

Abstract — While the computational power of Field
Programmable Gate Arrays (FPGA) makes them attractive as
code accelerators, the lack of high-level language programming
tools is a major obstacle to their wider use. Graphics Processing
Units (GPUs), on the other hand, have benefitted from advanced
and widely used high-level programming tools. This paper
evaluates the performance, throughput and energy of both
FPGAs and GPUs on image processing codes using high-level
language programming tools for both.

I. INTRODUCTION

FPGAs are commonly used as execution platforms for
signal and image processing applications because they provide
a good tradeoff between the programmability of CPUs and
DSPs and the performance of ASICs. However, their
programmability remains a major barrier to their wider
acceptance by application code developers. These platforms
are typically programmed in a low-level hardware description
language, such as VHDL or Verilog, a skill not common
among application developers and a process that is often
tedious and error-prone. The Riverside Optimizing Compiler
for Configurable Circuits (ROCCC) is a C-to-VHDL
compilation toolset designed to raise the abstraction of FPGA
programming.

GPUs, on the other hand, have seen the emergence of
software tools (CUDA [5] and OpenCL [6]) that have bridged
their programmability gap in recent years making them
extremely attractive platforms for signal and image processing
as well as high-performance computing. By extensively
exploiting SIMD-style and multithreaded parallelisms they
have demonstrated speed-ups over CPU that range in the two
orders of magnitudes.

In this paper we evaluate the performance, programmability
and energy consumption and the tradeoffs implied in using
FPGAs and GPUs on a large set of image applications. We
find FPGAs and GPUs offer comparable performance, and
programmability in terms of pixels being output per cycles
taken for computation, and lines of code written. We look at
ideal executions on higher end platforms for both FPGAs and
GPUs. We also find the real execution times of the GPU will
be, on average, 46 times longer than the ideal due to memory
accesses.

The rest of this paper is organized as follows. In Section II
we explain the software we use to program our two platforms.
Section 3 explains the benchmarks and the differences
between their designs. Section 4 presents the data we
collected, and some analysis explaining it. Section 5 provides
conclusions.

II. PLATFORMS AND LANGUAGES

A. Programming FPGAs with ROCCC
FPGAs are commonly programmed using low-level

hardware description languages such as VHDL and Verilog.
Such languages require complete timing information and low-
level details that software designers are traditionally
unfamiliar with. Hardware implementations, however, may
provide critical speedup to software applications [2],
necessitating a way to overcome the long development times
and programming overhead normally required to create FPGA
implementations.

The Riverside Optimizing Compiler for Configurable
Computing (ROCCC) [4] raises the level of abstraction for
programming FPGAs to a subset of C, allowing developers to
specify hardware designs in a familiar syntax. Through
extensive optimizations, ROCCC transforms a subset of C into
VHDL code that achieves similar throughput to handwritten
VHDL with little overhead [3]. The ability to program FPGAs
in a higher-level language not only enables software
developers to utilize available hardware, but also increases
user productivity and enables design space exploration from a
single high-level source.

ROCCC supports the construction of hardware accelerators
through a bottom-up design process where the user defines
modular, reusable hardware blocks (referred to as modules)
that can be combined and instantiated to create larger systems
that process large amounts of streaming data. Each module
may be a concrete computational block described in C, or
imported into ROCCC from a preexisting source such as an IP
core or netlist. All modules are stored in a database integrated
with the compiler and managed by the Eclipse-based GUI.
Module instantiations are available to be integrated directly
into the high throughput hardware pipelines generated by

Is There A Tradeoff Between Programmability and
Performance?

Robert Halstead
University of California

Riverside

Jason Villarreal
Jacquard Computing, Inc.

Roger Moussalli
University of California

Riverside

Walid Najjar
University of California

Riverside

�������������������������������������,((($VLORPDU�����

ROCCC as appropriate.
ROCCC performs extensive optimizations and program

transformations targeting hardware on the C code. The
purpose of these transformations is to generate circuits that
maximize the throughput, minimize the number of off-chip
memory accesses, and minimize the area used. The user is
given fine-grained control over the extent of these
transformations, which allows for design space exploration
from a singular C source.

Many applications in signal, image and video processing
consist of a sequence of well-defined and often standard
operators applied to a data set or a stream of data. While it is
possible to apply these compiler transformations to each
operator separately, studies have shown that applying them to
the whole application yields dramatically better results in
terms of speed, area and throughput.

By allowing the user to import modules under three forms,
ROCCC not only improves productivity by supporting code
reuse, it also reduces design variability by allowing the use of
tested cores in the forms of netlists. However, importing a
module as a netlist or a VHDL code prevents the compiler
from applying the above mentioned program transformations
to the whole application.

ROCCC is not designed as a hardware description language
and cannot be used to describe arbitrary circuits in C. Instead,
the focus of ROCCC is on generating high performance
hardware accelerators that perform many computations on
streams of data.

Different platforms have different characteristics, including
available area and bandwidth. Applications must be tuned to
take advantage of the platform specifics. One of the most
influential controls that ROCCC supports is through the
control of loop unrolling. Users may specify exactly which
loops are unrolled by what amount, unlike in a traditional
compiler where all of these decisions are made across the
whole program. Unrolling will adjust the number of data
elements required per loop iteration, which in turn adjusts the
necessary bandwidth for maximium throughput. Also, the
user can control the number of incoming channels on a
stream-by-stream basis, ensuring that incoming and outgoing

data rates are maximized. The memory interface address
generation and reuse of fetched data is handled by ROCCC.

The examples used in this paper operate on images that are
treated by ROCCC as two-dimensional streams. Processing a
sliding window on a two-dimensional stream is coded as a
doubly nested for loop, with both the outer and inner loop’s
unroll factor separately controllable by the user. By unrolling
either the outer or inner loop we can control the amount of
data fetched each clock cycle in both the horizontal and
vertical dimensions. In Section IV, a design specified 4x8 has
been unrolled 4 times in the horizontal direction and 8 times in
the vertical direction, which will require a 4x8 window of data
each cycle to achieve maximium throughput.

B. Programming GPUs with CUDA
CUDA is a C API that facilitates the programming of

GPUs, and helps incorporate their computational power into
software applications. GPUs are targeted toward designs that
are highly parallel, and require the same set of instructions to
be executed over large quantities of data, i.e the single
instruction multiple data (SIMD) paradigm. CUDA has
become and valid way for developers to program GPUs, and
speedup their designs [1].

 Using CUDA a developer writes a computational kernel.
This kernel is a set of instructions that should be executed on
all necessary data. Each kernel reads data from global
memory, executes the instructions and stores data back to
global memory. The data is offloaded from the host’s main
memory to the GPU’s global memory. The GPU is evoked to
process the data, and writes its output again to its own global
memory. When done the host can then read the data back.

A GPU will contain a number of Streaming Multiprocessors
(SMs). These SMs are responsible for working on blocks of
data. A GPU can have a different number of SMs. The Nvidia
Tesla C1060 used in this work has 30 SMs. Each SM has a
number of Streaming Processors (SP) that process threads of
data inside each block, and unique caches for data and
instructions. Each SM also has some shared memory that
allows communication and sharing of data between each SP.

When writing a kernel for a GPU the developer must take

Fig. 1. The number of pixels that are output per cycle when varying the number of Streaming Multiprocessors on a GPU, and the data

streamed in per cycle for the FPGA.

���

into consideration the number of SMs their GPU has, and how
many SPs each SM has. The developer will then specify a
number of blocks the data should be broken into, knowing that
each of these blocks will go to one SM. They must also decide
how many threads should exist in each block based on the
capabilities of the GPU. These parameters determine how
efficiently the developer is utilizing the GPU.

III. BENCHMARKS

In this paper, we make use of eight image-processing
benchmarks (kernels) that we implement for both CUDA and
ROCCC.

The benchmarks fall in two categories. In the first, the
algorithm operates on a sliding window (typically 3x3) over
the image, therefore resulting with an image two columns and
two rows smaller than the original input. Box Filter, Gaussian
Blur, Median Filter, Pixelation, and Sobel are examples of this
first category. In the second category, the code operates on a
single pixel at a time. Blend Filter, Brightness Filter and Color
Extraction are the benchmarks in this second category.

Median Filter requires finding the median value on a
window of pixels, to do this we used a modified version of the
Even-Odd sort implementation as described in [9].

Pixelation lends itself easily to the explicit employment of
the GPU’s shared memory (on each SM) through making use
of the __shared__ CUDA construct. This resulted in
considerable speedup over the base implementation that relies
solely on global memory for shared content. On the other
hand, on FPGAs, ROCCC detects data re-use and places
common data in what is referred to as a smart buffer [3].

Finally, the C-like code is highly similar for both platforms
(C for ROCCC and CUDA for GPUs), with minor exceptions
such as the explicit instantiation of shared memory.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

In this section, we evaluate the computational performance
and energy efficiency of several GPU and FPGA setups for
each of the aforementioned benchmarks.

A. Experimental Setup
The input to each kernel is a 512x512 pixel image, with the

exception of Blend Filter, where two 512x512 images are used
as input. The output of the kernels is a single 512x512 image.
Images are stored in the Netpbm [11] format, which helps
reducing the computation overhead involved with locating
pixels.

A total of 24 bits were used to represent RGB values, and 8
bits for grayscale. In all of the Blend, Brightness, and Color
Extraction kernels, each of the red, green, and blue pixel
values were treated as independent sets of data; in other
words, three data sets were streamed to the FPGA circuitry,
and three arrays were stored in global memory for the GPU.
On the other hand, we were able to treat the RGB pixel as one
24-bit number in the Pixelation kernel, where the latter

computes the average of red, green and blue values.
We offer the evaluation of four GPU setups, having 1, 4, 10

and 30 SMs respectively. The 30 SM GPU represents higher
end GPUs, such as the Tesla C1060. Each SM consists of 8
SPs (as with the Tesla C1060), where each SP can ideally
execute 4 instructions per cycle. A cycle accurate simulation
of such GPUs was achieved using GPGPU-Sim [7]. Here, we
configured the simulator to make use of ideal memories,
having zero access latency; this applies to both global memory
and local cache memories.

We compare the GPU setups to three FPGA
implementations of the kernels, where the computation loop
unrolling is varied (1x1, 4x4, 4x8). We made use of Xilinx’s
ISE 11.1 toolset to assess the area utilization and maximum
operational frequency on a Xilinx Virtex 6 LX760 FPGA. We
also utilized the built in cycle-by-cycle Xilinx simulator to
evaluate the performance.

B. Pixels Output per Cycle
We show in Figure 1 the pixels that are output per hardware

cycle, on each of the GPU and FPGA setups. The results
assume ideal memory latencies for both GPUs and FPGAs;
therefore, the resulting metric depicts solely the computational
efficiency each the device. This comparison helps determine
the performance of each device regardless of the implications
of the memory hierarchy (latency, cache misses, etc…)
specific to each platform.

As shown in Figure 1, as expected, the computational
performance is following a linear progression for both GPUs
and FPGAs while increasing the computational power. We can
thus extrapolate the power of an FPGA if we were to use a
larger design to account for the unused area. These
extrapolations will be discussed later in the paper.

Note that a GPU with 4 SMs will fully utilize 32 cores
executing on the image, which equates to 128 data elements
being requested in a pseudo-parallel fashion. Unrolling the
loops on the FPGA increases the parallelism similarly: as the
loop is unrolled in the FPGA, we increased the number of data
channels.

The largest GPU we simulated has 240 cores, each able to
execute 4 instructions per cycle, thus processing 960 data
elements in parallel. The FPGA is bringing in at most 32 data
elements each cycle on the furthest unrolled design (4x8). This
is far from the 960 data elements that the largest GPU is
executing on, and is much closer to the GPU simulations with
only 1 SM.

The largest designs for the FPGA approximately utilize
20% of the total resources available on a Virtex 6. Hence,
unlike the GPU, the FPGA is not being used to capacity. The
results in Figure 1 show GPUs and FPGAs are similar in the
number of pixels output per cycle, and in some cases even out
perform the GPU.

���

C. Real versus Ideal Execution Time
Assuming the GPU can execute on 960 unique data

elements every cycle is an unrealistic assumption that factors
out cache misses, bus contention, and the global memory
access latency. On the other hand, the simulations ran for the
FPGA do take these into consideration since the FPGA does
not utilize caches.

To compute the real execution time for the GPU we ran our
designs on the Tesla C1060. To warm up the caches, we ran
the designs multiple times; moreover, we show the average of
several execution times for each kernel. To be consistent with
the FPGA simulations, the measured execution time does not
account for the offloading of data to and from the GPU to the
host machine.

The ideal execution time is computed as the number of
cycles a kernel executes, divided by the operational frequency
of the underlying platform. We assumed the Tesla GPU
operational frequency of 1.3GHz for all out GPU setups. The
average clock frequency for our FPGA 4x8 designs was 109
MHz, and is higher for smaller (less unrolled)
implementations.

Figure 2 shows the ratio of read to ideal execution time for
the 30 SM GPU. On average, the real execution time is 46
times longer than its ideal counterpart. Closer inspection
reveals that the ratio is larger in designs operating on color
images where the colors are stored in separate arrays. While
the ration is smaller in other designs, it still reveals
considerable slowdown when compared to the ideal execution
times. Since the CUDA implementation of the median filter
kernel was highly similar to that of the FPGA design, both the
execution time and ratio could be improved if the design
targeted strictly GPU architectures.

D. Resource Utilization

When computation is done on a GPU all SMs are used. It is
up to the developer to effectively partition the data knowing
the underlying architecture of their GPU.

The FPGA developer has to create their design to utilize as
much area as possible, keeping in mind that as designs for
FPGAs increase in size and complexity, the maximum
operational frequency will drop.

The total area of each kernel circuitry implementation on an
FPGA averaged less than 20% of the overall resources
available on the target Virtex 6. Therefore, we can extract
more parallelism in most of these benchmarks through further
unrolling, as the memory bandwidth permits.

E. ROCCC and CUDA Code Comparison
When looking at lines of code we only consider lines

contributing to the execution of the kernel. We do not account
overhead such as declaration of variables, library instantiation,
and others. We also do not count lines of code used to fill in
arrays and streams with data. In CUDA we would count lines
computing the thread index, and for ROCCC we count lines
initializing temporary variables.

Table 1 shows the code sizes. As we can see, both ROCCC
and CUDA code are of highly similar volumes and structures.

The ratio for all ROCCC benchmarks to CUDA benchmarks is
1.08:1.

The ROCCC code is two to three orders of magnitude less
than the generated VHDL code, which is used to program the
FPGA. This VHDL code is generally invisible to the user and
is comparable to the amount of VHDL code that would have
had to be written by hand. Additionally, optimizations on the
ROCCC code such as loop unrolling would have required
complete rewrites of the VHDL code.

F. Joules per Pixel
We also examined the amount of energy the kernels used

when processing their respective data sets. The Tesla C1060
GPU is rated at 187.8 watts of maximum power. As noted
earlier, it also has an operational frequency of 1.3GHz. We
take these as constant across all kernels designed for the GPU.

To measure the power consumption on the FPGA we used
Xilinx’s Power Estimator (XPE) tool [10]. Given a specific
board, a clock frequency and the number of slices, BRAMs,
and DSP blocks used XPE can estimate the power
consumption. The tools are able to provide typical power
consumption for a design, and maximum power consumption
for a design. We used the Virtex 6 LX760 as our target FPGA.

TABLE I
LINES OF CODE

Kernel ROCCC CUDA

Box Filter 14 14
Blend Filter 11 11

Brightness Filter 16 16
Color Extraction 16 13
Gaussian Blur 14 15
Median Filter 84 79
Pixelation Filter 25 26
Sobel 29 20

The average lines of code, used to do computation, are similar in
overall size. The ratio of ROCCC code to CUDA is 1.08.

Fig. 2. The ratio of real execution time to ideal execution time for a

GPU. The real execution time takes on average 46 times longer

���

Watts
Pixels Cycle() Cycles sec()

=
Joules
Pixels (1)

We compared the Joules consumed per pixel for each

device. Using Equation (1), we show the maximum Joules
consumed per output pixel in Figure 3. As shown, the GPU
will usually use more power than a 4x8 FPGA design; it is in
fact more comparable to the 4x4 FPGA design in most cases.

V. CONCLUSION

In this paper we analyzed the computational efficiency of
both FPGAs, and GPUs on 8 image processing kernels
programmed from the same level of abstraction using ROCCC
and CUDA respectively. While the kernels on GPUs with
perfect memory accesses offer comparable performance to
FPGAs, we found that the measured execution time of GPUs
was 46 times longer than the ideal, leading to better
performance on the FPGA. Additionally, the FPGA was not
fully utilized, indicating that a fully utilized FPGA would
achieve significant gains when compared to a fully utilized
GPU.

ACKNOWLEDGMENT

This work was supported in part by NSF Awards CCR
0905509 and CCR 0811416.

REFERENCES

[1] S. Che, J. Le, W. Sheaffer, K. Skadron, J. Lach.
"Accelerating Compute-Intensive Applications with
GPUs and FPGAs," Application Specific Processors,
2008. SASP 2008.

[2] Z. Guo, W. Najjar, F. Vahid and K. Vissers. “A
Quantitative Analysis of the Speedup Factors of FPGAs
over Processors,” In. Symp. on Field-Programmable gate
Arrays (FPGA), Monterrey, CA, February 2004.

[3] J. Villarreal, A. Park, W. Najjar and R.
Halstead. “Designing Modular Hardware Accelerators in
C With ROCCC 2.0,” in The 18th An. Int. IEEE Symp.
on Field-Programmable Custom Computing Machines
(FCCM), Charlotte, NC, May 2010.

[4] http://roccc.cs.ucr.edu/
[5] http://www.nvidia.com/object/cuda_home_new.html
[6] http://www.khronos.org/opencl/
[7] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, T.M.

Aamodt. "Analyzing CUDA workloads using a detailed
GPU simulator," Performance Analysis of Systems and
Software, 2009. ISPASS 2009.

[8] Erik Lindholm, John Nickolls, Stuart Oberman, John
Montrym. "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro, pp. 39-55,
March/April, 2008

[9] R. Mueller, J. Teubner, G. Alonso. “Data Processing on
FPGAs” in VLDB August 2009.

[10] http://www.xilinx.com/products/design_resources/power_
central

[11] http://netpbm.sourceforge.net/

Fig. 3. The Joules per Pixel consumed by Nvidia Tesla C1060 GPU and Xilinx Virtex 6 LX760.

���

