the aforementioned benchmarks. 

A. Experimental Setup 
The input to each kernel is a 512x512 pixel image, with the 

exception of Blend Filter, where two 512x512 images are used 
as input. The output of the kernels is a single 512x512 image. 
Images are stored in the Netpbm [11] format, which helps 
reducing the computation overhead involved with locating 
pixels. 

A total of 24 bits were used to represent RGB values, and 8 
bits for grayscale. In all of the Blend, Brightness, and Color 
Extraction kernels, each of the red, green, and blue pixel 
values were treated as independent sets of data; in other 
words, three data sets were streamed to the FPGA circuitry, 
and three arrays were stored in global memory for the GPU. 
On the other hand, we were able to treat the RGB pixel as one 
24-bit number in the Pixelation kernel, where the latter 

computes the average of red, green and blue values. 
We offer the evaluation of four GPU setups, having 1, 4, 10 

and 30 SMs respectively. The 30 SM GPU represents higher 
end GPUs, such as the Tesla C1060. Each SM consists of 8 
SPs (as with the Tesla C1060), where each SP can ideally 
execute 4 instructions per cycle. A cycle accurate simulation 
of such GPUs was achieved using GPGPU-Sim [7]. Here, we 
configured the simulator to make use of ideal memories, 
having zero access latency; this applies to both global memory 
and local cache memories.  

We compare the GPU setups to three FPGA 
implementations of the kernels, where the computation loop 
unrolling is varied (1x1, 4x4, 4x8). We made use of Xilinx’s 
ISE 11.1 toolset to assess the area utilization and maximum 
operational frequency on a Xilinx Virtex 6 LX760 FPGA. We 
also utilized the built in cycle-by-cycle Xilinx simulator to 
evaluate the performance. 

B. Pixels Output per Cycle 
We show in Figure 1 the pixels that are output per hardware 

cycle, on each of the GPU and FPGA setups. The results 
assume ideal memory latencies for both GPUs and FPGAs; 
therefore, the resulting metric depicts solely the computational 
efficiency each the device. This comparison helps determine 
the performance of each device regardless of the implications 
of the memory hierarchy (latency, cache misses, etc…) 
specific to each platform. 

As shown in Figure 1, as expected, the computational 
performance is following a linear progression for both GPUs 
and FPGAs while increasing the computational power. We can 
thus extrapolate the power of an FPGA if we were to use a 
larger design to account for the unused area. These 
extrapolations will be discussed later in the paper. 

Note that a GPU with 4 SMs will fully utilize 32 cores 
executing on the image, which equates to 128 data elements 
being requested in a pseudo-parallel fashion. Unrolling the 
loops on the FPGA increases the parallelism similarly: as the 
loop is unrolled in the FPGA, we increased the number of data 
channels.  

The largest GPU we simulated has 240 cores, each able to 
execute 4 instructions per cycle, thus processing 960 data 
elements in parallel. The FPGA is bringing in at most 32 data 
elements each cycle on the furthest unrolled design (4x8). This 
is far from the 960 data elements that the largest GPU is 
executing on, and is much closer to the GPU simulations with 
only 1 SM. 

The largest designs for the FPGA approximately utilize 
20% of the total resources available on a Virtex 6. Hence, 
unlike the GPU, the FPGA is not being used to capacity. The 
results in Figure 1 show GPUs and FPGAs are similar in the 
number of pixels output per cycle, and in some cases even out 
perform the GPU. 
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C. Real versus Ideal Execution Time 
Assuming the GPU can execute on 960 unique data 

elements every cycle is an unrealistic assumption that factors 
out cache misses, bus contention, and the global memory 
access latency. On the other hand, the simulations ran for the 
FPGA do take these into consideration since the FPGA does 
not utilize caches.  

To compute the real execution time for the GPU we ran our 
designs on the Tesla C1060. To warm up the caches, we ran 
the designs multiple times; moreover, we show the average of 
several execution times for each kernel. To be consistent with 
the FPGA simulations, the measured execution time does not 
account for the offloading of data to and from the GPU to the 
host machine.  

The ideal execution time is computed as the number of 
cycles a kernel executes, divided by the operational frequency 
of the underlying platform. We assumed the Tesla GPU 
operational frequency of 1.3GHz for all out GPU setups. The 
average clock frequency for our FPGA 4x8 designs was 109 
MHz, and is higher for smaller (less unrolled) 
implementations. 

Figure 2 shows the ratio of read to ideal execution time for 
the 30 SM GPU. On average, the real execution time is 46 
times longer than its ideal counterpart. Closer inspection 
reveals that the ratio is larger in designs operating on color 
images where the colors are stored in separate arrays. While 
the ration is smaller in other designs, it still reveals 
considerable slowdown when compared to the ideal execution 
times. Since the CUDA implementation of the median filter 
kernel was highly similar to that of the FPGA design, both the 
execution time and ratio could be improved if the design 
targeted strictly GPU architectures. 

 
D. Resource Utilization 

When computation is done on a GPU all SMs are used. It is 
up to the developer to effectively partition the data knowing 
the underlying architecture of their GPU.  

The FPGA developer has to create their design to utilize as 
much area as possible, keeping in mind that as designs for 
FPGAs increase in size and complexity, the maximum 
operational frequency will drop.  

The total area of each kernel circuitry implementation on an 
FPGA averaged less than 20% of the overall resources 
available on the target Virtex 6. Therefore, we can extract 
more parallelism in most of these benchmarks through further 
unrolling, as the memory bandwidth permits.  

E. ROCCC and CUDA Code Comparison 
When looking at lines of code we only consider lines 

contributing to the execution of the kernel. We do not account 
overhead such as declaration of variables, library instantiation, 
and others. We also do not count lines of code used to fill in 
arrays and streams with data. In CUDA we would count lines 
computing the thread index, and for ROCCC we count lines 
initializing temporary variables. 

Table 1 shows the code sizes. As we can see, both ROCCC 
and CUDA code are of highly similar volumes and structures. 

The ratio for all ROCCC benchmarks to CUDA benchmarks is 
1.08:1. 

The ROCCC code is two to three orders of magnitude less 
than the generated VHDL code, which is used to program the 
FPGA.  This VHDL code is generally invisible to the user and 
is comparable to the amount of VHDL code that would have 
had to be written by hand.  Additionally, optimizations on the 
ROCCC code such as loop unrolling would have required 
complete rewrites of the VHDL code. 

F. Joules per Pixel 
We also examined the amount of energy the kernels used 

when processing their respective data sets. The Tesla C1060 
GPU is rated at 187.8 watts of maximum power. As noted 
earlier, it also has an operational frequency of 1.3GHz. We 
take these as constant across all kernels designed for the GPU. 

To measure the power consumption on the FPGA we used 
Xilinx’s Power Estimator (XPE) tool [10]. Given a specific 
board, a clock frequency and the number of slices, BRAMs, 
and DSP blocks used XPE can estimate the power 
consumption. The tools are able to provide typical power 
consumption for a design, and maximum power consumption 
for a design. We used the Virtex 6 LX760 as our target FPGA. 

 

TABLE I 
LINES OF CODE 

Kernel ROCCC CUDA 

Box Filter 14 14 
Blend Filter 11 11 

Brightness Filter 16 16 
Color Extraction 16 13 
Gaussian Blur 14 15 
Median Filter 84 79 
Pixelation Filter 25 26 
Sobel 29 20 

 
The average lines of code, used to do computation, are similar in 
overall size. The ratio of ROCCC code to CUDA is 1.08.  
 

 
Fig. 2.  The ratio of real execution time to ideal execution time for a 

GPU. The real execution time takes on average 46 times longer 
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Joules
Pixels  (1) 

 
We compared the Joules consumed per pixel for each 

device. Using Equation (1), we show the maximum Joules 
consumed per output pixel in Figure 3. As shown, the GPU 
will usually use more power than a 4x8 FPGA design; it is in 
fact more comparable to the 4x4 FPGA design in most cases. 

V. CONCLUSION 

In this paper we analyzed the computational efficiency of 
both FPGAs, and GPUs on 8 image processing kernels 
programmed from the same level of abstraction using ROCCC 
and CUDA respectively. While the kernels on GPUs with 
perfect memory accesses offer comparable performance to 
FPGAs, we found that the measured execution time of GPUs 
was 46 times longer than the ideal, leading to better 
performance on the FPGA.  Additionally, the FPGA was not 
fully utilized, indicating that a fully utilized FPGA would 
achieve significant gains when compared to a fully utilized 
GPU. 
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