Impact of High-Level Transformations within
the ROCCC Framework

BETUL BUYUKKURT, JOHN CORTES, JASON VILLARREAL,
and WALID A. NAJJAR

University of California, Riverside

Reconfigurable computers, where one or more FPGAs are attached to a conventional micropro-
cessor, are promising platforms for code acceleration. Despite their advantages, programmability
concerns and the lack of efficient design tools/compilers for FPGAs are preventing the technol-
ogy’s widespread adoption. The traditional compiler technology is microprocessor-based-systems-
specific and needs to be customized and augmented to address the needs in reconfigurable com-
puting. The challenges are several due to the resources and performance constraints for FP-
GAs being drastically different than those of microprocessors, and also that compiling for FP-
GAs requires laying the computation in space by a circuit rather than in time by a sequence of
instructions.

ROCCC is an optimizing C-to-VHDL compiler specifically targeting the reconfigurable computer
platforms. ROCCC includes several high-level optimizations that parallelize and optimize the
source code for minimized area and critical path length and maximized throughput. This article
presents the effect of ROCCC’s high-level transformations on the performance of the generated
VHDL output. ROCCC utilizes: (1) several array access optimizations to eliminate redundant
memory accesses, (2) procedure-level optimizations to achieve circuit area reductions of up to 88%
compared to circuit areas generated from unoptimized codes, (3) loop-level optimizations to increase
the throughput, and (4) transformations unique to certain classes of applications. The preceding
listed features help ROCCC generate circuits with very large degrees of parallelism capable of very
high computation rates.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Retargetable
compilers; optimization; B.5.2 [Register-Transfer-Level Implementation]: Design Aids

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Compilers, code optimization, parallelization, ROCCC

This work is an extension of several works that precede this submission. The ROCCC compiler
framework was in Guo et al. [2004, 2005] and Buyukkurt et al. [2005, 2006]; the concept of smart
buffers was published in Guo et al. [2004]; impact of loop unrolling on area, clock cycle, and
throughput within the ROCCC framework was published in Buyukkurt et al. [2006].

Authors’ addresses: B. Buyukkurt (corresponding author), J. Cortes, J. Villarreal, and W. A. Najjar,
Department of Computer Science and Engineering, University of California Riverside, Engineering
BU-11, Room 351, Riverside, CA 92521; email: abuyukku@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1544-3566/2010/12-ART17 $10.00

DOI 10.1145/1880043.1880044 http://doi.acm.org/10.1145/1880043.1880044

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:2 J B. Buyukkurt et al.

ACM Reference Format:

Buyukkurt, B., Cortes, J., Villarreal, J., and Najjar, W. A. 2010. Impact of high-livel transformations
within the ROCCC framework. ACM Trans. Architec. Code Optim. 7, 4, Article 17 (December 2010),
36 pages.

DOI = 10.1145/1880043.1880044 http://doi.acm.org/10.1145/1880043.1880044

1. INTRODUCTION

The growth in size and the speed of FPGA devices in recent years has led to the
development of configurable computers, where one or more FPGA devices are
used as hardware accelerators. The main advantage of configurable computing
is that they combine the efficiency of customized data path implementation
with the reprogramming flexibility of software. Indeed this has opened up, or
reopened, a novel computing paradigm: spatial computing, where a computa-
tion is represented in space by a circuit rather than in time by a sequence of
operations.

Spatial computing is extremely effective in streaming applications where
a set of operations are applied to each element of a set of data. Examples of
streaming applications include image and video processing, signal processing,
cryptography, and certain classes of high-performance computing applications
such as bioinformatics applications and molecular dynamics simulations.

Code acceleration in hardware is performed by expressing frequently exe-
cuted code segments as hardware circuits, typically by writing them in some
Hardware Description Language (HDLs) such as VHDL or Verilog. The data is
then streamed through these circuits. Several projects [Dydel and Bala 2004;
Puttegowda et al. 2003; Jacobi et al. 2005; Singpiel et al. 2000] have reported
speedups in the 100s and 1000s. Such speedups come from large-scale par-
allelism, made possible by high-capacity FPGAs, as well as from customized
circuit design. Since applications such as signal, image, and video processing
exhibit very large amounts of parallelism, mapping such computations to cir-
cuits can drastically improve its efficiency as compared to running them on a
traditional microprocessor.

Despite these advantages, FPGAs are not yet ideal platforms for application
code development. One major drawback is the lack of programming tools that
are accessible to traditionally trained application code developers. Currently,
the developer must manually map the portion of the program that ought to
be accelerated on the FPGA by rewriting it as a circuit and instantiating one
or more buses to connect the microprocessor to the FPGA and both to the on-
chip memory and the I/O devices. Currently all of these tedious tasks are done
manually.

Optimizing compilers for traditional processors have benefited from sev-
eral decades of extensive research that has led to extremely powerful tools.
Similarly, Electronic Design Automation (EDA) tools have also benefited from
several decades of research and development leading to powerful tools that can
translate VHDL and Verilog code, and recently SystemC code, into efficient cir-
cuits. However, little work has been done to combine these two approaches. Sev-
eral projects have implemented various types of High-Level Language (HLL)

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:3

to HDL translations [Gokhale et al. 2000; Gupta et al. 2003; Bondalapati et al.
1999; Callahan et al. 2000]. For the most part, these efforts have focused on
the translation of C or C++ to HDLs with optimizations supporting very simple
loop nests and one-dimensional arrays.

ROCCC (Riverside Optimizing Compiler for Configurable Computing) is an
optimizing C-to-VHDL compiler targeting FPGA and CSOC platforms. ROCCC
optimizes and parallelizes the most frequently executed kernel loops in appli-
cations such as multimedia and scientific computing. Its objectives are:

(1) To bridge the gap between compiled and hand-written code. ROCCC-
generated circuits [Guo et al. 2005] take around 2-3 times the area and
run at comparable clock rated compared to that of XilinxIPs.

(2) To apply extensive compile-time transformations on multidimensional ar-
rays and nontrivial loop nests. Such transformations would be too complex
for a human programmer to handle in a reasonable time.

In this article we describe ROCCC’s high-level transformations and report
on the performance of the compiler generated code in applications involving
both signal processing and supercomputing kernels. Work that is submitted
for publication for the first time in this article are:

—The user interface of ROCCC;

— Array access optimizations of the ROCCC framework;

—Generation of hardware circuits from constant qualified array definitions for
indirection involving nonlinear array accesses to constant qualified arrays;

—Impact of global optimizations on area, clock cycle, and throughput within
the ROCCC framework;

Significant results that are reported for the first time in this article are:

—ROCCC’s easy to use interface;

—The possibility of generating area- and clock-cycle-time-efficient hardware
from constant qualified array definitions for various indirection involving
array access patterns;

—ROCCC’s procedure-level (i.e., global) optimizations achieving circuit area
reductions of up to 88% compared to circuit areas generated from globally
unoptimized codes.

The article is organized as follows: ROCCC framework is explained in
Section 2. Section 3 introduces ROCCC’s high-level transformations and op-
timizations. Section 4 discusses the impact of some of ROCCC’s high-level
transformations and optimizations on area, throughput, and clock cycle time
within the ROCCC framework. Related work is described in Section 5. Finally,
concluding remarks are offered in Section 6.

2. ROCCC OVERVIEW

ROCCC is a C to RTL-VHDL compilation framework for mapping application
programs to FPGAs. The focus of ROCCC is generating highly parallel and

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:4 J B. Buyukkurt et al.

High level Low level Code

(CIRRF)
Compiler Intermediate Representation for Reconfigurable Fabrics

Fig. 1. ROCCC framework.

optimized circuits rather than statement-by-statement translation of C pro-
grams to VHDL. One of the main distinguishing features of the ROCCC frame-
work is its emphasis on compile-time loop transformations and optimizations.
The objectives of ROCCC’s optimizations are as follows: (1) maximize the
parallelism in the circuit as well as the clock rate at which it operates and
(2) minimize the number of off-chip memory accesses as well as the area of the
overall circuit.

ROCCC is not designed to compile a whole program. It relies on the user
to identify the functions that are the most compute-intensive in a given appli-
cation. The functions are compiled to hardware and invoked via a specialized
API that interfaces the FPGA fabric to the host processor. The remainder
of the code executes in software on the host. We constrain the source code
that will be translated to hardware as follows: no pointers, no break or con-
tinue statements, simple for loop headers where the loop counter of each
loop level iterates from some lower bound to some upper bound in compile-
time determinable steps, and that all array index expressions are in the form
loop_counter + compile time_constant_stride.

ROCCC is built on the SUIF2 [Aigner et al. 2010] and Machine-SUIF [Smith
and Holloway 2010a] platforms. It compiles C code into synthesizable VHDL
code for mapping onto FPGA fabrics. Information about loops and memory
accesses is extracted from SUIF2’s high-level Intermediate Representation
(IR). Accordingly, most loop-level analysis and optimizations are done at the
SUIF2 level. Most of the information needed to design high-level components,
such as controllers and address generators, is also extracted from this level’s
IRs. ROCCC performs a very extensive set of loop analysis and transforma-
tions aiming at maximizing parallelism and minimizing area. Machine-SUIF
is an infrastructure for constructing the back-end of a compiler. We modified
Machine-SUIF’s virtual machine (SUIFvm) IR [Smith and Holloway 2010b]
to build our data flow code representation. All arithmetic opcodes in SUIFvm
have corresponding functionality in IEEE 1076.3 VHDL with the exception of
division.

We have added new analysis and optimization passes to SUIF2 and Machine-
SUIF that target FPGAs. Specifically, taking the IR generated by SUIF2’s
front-end as input, our compiler detects and optimizes memory accesses. Our
compiler also takes the IR generated by the Machine-SUIF front-end as input
and generates the data flow. The IR of Machine-SUIF’s IR is a low-level IR
and resembles a three-address assembly language. The array access pattern
information, which is obtained through memory reference analysis, combined

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:5

Input memory
(on or of f chip)

v

T 1 L] T T
Input Buffer

Multiple loop bodies
Unrolled and pipelined

- Output Buffer ——

Output memory
(on or of f chip)

Fig. 2. ROCCC’s execution model.

with the pipeline level each instruction belongs to on the datapath (which is
created during data flow generation), is fed into the controller generation pass
to generate controllers in VHDL. We rely on commercial tools to synthesize the
VHDL code generated by our compiler.

ROCCC maps the computation onto reconfigurable logic in a decoupled man-
ner as shown in Figure 2. For a given loop, ROCCC first decouples the memory
accesses from computation using scalar replacement. Then from the optimized
load and store array access expressions, smart buffers [Guo et al. 2004] are
generated to store any input data that are already fetched and will also be
used in later iterations, thereby reducing the number of memory accesses.

The ROCCC compiler builds and pipelines the data path [Guo et al. 2005]
from the scalar replaced code. The compiler groups the instructions into dif-
ferent execution levels to exploit instruction (operation)-level parallelism. The
instructions grouped at the same level are executed simultaneously. Every level
is marked as latched or not latched according to the sum of the estimated delays
from the most recent latched node. The latched instructions are translated into
a sequential logic circuit while the not-latched ones are translated into a com-
binational circuit. A pipeline stage corresponds to the instructions between two
latched levels. For a loop body with no loop carried dependencies, every level of
the dataflow graph corresponds to one loop iteration instance once pipelined.

ROCCC allows the user to specify bit-width information for each declared
array or variable, which is then stored into the symbol table. ROCCC then
automatically performs bit-width resizing (i.e., reducing the number of bits
used for each variable to the minimum necessary) based on input data bit-size
and instruction opcodes.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:6 J B. Buyukkurt et al.

3. HIGH-LEVEL TRANSFORMATIONS IN ROCCC

Optimizing compiler technology faces several challenges when it comes to com-
piling for reconfigurable platforms. First, the resources and performance con-
straints for FPGAs are drastically different than those of microprocessors, and
compiling for FPGAs requires laying the computation in space as a circuit
rather than in time as a sequence of instructions. Moreover, in traditional pro-
cessors any computation has to follow the fetch, decode, execute, write-back
cycle, which additionally imposes restrictions on a traditional optimizing com-
piler. On an FPGA none of these restrictions holds.

Table I lists the transformations that ROCCC performs. Although most of
these transformations are same as they are in traditional compilers, the scale
of the optimizations would differ. Since traditional compilers target processors
with a defined ISA and a rigid data path, unrolling by small amounts would
provide enough parallelism to keep the processor busy. On an FPGA the only
constraints to loop unrolling are the area and data bandwidth from memory.
Thus, as long as there is enough area and I/O bandwidth to fit another iteration,
the loop could be rolled for another time. Due to this growth in the scale of the
optimizations, new challenges arise such as the optimization of the transfer
of large amounts of data to the data path and synchronization of data flow
across pipeline iterations where a feedback variable needs to be fed back into
the datapath in the subsequent cycle.

HLL's are designed to express algorithms in a way to help the compiler
to generate an efficient software implementation. However, the most optimal
implementation of a given algorithm in hardware is not always the same as the
software implementation of that algorithm. For instance, wavefront algorithms
are usually computed in software using a 2D matrix where the enclosing loop
advances in a fixed direction to compute the current cell using neighboring
values computed in previous iterations. A fast implementation of the same
algorithm in hardware would be a systolic array. Thus, a powerful HLL-to-
HDL compiler should recognize relevant patterns from the HLL source code
and be able to map them to their best hardware implementation counterparts.

ROCCC tries to address these challenges by providing the user with pre-
defined optimization packages such as unroll, tile, generate systolic array, etc.
These packages define the type of loop-level transformations that the user
wants to apply to parallelize a given loop-nest. Each package comes with a set
of parameters such as the tile sizes, the particular loop in the loop-nest to be
unrolled, the systolic array size, etc. Each package contains forty to fifty passes,
most passes from Table I given before, where some are applied repetitively over
the source code at various phases during the compilation process. The contents
and the inner workings of the individual packages are entirely transparent to
the user. The rationale of this approach is to enable the user to explore the
design space of various hardware mappings.

3.1 The User Interface

ROCCC comes with an easy to use user interface. ROCCC expects two files
that are provided from the command line. First is the C file that contains the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework .

Table I. ROCCC’s Available Optimizations

17:7

Array Access

—Scalar Replacement

—Array RAW/WAW Elimination
—Array Renaming

— Constant Array Propagation

Procedure Level

—Code Hoisting

—Code Sinking

— Constant Propagation
—Algebraic Identities Simplification
—Constant Folding

— Copy Propagation

—Dead Code Elimination
—Unreachable Code Elimination
—Scalar Renaming

—Reduction Parallelization

— Approximation of Division/Multiplication by Constant
—If Conversion

Loop Level

—Normalization
—Invariant Code Motion
— Peeling

—Full & Partial Unrolling
—Fusion

—Tiling (a.k.a. Blocking)
— Strip Mining

— Interchange
—Unswitching

Application Specific

—DFA State Table Expansion
— Lookup Table Expansion
— Systolic Array Generation

procedure/function, which has the loop to be sent to hardware together with
all the .A files containing the declarations for all data types used inside the
procedure, and second is a .pass text file, which specifies a list of loop-level
transformations that the user wants to apply to the candidate loop nest. The C
file must conform to the following specifications:

—No pointers, break, continue, return, or exit statements inside the candidate

loop body;

—Simple for loop headers, where the loop lower bound, upper bound, and the
step count are compile-time known constants;

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:8 J B. Buyukkurt et al.

SOURCE CODE PASS COMMANDS
begin hw(); fully unroll L3
Li: for(i = 0; i < 1024; i=i+1) fully unroll L4
L2: for(j = 0; j < 1024; j=j+1){ generate tile L1 L2 4 4
sum = 0;

L3: for(n = 0; n < 5; n=n+1)
L4: for(m = 0; m < 3; m=m+1)
sum = sum + (image[i+n] [j+m]*
filter[n])/8;
output [i] [j] = sum;
}

end hw();

begin hw(); partially unroll L1 15
L1: for(i=0; i<=511; i=i+1)
B[i] = T[OI*A[i] + T[11*A[i+1] + T[2]*A[i+2] +
T[31*A[i+3] + T[41*A[i+4];
end hw();

Fig. 3. Two sample C code snippets with ROCCC recognized macros and C programming labels
(highlighted) and their corresponding . pass files listing loop-level transformation examples through
the highlighted labels.

—All array index expressions are in form loop_counter + loop_step_size;
—The candidate loop is enclosed in between begin_hw() and end_hw() calls.

Loop headers are labeled using regular C programming labels. Thus, the user
compiles the ROCCC adapted code using their favorite C compiler. Figure 3
shows a sample labeling of loops in C. The candidate loop is wrapped between
begin_hw() and end_hw() calls, which are two dummy calls that help ROCCC
recognize where the candidate loop nest starts and ends, respectively.

In addition to the C file containing the procedure with the candidate loop-
nest, the user needs to provide the compiler with a .pass file, which is a text
file that consists of one or more of the following commands.

—fully unroll loop label: Fully unrolls the loop that is labeled with loop_label.
The loop specified in the parameter needs to have a compile-time constant
trip count. The fully unroll command should be used with caution, as the
final code after the optimizations should still be enclosed within at least one
loop. ROCCC currently does not compile to VHDL code that is not enclosed
in loops. So, one cannot fully unroll a loop, if that loop is the only loop in the
code. Loop jamming is automatically done by ROCCC following loop unroll
calls.

—partially unroll loop label unroll factor: Partially unrolls the loop labeled
with loop_label, unroll_factor many times. An unroll_factor of three gen-
erates a total of four copies of the loop body in the output (i.e., original
loop body + three unrollings) and a new step that is original _step_size + 3.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:9

ROCCC automatically performs loop jamming over the outputs of the loop
unroll commands.

—generate tile loop_labell loop_label2 tile_size_1 tile_size 2: Generates a tiled
version of the specified 2D loop. The parameters tile_size_1 and tile_size 2
specify the unroll factors of loops loop_labell and loop_label2, respectively.

—generate systolic array loop labell loop_label?2 systolic_array_size: Generates
a systolic array of size systolic_array_size aligned along the loop labeled as
loop_label2.

More packages are being developed and support for them is being added to the
ROCCC front-end. Figure 3 shows two sample for-loops labeled and wrapped
begin_hw() and end_hw() calls together with an accompanying sample .pass
files. Using the .pass file, ROCCC customizes a phase-ordered, complete list of
transformations to be applied to the C code. The final list is composed of forty
to fifty passes, including several of the passes from the list provided in Table I.
The contents and the inner workings of the formed list are entirely transparent
to the user and automatically applied to the source code with a single command
line call that includes the .c and the . pass files.

ROCCC does not employ an automatic parallelizer. There are few reasons for
this. One of the reasons is that, depending on the specific FPGA family that the
design is targeted at, the amount and the location of the resources on the FPGA
change and vary greatly. Moreover, it would not always be possible to know at
compile-time with how many other circuits the code would be sharing the
FPGA at runtime. Giving the user the ability to modify the design parameters
through the . pass file allows the user to have more control over the circuit size,
algorithm design, and the final performance of the generated circuit, while
making ROCCC portable across many FPGA platforms.

3.2 Memory Access Optimizations in ROCCC

Memory bandwidth is one of the two most important factors that can limit
performance on an FPGA. Hence, compiler transformations that eliminate un-
necessary memory accesses and promote data reuse are extremely valuable
in increasing the performance and parallelism on the FPGA. ROCCC’s array
transformations eliminate most unnecessary memory accesses from the source
code by: (1) propagating true data dependencies through scalar temporaries
and (2) decoupling memory accesses from computation.

Figure 4 illustrates four cases where the highlighted array accesses are
unnecessary. In Figure 4(a) the true data dependencies (RAW) and multiple
stores (WAW) to the same address are eliminated through the use of scalar
temporaries. The initial store and the load to Ali] are both replaced by scalar
variable ¢. In the second case illustrated in Figure 4(b), array read and write
accesses to the same array carry no true data dependencies. Thus, ROCCC
renames one of the arrays to a different name. This renaming process allows
the second array to be assigned to a separate memory bank on the FPGA,
thereby reducing the contention on the bandwidth of the bank where the read
accesses are sent.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:10 . B. Buyukkurt et al.

BEFORE AFTER
for(...){ for(...){

A[i] = ... B=...;

o= ... A[AD L. — o= a0t o

Afi]l = ... Afi]l = ...

} }
(a) elimination of RAW and WAW memory accesses
for(...){ for(...){
.= A[i+1]; ... = A[i+1];
Ali] = ...; B[i]l = ...;
} }

(b) array renaming to eliminate contention to the same on-chip memory bank
const int A[3] = {-1,0,1}; const int A[3] = {-1,0,1};
for(...){ for(...){

co.oo= o0 AT L. — R ¢
} }

(c) Folding of constants from arrays defined with the const qualifier

for(i=1; ... ; i=i+1){ t = A[0];
. = Ali-1]; for(i=1; ...; i=i+1){
— = t;
Afi]l = ...
} t = Al = ...
}

(d) elimination of feedback memory accesses for hardware systolic array generation

Fig. 4. Example cases of memory access optimizations available in ROCCC.

Figure 4(c) illustrates the case which mostly takes place in DSP-like and
image processing applications. Such application codes contain const qualified
array definitions, which are masks applied at every iteration to instances of a
sliding window over some input stream. The index expressions of these const
qualified array accesses are usually compile-time constants or become a con-
stant once the innermost loop enclosing the array expression is fully unrolled.
ROCCC replaces such array accesses with actual constants from the const
qualified array, eliminating these memory accesses.

The case illustrated in Figure 4(d) is utilized during systolic array generation
in ROCCC. Whenever a value that is written to an array location is accessed
by the loop body in the subsequent iteration, a hardware register (i.e., t) is
created for the stored value and the load from the memory is replaced by a load
from the scalar register that is on the reconfigurable hardware. Later, accesses
to variable ¢ are enclosed within two macros, namely ROCCC_load_prev and
ROCCC_store2next, which are internal to our compiler. These two macros are
inserted into the final code to reflect the effects of the eliminated feedback

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework J 17:11

for(i=0; i<N; i=i+1){
C[i] = 3*A[i]+ S*A[i+1]+ 7*A[i+2]+ 9*A[i+3] + L11*A[i+4] ;
}

(@)

for(i=0; i<N; i=i+1){
x0 = A[i]; x1 = B[i+1]; x2 = A[i+2] ; //decoupled
x3 = A[i+3] ; x4 = A i+4] ; //read accesses

y = 3*x0 + 5 x1 + 7*x2 + 9*x3 + 11*x4; //datapath

Clil = y; //decoupled
} //write accesses

(b)

Fig. 5. Scalar replacement example over 5-tap FIR code.

load/store operations. ROCCC _load_prev loads a value from the iteration before
and ROCCC_store2next saves its input to be read during the next iteration.
Both macros are translated first into special machine instructions defined in
MachineSUIF, followed by VHDL code at later stages. In the generated code,
both macros read from and write to on-chip registers.

ROCCC maps the computation on the reconfigurable logic in a decoupled
manner as shown in Figure 2. Once all the unnecessary array accesses are
eliminated, all the memory accesses are decoupled from the actual computation
using scalar replacement, which moves the array read accesses to the beginning
of the loop and array writes to the end of the loop. Later all the array read and
write accesses are replaced with smart buffer macros. Smart buffers [Guo et al.
2004] help exploit data reuse found in loops by storing on-chip the parts of the
input data that will be reused in subsequent iterations. To illustrate further,
the 5-tap-FIR code shown in Figure 5 reads five array elements per iteration,
of which four were already fetched in the iteration before. Instead of issuing
five new memory reads to the memory every iteration, smart buffer issues
only one to the memory and retrieves the remaining four from its on-chip
registers.

4. IMPACT OF HIGH-LEVEL TRANSFORMATIONS ON AREA,
THROUGHPUT AND CLOCK CYCLE TIME

4.1 Procedure-Level Transformations

In instances of loops that do not carry dependencies from earlier iterations, the
parallelism on an FPGA is limited only by the area available for the datapath
on the FPGA considering there is sufficient on-chip I/O bandwidth. In most
embedded applications, the critical parameter is the throughput. ROCCC’s
procedure-level transformations provide substantial help in minimizing the
circuit area per loop iteration, which may allow the compiler to unroll and fit

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:12 . B. Buyukkurt et al.

Table II. Descriptions of Benchmark Codes Used in Evaluating Impact of Procedure-Level
Transformations within the ROCCC Framework

Name Dim. Bitwidth Description

Fir5 1D 32-bit 5-tap constant-coefficient finite-impulse-
response filter

Mf9 1D 32-bit 9-tap moving average filter

Wf 1D 16-bit Weighting filter kernel from Mi-bench

Bitcountl 1D 32-bit Counts the number of 1’s in an array element
and saves the result into another array

9x7-Filter Code | 2D 32-bit 9x7 Image processing filter

Face Recogni- | 2D 32-bit Multiplication of a streaming window against

tion two matrices

more iterations into the available area. Reduced circuit area per loop iteration
may cause the clock cycle time to decrease, shorten the critical path, and thus
could lead to substantial increases in throughput. ROCCC’s extensive set of
procedure-level transformations help reduce the circuit area in various ways.
ROCCC:

(1) Computes all arithmetic computations, whose operands are known or can
be simplified, at compile-time (constant folding, algebraic identity simplifi-
cation);

(2) Hoists code that computes the same value each time it’s executed out loops
and/or if statements (code hoisting, invariant code motion);

(8) Shortens the critical path by parallelizing reduction operations, where the
operator is both commutative and associative, such as sum over an array
(reduction parallelization);

(4) Transforms the expensive division/multiplication operations by constants
into a sum of right/left shifts by various powers of 2 that approximates to
the constant divider/multiplier (approximation of divisions/multiplications
by constant);

(5) Simplifies the control flow by eliminating redundant code and converting
branches to data flow operations (unreachable and dead code elimination,
if conversion).

We used the six benchmarks listed in Table II to study the effect of ROCCC’s
procedure-level optimizations on the area, clock speed, and throughput of the
ROCCC generated VHDL. All benchmark codes are kernel loops written in C
and did not contain any code that is not part of the computation. ROCCC’s
procedure-level optimizations are applied as a set, therefore the effect of each
optimization is not studied individually. The reason for this is that compiler
optimizations usually trigger one another and one pass would help others find
more opportunities in simplifying the code further. Most of the time, different
sets of optimization passes are applied in cycles until no more changes are
observed in the generated code. Hence, it was not possible in our experience to
study the effect of each optimization individually on the VHDL generated from
the listed benchmark codes in C.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:13

The source codes are directly read into the SUIF2 intermediate format and
the optimizations described in the previous section are applied on the SUIF2
IR with the exception of the procedure-level optimizations. We generated two
versions of each benchmark where in the opt case all the procedure-level op-
timizations are turned on and in the no-opt case all the procedure-level opti-
mizations were turned off during the compilation process. In order to amplify
the effect of the optimizations we unrolled both opt and no-opt cases several
times. While performing unrolling we assumed that the I/O between the data
path and the on-chip memory is sufficient, since the required data bus width
increased with unrolling. The 1D benchmarks, which are single nest loops, are
unrolled for 0, 2, 4, 8, 16, and 32 times, while the 9x7-Filter code is a doubly
nested loop and is unrolled for 0x0 (no unrolling) and 2x2 (unrolled twice on
the outer and twice on the inner loop) times. The Face Recognition benchmark
consists of a doubly nested loop nest that had the inner loops fully unrolled
and the outer loop unrolled 0, 2, 4, 8, and 16 times. unX labels on the figures
indicate an unrolling factor of X applied to 1D benchmarks and unXxY labels
indicate that an unrolling factor of X applied to the outer loop and an unrolling
factor of Y to the inner loop, respectively. Throughput is measured in terms
of number of elements from the input array processed per second. In the case
of the face recognition code, throughput is measured in the number of 9x6
windows processed per second.

We synthesized and place-and-routed the generated VHDL for the Xilinx
Virtex 4 LX200 FPGAs found on the SGI RASC RC100 blades [SGI Inc. 2010].
We used Xilinx ISE 8.2 to synthesize and place-and-route the generated VHDL
code with the exception of the Bitcount and the Face Recognition benchmark,
where the synthesize tool used was Xilinx ISE 9.1. Figure 6, Figure 7, and
Figure 8 show our results. Our results show that the circuit area of the ROCCC-
optimized C kernel codes was up to 88% smaller than the circuit area that is
generated when the compiler optimizations are turned off.

Figure 6(a) displays the Fir5 results. We wrote the Fir5 C code in two differ-
ent forms. In the no-opt-1 case the constant-coefficients of the FIR are placed in
a 1D const qualified array as a good software practice, whereas in the no-opt-2
case the constant coefficients were hard coded inside the loop body. The no-
opt-2 code is shown in Figure 5. In the generated VHDL from no-opt-1 C code,
the constant-coefficients were fetched from the host application to the reconfig-
urable hardware and then routed to the multipliers. The routing as well as the
multiplier circuit caused the area of the generated circuit to increase. In the
generated VHDL from no-opt-2, although the routing of constant-coefficients
was avoided, the multipliers still occupied some area on the hardware. ROCCC
compiled and optimized both C codes to the exact same VHDL code. The data
legend opt shows the effect of the procedure-level optimizations. In the opti-
mized version, the const qualified array entries are folded into the expression as
compile-time constants and the multiplications by constants are transformed
into shifts and addition sequences. The optimized circuit achieved area re-
duction up to 77% over the no-opt-1 and 10% over the no-opt-2. This is the
only benchmark we had where we observed in the throughput a penalty of
up to 32% over no-opt-2. We believe that the five multiplications by small

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:14 . B. Buyukkurt et al.

. 5000,00
4500,00

60000 —#— no-opt-1 =~ no-opt-2 —k— opt
4000,00

Wro-opt-1 Mnc-opt-2 M opt / ,
50000 3500.00 / /
3000.00

=
40000 2 //
) £ Vd
M 2 2500,00
s : ///
30000 E 2000.00 //J/
z0000 1900.00 /V/
1000.00
10000 /!///
500,00
o 0.00 L.
uno un2 und ung unie unaz2 uno unz und una unté unaz
(a)
35000 5000.00
4500.00 2
30000 —+—no-opt = opt /
4000.00 y

Wno-opt Mopt //
25000 3500.00 //
3000,00

=
20000 2 /
g £
g 3
® £
15000 £

2500.00 /]
2000.00 /
10000 1500.00 /‘y
1000.00
5000 /
500.00 !"/

o 0.00
un0 unz und ung unié un3z un0 unz und ung unis un3z

45000 4500,00
40000 4000,00
—4— no-opt —l- opt /
25000 3500.00 /
20000 3000.00
]
, 25000 2 2zs00.00
:
B 000 ‘E 2000.00 /
15000 1500.00 //
10000 1000.00 /
5000 4 500,00 !/
o 0.00
und un2 und ung unlé un3z und unz und ung unlé un3z

(c)

Fig. 6. Area and throughput results for optimized and nonoptimized (a) Fir5, (b) Mf9, and (c) Wf
kernel.

constants produced a more efficiently synthesizable code than the sequence of
7 shifts and 11 adds, which replaced the five multiplications in the optimized
circuit.

Figure 6(b) shows Mf9 results. Mf9 is a 9-tap moving-filter code computing
the arithmetic average of nine values. In the no-opt case the division by 9 is

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:15

120000 2500

100000) s

2000
Wno-opt Wopt
—— no-opt —@—opt

80000

1500 /
1000
40000 1 ‘//
20000 1 509

—e

m—
0 0 +—— v v v
un0 unl un2 und ung unlé un0 unl un2 und unB8 unlé

60000

Slices

Throughput

Fig. 7. Area and throughput results for optimized and nonoptimized Face Recognition codes.

left unoptimized and ROCCC’s back-end replaced it with a single-cycle-delay
integer division circuit, whereas in the optimized version, the division by 9 got
transformed into a right-shift/add sequence. This single optimization reduced
the area by 63% over the no-opt case. For larger unroll factors the throughput
observed a slight penalty over the no-opt-2 for the same unroll factors. How-
ever, since the optimized circuit of un32 occupied less area than the did the
unoptimized unl16, the throughput per area overall increased.

Figure 6(c) shows the Wf results. Wfis a weighting-filter code taken from the
GSM benchmark in MiBench benchmark suite [Guthaus et al. 2001]. The orig-
inal source code contained multiplications by quite large constants. ROCCC
replaced these multiplication by constants with shifts and adds during the
compilation process. Moreover, ROCCC also detected few opportunities for con-
stant propagation and dead code elimination as a consequence of the former
transformation. The ROCCC-optimized circuit achieved an area reduction up
to 23% over the no-opt case. The throughput stayed almost the same across
same unroll factors.

Figure 7 shows the face recognition results. The face recognition code per-
forms matrix multiplication between a 1x9 matrix and a 9x6 matrix, followed
with a multiplication of the result with a 6x1 matrix, resulting in a single value
for each window. The 1x9 matrix and 6x1 matrix are constant while the 9x6 is a
streaming window over a much larger matrix. In the no-opt case, the constant
matrices are not propagated into the datapath code and are read as input from
the host program, in the opt case all constant values are propagated and folded
into the datapath generated. The original C code consists of two consecutive
inner loops to perform the matrix multiplications inside of a larger loop that
streams the window data. We fused and fully unrolled the inner loop in all
cases and unrolled the outer loop 0, 1, 2, 4, 8, and 16 times to process more
windows at once. ROCCC detected many chances for constant propagation and
folding and replaced many multiplications with shifts and adds, resulting in a
large reduction of area.

The nonoptimized version of the Face Recognition code when unrolled 8 times
took up 112% of the LX200 chip and as such could not fit on the FPGA. The
number of slices shown in Figure 7 for the unrolled 8 times case represents

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:16 . B. Buyukkurt et al.

10000 £000.00

5000.00 z
—— no-opt —l- opt /

9000

8000

7000

4000.00

3000.00
2000.00 /
1000.00 /
o ././{
un un un

6000

5000

Throughput

4000

3000

2000

1000 1

100000 350.00

—&— no-opt =l opt
300.00
250,00 /
2 200.00
150.00 /

100.00

30000

80000

70000

60000

50000

slices

Throughput

40000

30000

20000
50,00

10000

0

B

Fig.8. Areaand throughput results for optimized and nonoptimized (a) Bitcount and (b) 9x7-Filter
kernel codes.

the number reported by synthesis and not place-and-route. When unrolled
16 times, the optimized version still fit on approximately 52% of the FPGA
while the unoptimized version did not fit on the FPGA. The difference in area
on average is 88% between the optimized and nonoptimized circuits.

Throughput results reflect a 50 MHz clock for the nonoptimized hardware
versus a 180 MHz clock for the optimized hardware. Throughput results could
not be determined for the unroll 8 and unroll 16 instances which did not fit on
the LX200 FPGA.

Bitcount results are provided in Figure 8(a). Bitcount is kernel code taken
from Bitcount application in MiBench benchmark suite. It counts number of
1’s in the elements of the input array and saves the result into another ar-
ray. Source code contains shift, bitwise-and, and accumulation of the detected
1’s. ROCCC automatically detected the accumulation as a reduction operation
and applied reduction parallelization to the source code. ROCCC also detected
couple constant and copy propagation and dead code elimination opportunities
over the result of the reduction parallelization pass. The ROCCC-optimized
circuit achieved an area reduction of up to 46% over the no-opt case. We

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:17

noticed that the main savings in area was due to ROCCC’s reduction paral-
lelization pass. The throughput again stayed almost the same across same
unroll factors.

9x7-Filter was implemented as a doubly nested loop. The results for 9x7-
Filter are provided in Figure 8(b). The original source code applied a mask that
is of size 9x7 to every 9x7 window over a 2D image. This particular kernel
code contained several procedure-level optimization opportunities. First, the
mask array is read from a const qualified array, which later got automatically
folded into the expressions by ROCCC. Second, the constant mask was used to
multiply the imput image elements and these multiplications are either elim-
inated incases where the constants were Os and 1s or were transformed into
shift/add sequences. Third, the result of the multiplications were adjusted by
dividing the multiplication result to some constant number. This division by
constant also got transformed into shifts and adds. Finally, the computed val-
ues were summed up and a single value was produced for each 9x7 window of
the image. ROCCC automatically detected the summation as a reduction oper-
ation and applied reduction parallelization to the IR resulted from the previous
transformations. Our ROCCC-optimized circuit achieved an area reduction of
88% over the no-opt un0x0 uncase. The unoptimized un0x0 circuit area oc-
cupied almost the entire FPGA area, as a consequence we were not able to
synthesize and place-and-route the unoptimized un2x2 circuit onto our target
platform.

Our results show that even tight kernel loops contain vast opportunities
for optimizations when compiling to hardware. ROCCC first unrolls the loops
to increase optimization opportunities and then applies procedure-level trans-
formations over the unrolled code. Our results in this section prove that our
approach successfully compiles loops taken from DSP and MiBench applica-
tions to area-efficient, high-throughput circuits.

4.2 Loop Unrolling

Loop-level optimizations help achieve most of the parallelism in ROCCC. Loops
that do not carry dependencies from earlier iterations can theoretically be
fully unrolled to achieve maximum parallelism. Since full unrolling may not
always be feasible due to the limited resources on the FPGAs, ROCCC provides
several passes to the user for optimal unrolling such as unroll-jam, tiling (a.k.a.
blocking), and strip-mining. The unrolling factor can be a user-defined value
as well as a value computed, based on the memory and the area limitations
of the FPGA. ROCCC currently gets the unrolling factor from the user as a
optimization package parameter.

Loop unrolling techniques help expose data- and instruction-level paral-
lelism opportunities inside the loop, yet the same techniques increase the area
and can potentially have a negative impact on clock cycle time. In most em-
bedded applications, the critical parameter is the throughput. Loop unrolling
can therefore have contradictory effects on the throughput. As a consequence
there exists, in general, a degree of unrolling that maximizes the throughput
per unit area.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:18 . B. Buyukkurt et al.

In this section we study the effect of loop unrolling on the area, clock speed,
and throughput within ROCCC, C-to-VHDL compilation framework. Our re-
sults indicate that due to the unique design of the ROCCC compilation frame-
work, FPGA area either shrinks or increases at a very low rate for the first few
times the loops are unrolled. This reduced area causes the clock cycle, time to
decrease and thus a great gain in throughput. Our results also show that there
are different optimal unrolling factors for different programs.

We used five benchmarks to show the effect of unrolling in area, clock cycle,
and throughput. Fir5 and Firl5 are 5-tap and 15-tap constant-coefficient finite-
impulse-response filters and Mf9 is a 9-tap moving average filter. Fir5, Firl5
and Mf9 all operate on one-dimensional arrays. 5x3-Filter code is a doubly
nested loop operating on a 5x3 block of pixels. Moravec computes the first
step of the three-step Moravec corner detection algorithm, which computes the
variance of the center pixel within a 3x3 window of 9 pixels. Being image-
processing kernels, both 5x3-Filter and Moravec operate on 2D arrays. Fir5,
Firl5, Mf9, 5x3-Filter and Moravec are all kernel loops.

We used Xilinx ISE 6.2.03i to synthesize and place-and-route the generated
VHDL code. Our target was the Xilinx Virtex-II xc2v8000-5 FPGA. The source
codes are directly read into the SUIF2 intermediate format and ROCCC’s
procedure-level and array access optimizations described in previous sections
are fully applied. Further, we assumed that the I/O between the data path
and the on-chip memory is sufficient, when performing unrolling, since the
required data bus width increases with unrolling. The 1D benchmarks are un-
rolled for 2, 4, 8, and 16 times. Moravec is unrolled for 2x2 and 4x4 times.
Finally, the 5x3-Filter code is unrolled at different unrolling factor combina-
tions ranging from 1 to 8 in powers of 2 in either dimension. unl, un2, un4
and un8, unl16 labels on the figures indicate the unrolling factors of none, 2,
4, 8, and 16 for benchmarks operating on one-dimensional arrays and unxXy
labels indicate an unrolling factor of x applied to the outer loop and an un-
rolling factor of y to the inner loop, respectively. We collected data for 8-bit data
size.

Figure 9 displays our area results for the 8-bit data size versions of the
benchmarks that execute on one-dimensional arrays. The area results on these
figures show the combined areas of the data path, the controller, and smart
buffers. As the results indicate, the overall area shrinks from the original
version to un2, even un4 for some cases such as that of Mf9. In Figure 9(b), and
9(c) the not unrolled cases are not the minimal area points. This shows that
there exist optimal times to unroll.

Figure 10(a) shows the results of unrolling a 5x3-Filter code. Note that an
unrolling of 8x8 means that the 5x3 block is replicated eight times in each
direction. In other words 64 windows of 5x3 are operated simultaneously. From
no unrolling to 64 concurrent loops the area grows by 12 while the throughput
grows by 16 in spite of the clock cycle time being about twice as long. Here also
it seems that the 1x2, 2x2, 2x4, 4x4, and 4x8 unrolling factors achieve a better
throughput per area. Note that the 8x8 unrolling achieves a throughput of
240 MegaPixels/sec, which is more than twice the rate necessary for high-
definition TV.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:19

—®—Area —e— Throughput Clock frequency

1600 1000 _ _
=}
1400 | 1900 §
1800 o
1200 o
2 1000 | I
3 4 600 E
£ 800 1 %00 3
© } =
g 600 | 400 =
400 1309 2
120 &
200 41100 £
£=
0 0 =
uni un2 un4 un8 un16
(a)
—m— Area —&— Throughput Clock frequency
3500 900
3000 800
700 T
=
2500 | §
4 600 g
7 =
§ 2000 | 4 500 C{!g-'
2 @
8 I { 400
£ 1500 3
{ 300 &
1000 | 3
{200 F
500 | 1 100
0 0
un1 un2 un4d un8 un1é
(b)
—=— Area —e— Throughput Clock frequency
1400 700
1200 + 4 600
©
1000 + {500 &
N g
g 800 1{ 400 £
2 &
8 =
£ 600 | 300 1
®
400 | 200 2
[
200 + 100
0 0
uni un2 und un8 un16
(c)

Fig. 9. Area, clock frequency, and throughput for (a) Fir5, (b) Firl5, and (c) Mf9.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:20 . B. Buyukkurt et al.

—&— Area —e— Throughput Clock Freq (MHz)
12000 300
’I
10000 + 1250 2
8000 + £
56000 + b5
3 =
< 4000 + E“
2000 + £
0 + K
untt un’h unaa@ un2xd undxd unéx8 undx8
(a)
—8— area —e— throughput clock rate (MHz)
1800 1 1400
1600 ¢ 11200 ~
1400 + 2
= 1200 | 474 1 1000 §
(1] o O
£ 1000 1800 &3
g L X
o] E e s
1400 &
400 + =
200 L 7 200
0 : ' 0.0
unix1 un2x2 undx4

(b)
Fig. 10. Area, clock frequency, and throughput for (a) 5x3-Filter and (b) Moravec.

Moravec’s pixel variance computation kernel results indicate an almost lin-
ear increase in area. However, for this example the operator has a doubly nested
loop, as does the 5x3-Filter code. Thus, the unrolled version operates not just
on one more set of input data as it would be over a 1D array, but three more
sets of input data since it is twice unrolled towards both directions over a 2D
array.

Table III shows the slice and percentage breakdown of the FPGA area into
datapath, smart buffer, and controllers. To produce the table, we first mapped
the entire circuit on to the FPGA, which gave us the results in Figures 3 and
4. Since place-and-route merges the circuits to use the FPGA area as effi-
ciently as possible, it is not possible to distinguish which slices on the FPGA
belonged to which component of the design. Thus to be able to obtain an es-
timate of the area breakdown, we separately mapped the datapath and the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:21

Table III. The Area Breakdown (8-bit)

Datapath | Smart Buffer | Control Logic | Total

slices % slices % slices % slices

unl 42 | 17.8 172 72.9 22 9.3 236

un2 80 | 29.5 164 | 60.5 27 | 10.0 271

Fir5 un4 159 | 40.2 201 | 50.8 36 9.1 396
un8 317 | 51.2 250 | 404 52 84 619

unl6 769 | 54.6 483 | 34.3 157 | 111 1409

unl 168 | 13.7 | 1086 | 88.9 -32 -2.6 | 1222

un2 310 | 28.6 721 | 66.5 54 5.0 | 1085

Firl5 un4 604 | 49.9 528 | 43.6 79 6.5 | 1211
un8 1186 | 66.9 490 | 27.7 96 54 | 1772

unl6 2358 | 74.2 566 | 17.8 254 8.0 | 3178

unl 45 6.5 620 | 89.5 28 4.0 693

un2 83 | 16.1 406 | 78.5 28 54 517

Mf9 un4 166 | 31.6 324 | 61.6 36 6.8 526
un8 332 | 425 399 | 51.0 51 6.5 782

unl6 662 | 49.7 513 | 385 156 | 11.7 | 1331

unlxl 33 7.0 181 | 38.3 258 | 54.7 472

Moravec | un2x2 133 | 17.1 368 | 474 275 | 35.4 776
undx4 532 | 33.3 714 | 44.7 352 | 22.0 | 1598

unlx1 205 | 23.7 425 | 49.1 235 | 27.2 865

un2x1 351 | 31.1 496 | 43.9 283 | 25.0 | 1130

unlx2 338 | 31.9 515 | 48.5 208 | 19.6 | 1061
5x3-Filter | un2x2 590 | 404 618 | 42.3 252 | 17.3 | 1460
un2x4 | 1068 | 49.3 750 | 34.6 347 | 16.0 | 2165

undx4 | 2003 | 57.5 996 | 28.6 487 | 14.0 | 3486

un8x4 | 3875 | 63.1 | 1498 | 24.4 767 | 12.5 | 6140

smart buffer circuits onto the FPGA, through which we obtained areas of the
datapath and smart buffers. Then, to obtain the controller area we summed
up the datapath and the smart buffer results and subtracted it from the to-
tal area shown in the figures. This procedure would not give a correct area
estimate of the area occupied by the control logic, however, it shows where
the reduction in area came from. We did not think it necessary to map the
controllers separately, since the areas of the controllers stay around the same
due to the fact that the controllers are all implemented as preexisting param-
eterized FSMs in a VHDL library, whose size does depend on the unrolling
factor.

According to the figures in Table III, the circuit area of the data path in-
creased almost at a linear rate, although it is known that loop unrolling in-
troduces more opportunities for optimizations especially on the data path. The
reason for the linear increase is that all the data path codes are mapped after
being decoupled from all memory accesses and all address computation code,
and after being applied an extensive set of procedure-level optimizations.

The gain in area on the FPGA comes mainly from the shrinkage of the circuit
size of the smart buffers due to its unique design. Smart buffer organizes the
data that is received from the memory in windows. Each window has its own
control logic enabling when and which sets of windows are to be exported to the
data path. For the unl case, the number of windows in the smart buffer is large,
although at any given time only one of the windows is active. When we unroll

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:22 . B. Buyukkurt et al.

the loop, the buffer size increases to hold more loops of input data, however, the
control logic cost decreases since the number of windows decreases due to the
increase in the window size. Window size represents the amount of data that
has to be dispatched to the data path per clock cycle. Since the control logic size
diminishes, the overall area for the smart buffer decreases.

A circuit’s clock rate is affected by many factors. The smaller a design is, the
easier it is for the synthesis tool chain to generate a faster circuit for it. The
data points on the figures where clock frequency increases are the points where
the design area shrinks. However, the overall decrease in clock speed for higher
unroll factors should not be taken as the overall throughput decreasing. The
number of parallel iterations generated by high unroll factors implies that the
number of outputs generated per clock cycle on a pipelined data path increases.
Thus, the effect of the clock rate decrease with increased unrolling is overcome
with the increased parallelism in the unrolled codes.

4.3 Hardware Circuit Generation for Applications Using A[B[index_expr]]-Style
Nonlinear Array Accesses

A[B[index_expr]]-style indirect, nonlinear array accesses are frequently used
in many CPU-intensive applications such as in cryptography as key dependent
substitution boxes, in image processing as color palettes, in bioinformatics as
score matrices in sequence alignment, and in various other scientific comput-
ing applications. Such array accesses are usually made into constant qualified
arrays where the values of an incoming data stream are used to index into the
constant table. This style of array or table lookup helps speed up programs
by retrieving a costly-to-compute function’s precomputed values from memory
instead of recomputing them each time a value is needed. Such table lookups
either map the actual index number of the value in the array or some spe-
cific keys to values. In the latter case an associative array is used in order to
represent the mapping from the collection of keys to the collection of output
values. An example of an associative array lookup is found in protein sequence
alignment applications where two input streams composed of characters from
a protein alphabet are compared against one another. The characters read from
the two streams are first converted into numeric indices of a 2D lookup table,
that is, the scoring matrix. Then, a value is returned from the scoring matrix
using the derived indices.

ROCCC allows users to declare and compile table lookups to hard-
ware using two macro calls, that is, ROCCC_create_lookup_table() and
ROCCC_lookup_in_table(). ROCCC _create_lookup_table() is placed somewhere
above the candidate loop nest but not outside of the scope of the procedure
enclosing the candidate loops. ROCCC_ lookup_in_table is placed within the
loop body and replaces the actual array access (i.e., the actual lookup) opera-
tion. Figure 11 lists the parameters of both and Figure 12 and Figure 13 give
examples on how to use the macro calls.

The first argument to the ROCCC _create_lookup_table() is a user-specified id,
which links the specified table description to the actual lookup operation (i.e.,
the ROCCC_lookup_in_table() use). The second argument specifies a constant,

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:23

void ROCCC_create_lookup_table(int lookup_table_id,
const <type> lookup_table_values,
int row_count,
int is_row_an_associated_array,
const <type> row_key_collection,
int column_count,
int is_column_an_associated_array,
const <type> column_key_collection);

int ROCCC_lookup_in_table(int lookup_table_id,
<type> row_index_stream,
<type> column_index_stream);

Fig. 11. Generic prototypes of ROCCC macros for defining and using table lookup operations in
user-level C source code; (<type> to be replaced by any primitive data type in C).

initialized array which contains the constant table contents and can either be a
1D or a 2D array. The third argument tells the compiler the number of elements
or the row count if the lookup operation is to be done on a 2D array. The presence
or the absence of the fourth argument specifies if the input stream indexes the
constant table directly or needs to go through an associative array to find out,
to which index the input key corresponds. In the presence of associative arrays,
the input stream is first processed by a form of CAM (Content Addressable
Memory) on the hardware to find out to which integer index the input data
corresponds. Whenever the fourth argument is one, the fifth argument specifies
the name of the constant initialized array of key values, which is assumed to
perfectly align with the constant table values specified in the first argument.
The remaining three arguments to the ROCCC _create_lookup_table() call carry
the same meanings as those of the third through fifth arguments, except that
they describe the column properties of 2D table lookups.

ROCCC takes the high-level description of an indirect array lookup de-
scribed through macro calls and replaces them with MUX/CAM circuits defined
through lower-level macros that are internal to ROCCC. The arguments of the
ROCCC_lookup_in_table() forms the select lines to the MUXes and CAMs and
the inputs of the MUX/CAM circuits are taken from the constants listed in
the constant qualified 1D or 2D lookup table arrays. Figure 14, Figure 15, and
Figure 16 illustrate what the ROCCC generated circuits look like for the five
classes of indirect table lookups ROCCC can map to hardware.

Figure 17 shows the area growth of the ROCCC generated circuits with 1D
nonassociative table lookups. 1D table lookups are mostly found in cryptogra-
phy applications as key-dependent substitution boxes. Figure 17 displays the
growth in circuit area of a loop body that streams in elements of size 32 bit. The
input stream indexed into a 1D array and returned a compile-time constant
value from the hardware circuit, every clock cycle. The area is measured in
slices and the horizontal axis indicates the number of elements stored inside
the hardware circuit. To efficiently and effectively map the 1D nonassociative
table lookup descriptions to hardware, only the necessary least significant bits
of the index expressions are used to index the hardware table lookup descrip-
tions. For instance, the least significant five bits of any index expression are

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:24 . B. Buyukkurt et al.

// SOURCE CODE IN C
const int A[4]= {92, 54, 91, 83};
int S[N], RIN];

begin_hw();
ROCCC_create_lookup_table(1l, A, 4);
Li: for(i=0; i<N; i=i+1)
R[i] = ROCCC_lookup_in_table(1, S[il);
end_hw();

// ROCCC GENERATED LOWER LEVEL MACRO SEQUENCE
for(i=0; i<N ; i=i+1){
// input buffer definitions
row_tmpO = ROCCC_convert(S_i, 2);
R_i = ROCCC_mux4(92, 54, 91, 83, row_tmpO);
// output buffer definitions

}

(a) example of 1D nonassociative indirect array lookup definition in C and its cor-
responding ROCCC generated lower-level macro sequence

// SOURCE CODE IN C

const int KEY[4]= {33, 24, 31, 23};
const int A[4]= {92, 54, 91, 83};
int S[N], RIN];

begin_hw();
ROCCC_create_lookup_table(1, A, 4, 1, KEY);
Li: for(i=0; i<N; i=i+1)

R[i] = ROCCC_lookup_in_table(1l, S[il);
end_hw();

// ROCCC GENERATED LOWER LEVEL MACRO SEQUENCE
for(i=0; i<N ; i=i+1){
// input buffer definitions
row_tmp0 = S_i;
idx0 = ROCCC_cam4(33, 24, 31, 23, row_tmp0);
R_i = ROCCC_mux4(92, 54, 91, 83, idx0);
// output buffer definitions

}

(b) example of 1D associative indirect array lookup definition in C and its corre-
sponding ROCCC generated lower-level macro sequence

Fig. 12. 1D indirect array lookup definitions in C and the accompanying ROCCC generated lower-
level macros of each.

adequate to index a 1D nonassociative table lookup description of 32 elements.
The hardware circuit then returns the location addressed by the index expres-
sion. The generated circuit is only a simple MUX whose elements are initialized
from the const qualified array specified in the macro calls. Figure 14(a) illus-
trates what the ROCCC generated circuits look like for the 1D nonassociative

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:25

// SOURCE CODE IN C

const int A[2][2]= {{92, 54},
{91, 83}};

int S[N], TIN], RIND;

begin_hw();
ROCCC_create_lookup_table(1, A, 2, 2);
Li: for(i=0; i<N; i=i+1)
R[i] = ROCCC_lookup_in_table(1l, S[i], T[il);
end_hw();

// ROCCC GENERATED LOWER LEVEL MACRO SEQUENCE
for(i=0; i<N ; i=i+1){

// input smart buffer macros

row_tmp0 = S_i;

col_tmp0 = T_i;

tmp0 = ROCCC_mux2(92, 54, col_tmpO);

tmpl = ROCCC_mux2(91, 83, col_tmpO);

R_i = ROCCC_mux2(tmpO, tmpl, row_tmpO);

// output buffer definitions

}

(a) example of 2D nonassociative array lookup definition in C and its corresponding
ROCCC generated lower-level macro sequence

// SOURCE CODE IN C

const int KEY[2]= {33, 24};

const int A[2][2]= {{92, 54},
{91, 83}};

int S[N], T[N], RINI;

begin_hw();
ROCCC_create_lookup_table(1, A, 2, 1, KEY, 2);
Li: for(i=0; i<N; i=i+1)

R[i] = ROCCC_lookup_in_table(1l, S[i], T[il);
end_hw();

// ROCCC GENERATED LOWER LEVEL MACRO SEQUENCE
for(i=0; i<N ; i=i+1){

// input buffer definitions

row_tmp0 = S_i;

col_tmp0 = T_i;

idx0 = ROCCC_cam2(33, 24, row_tmpO0);

tmpO0 ROCCC_mux2(92, 54, col_tmpO);

tmpl = ROCCC_mux2(91, 83, col_tmpO);

R_i = ROCCC_mux2(tmpO, tmpl, idx0);

// output buffer definitions

}

(a) example of 2D 1-way associative array lookup definition in C and its correspond-
ing ROCCC generated lower-level macro sequence

Fig. 13. Sample 2D table lookup definitions in C and the corresponding ROCCC generated lower-
level macros of each.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:26 . B. Buyukkurt et al.

Input Stream MUX
indexing into
the LUT l

0 ey
LUT

array » * LUT output
inC

(a) 1D nonassociative array lookup

Input Stream CAM
searched In
CAM — e
i MUX
CAM
array
inC 1

1D m 3 * LUT output
LuT
array

inC

(b) 1D associative array lookup

Fig. 14. Schematic view of the ROCCC generated circuits for 1D table lookups.

table lookups. The clock cycle time varied from 5.1ns to 8ns linearly as the
circuit area increased. The steady increase in the clock cycle was due to the
current version of our compiler generating a single multiplexor taking as many
inputs as the number of elements in one row or column of the table descrip-
tion. The clock cycle time could be reduced by generating a collection of mul-
tiple small size multiplexors instead of one big one and pipelining through
them.

Figure 18 displays the growth in circuit area of circuits with 1D associative
table lookups. Examples of this kind of array lookups are sine, cosine, etc.,
tables in scientific computing. We compiled a loop body that streams in 8-,
16- or 32-bit elements, to be looked up in a CAM composed of the input stream
bit-size elements. The index information returned from the CAM is used to
index into a 1D array and return a compile-time constant value, every clock
cycle. Figure 14(b) illustrates the ROCCC generated circuit design for the 1D
associative table lookups. The clock cycle time for this design varied from 5.3ns
to 8.3ns growing almost linearly with the circuit area. Again, the increase in

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework .
Input Stream 1 A MUX per row of
indexing into the 2D array
LUT 1
—p\
Lol
>
|
| Input Stream 2
L indexing into
2D 1 LUT
LuT Lt
AL >
inC L,
=
L /
m LUT output
‘gj H)
(a) 2D nonassociative array lookup
Input Stream 1 CAM
searched in A MUX per row of
CAM — . . i the 2D array
1D 8
CAM \
array
inC
Input Stream 2
indexing into
LUT
v
m I
LUT
array
inC
LUT output
%

(b) 2D associative array lookup with CAM alongside one of the dimensions

Fig. 15. Schematic view of the ROCCC generated circuits for 2D table lookups.

17:27

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:28 . B. Buyukkurt et al.

w
ggll-lcthscgciz:lm] £aM A 1:th)§ I;;er row of g g .g
CAM ——.—. =yt e 2D array 5'§ Q =1 E%
1D | It nE =z | g
CAM ::\ : I
Ay, B ’
inC]
'
0
e z
2D —»|
LUt >
array >
inC SH |
LUT output
N

Fig. 16. Schematic view of the ROCCC generated circuit for 2D associative table lookup with
CAM alongside both dimensions.

1,400

1200 A
——Gbits — 16 bits —k— 32 bits /

1,000

g0o0 //

600 /-/‘

400

” ,;;;;&éf//f/
3z 64 128 256 512

1024

Fig. 17. Area growth of ROCCC generated 1D nonassociative table lookups up to 1024 elements
for 8-, 16-, and 32-bit data types.

the clock cycle was due to the multiplexors as well as the CAM circuits taking
as many inputs as the number of elements in one row or column of the table
description. It’s possible to reduce the clock cycle time for large table sizes by
forming a collection of smaller size CAMs and multiplexors, and pipelining
them.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:29

2,100
1500 —— G bit CAM /
—l— 16 bit CAM /
1,500
—&— 32 bit CAM /
ﬂuznn /
900 /,l
£00
300 —
0
3z 64 128 256 512
(a)
2,500

—e— 3 bit CAM /
2,000
8 16 bit CAM /
1,500
g —k— 32 bit CAM // /l
1,000 /‘///
v W

3z 64 128 256 512

(b)

2 500 —— G bit CAM /
—— 16 bit CAM /
2,000
—k— 32 bit CAM /
gusuu / Vs
1,000

500

3,000

32 64 128 256 512
(c)

Fig. 18. Area growth of ROCCC generated 1D associative table lookups of up to 512 elements for
(a) 8-, (b) 16-, and (c) 32-bit data types.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:30 . B. Buyukkurt et al.

Figure 19 displays the growth in circuit area of circuits with various size
2D nonassociative table lookups. The two input streams providing the row and
column indices are 32-bit input streams. The contents of the 2D table are set as
8, 16, and 32 bits. Only the necessary least significant bits of the 32-bit input
stream are used to index into the table. We tried 8, 16, and 32-bit data types for
the contents of the 2D tables. Figure 15(a) illustrates the ROCCC generated
circuit design for the 2D nonassociative table lookups. The clock cycle time
for this design varied from 5.4ns to 11.9ns growing almost linearly with the
circuit area, where the clock cycle time can easily be reduced by partitioning
the MUXes into collection of smaller ones and pipelining more aggressively.

Finally, Figure 20 displays the growth in circuit area of circuits with various
size 2D associative table lookups. This type of lookup operations usually exists
in bioinformatics string matching applications as score matrix lookups for DNA
and protein comparisons. The two input streams providing the row and column
indices have the same bit-size as the CAM contents. The contents of the 2D
associative table lookup are set as 8 bits. The CAM circuit is aligned alongside
the row, hence per graph the size of the CAM does not change but the bitwidth
of its contents only changed. Figure 15(b) and Figure 16 illustrate the ROCCC
generated circuit designs for the 2D table lookup with a CAM along the row
and two CAMs along both the row and the column. The clock cycle time for this
design varied from 5.4ns to 8.9ns growing almost linearly with the circuit area.

5. RELATED WORK

Many projects have worked on translating high-level languages into hardware
using various approaches. SystemC [SystemC 2010] is designed to provide
roughly the same expressive functionality of VHDL or Verilog and is suitable
to designing software hardware synchronized systems. Handel-C [Celoxica Inc.
2010], a low-level hardware/software construction language with C syntax,
supports behavioral descriptions and uses a CSP-style (Communicating Se-
quential Processes) communication model. SA-C [Najjar et al. 2003] is a single-
assignment, high-level, synthesizable language. Because of special constructs
specific to SA-C (such as window constructs) and its functional nature, its com-
piler can easily exploit data reuse for window operations. SA-C does not support
while-loops. ROCCC compiler transforms the IR into single assignment form
at back-end. Users are not required to write algorithms in a single-assignment
fashion.

There are few commercial tools similar to ROCCC: Mitrion [Dellson et al.
2006], ImpulseC, PICO and Altera’s C2H. The Mitrion’s approach is to instan-
tiate a Mitrion Virtual Processor (MVP) on the FPGA, a massively parallel
core that is programmed using the Mitrion-C language, a single assignment
flavor of C. The Mitrion-C language has a special loop statement using the key
word foreach. In Mitrion-C, memory interfaces have to be defined by the user
through particular key words such as _memread and _memwrite. The keyword,
_wait provides timing information.

ImpulseC [2010] is the commercialization of Streams-C [Frigo et al. 2001;
Gokhale et al. 2000]. Streams-C relies on the user explicitly partitioning the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:31

5,000

4,500 ‘!
== Sxcolumn_count

4,000 /
=l 16xcolumn_count /

3,500
= 3Zxcolumn_—count /

3,000

g = Sxcolumn_count /‘

1,500 —-"’-/
1,000 — s

e

10,000
9,000

2 500
_a

=l Sxcolumn_count

5,000 /
== 16xcolumn_count /

7,000
= 32xcolumn_count /
£,000
= 6<xcolumn_count ./
5,000 /
4,000

3,000 /

2,000
1,000
u]
g 16 3z G 128 256
(b)
20,000
15,000 /-—
—#— Sxcolumn_count
16,000
== 16xcolumn_count /
14,000

=il 3Z2xcolumn_count /
g e = 6<xcolumn_count //
10,000
§,000
6,000 /
4,000 /(

2,000

8

A

i 16 3z 64 128 256

()

Fig. 19. Area growth of ROCCC generated nonassociative 2D table lookups of up to 64x256 ele-
ments for (a) 8-bit, (b) 16-bit, and (c) 32-bit data types (horizontal axis displays the column_count’s).

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:32 . B. Buyukkurt et al.

= 5-bit CAM
=i 16-bit CAM

700 - ﬁ

con —h— 32-bit CAM ///'

500 /

g e //__—-——/
300 /

200
100
0
16x8 16x16 16x32 16x64 161285
(a)
1,600
—— 5-bit CAM A

1,400 /I
—— 16-hit CAM /
1,200 /
—h— 32-hit CAM ///
1,000

,ﬁ 800
600 /
400 A//
=

z0o

32xd 32x16 32x32 3Zx64d 32x128

(b)

3,000

—— 5-bit CAM
2,500

—l- 16-hit CAM //
2,000 /
—&— 32-bit CAM %
g 1,500 /-

1,000

500

G Gdx16 64x 32 Gdetd Gx 128

RN

Fig. 20. Area growth of ROCCC generated associative 2D table lookups for the added (a) 16, (b)
32, and (c) 64 element CAMs with 8-, 16-, and 32-bit CAM contents.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:33

code into hardware and software processes and setting up CSP (Communi-
cating Sequential Processes)-based communication channels between them.
Streams-C can meet relatively high-density control requirements. The compiler
generates both the pipelined datapath and the corresponding state machine to
sequence the basic and pipeline blocks of the datapath. ROCCC supports two-
dimensional array access and performs input data reuse analysis on array
accesses to reduce the memory bandwidth requirement. Streams-C does not
handle 2D arrays.

Altera’s C2H [Altera 2010a, 2010b], compiles ANSI C functions as a com-
ponent within an existing Nios II system. C2H compiler assumes that the C
code already runs successfully on a Nios II system. The compiler gives sup-
port to most C constructs including pointers, arrays, and structures, global and
local variables. C2H does not do optimization on removing redundant mem-
ory accesses. It does not parallelize the code at the loop level, but recognizes
and schedules the computation that can occur in parallel simultaneously and
pipelines the loop body. ROCCC instead comes with several loop-, procedure-,
and application-specific optimizations.

PICO(Program In, Chip Out) [Kathail et al. 2002; Synfora 2010b], being pro-
ductized by Synfora [Synfora 2010a], started as a research project at HP Labs.
PICO takes in C code together with user-specified constraints on area and clock
cycle. PICO then maps the compute-intensive sections of the inputed C code
onto configurable PPAs (Pipeline of Processor Arrays) and the control-intensive
parts of the algorithm onto a configurable VLIW processor architecture. PICO
explores the design space for designs that are better than any other in at least
one measure of quality. PICO then presents a set of pareto-optimal designs to
the user. ROCCC is different than PICO in what it’s trying to achieve. PICO’s
target is to generate fast, complete-solution, custom-made circuits for an entire
application in the embedded systems domain, while ROCC aims to accelerate
HPC, DSP, and scientific computing applications running on existing servers
and/or desktop machines.

An academic work that stemmed from the PICO study is the work Fan et al.
[2006]. Their work does not aim to generate complete-solution, custom-made
circuits for an entire application, rather it takes an application’s long-running
kernels and maps them to hardware accelerators. The novelty of their work is
in that they generate one unified hardware circuit for multiple kernels and aim
at hardware reuse. They map the kernels to a customizable VLIW processor
architecture and modulo-schedule the loop bodies so that multiple iterations are
executing at the same time at different functional units, which are connected to
one another through shift registers. Customized are the widths and/or depths
of the functional units and the shift registers connecting the units. ROCCC’s
approach is different in that it does aggressive compiler transformations to
eliminate all the redundancies (memory access and computation) within and
across the iterations.

The DEFACTO [Bondalapati et al. 1999; Diniz and Park 2000; Diniz and
Park 2002] system takes C as input and generates VHDL code. It allows arbi-
trary memory accesses within the datapath. The memory channel architecture
has its FIFO queue and a memory-scheduling controller. ROCCC has abundant

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:34 . B. Buyukkurt et al.

loop transformations to increase parallelism and performs data reuse using the
smart buffer.

GARP’s [Callahan et al. 2000] compiler is designed for the GARP recon-
figurable architecture. The compiler generates a GARP configuration file in-
stead of standard VHDL. GARP’s memory interface consists of three con-
figurable queues. The starting and ending addresses of the queues are
configurable. The queues’ reading actions can be stalled. The GARP-C com-
piler is specific to the GARP reconfigurable architecture while ROCCC targets
commercial available configurable devices and generates synthesizable VHDL.
GARP does not handle 2D arrays.

SPARK [Gupta et al. 2003] is another C-to-VHDL compiler. Its optimizations
include code motion, variable renaming, and loop unrolling. The transforma-
tions implemented in SPARK reduce the number of states in the controller FSM
and the cycles on the longest path. SPARK does not perform optimizations on in-
put data reuse. Thus, ROCCC explores more parallelism than SPARK. ROCCC
performs loop pipelining if there are no loop carried dependencies. SPARK han-
dles 2D arrays by converting them into a one-dimensional array and computes
memory addresses on the datapath, however, ROCCC decouples computation
from address calculation using scalar replacement.

CASH [Budiu et al. 2004] is a C-to-Verilog compiler that generates a hard-
ware dataflow machine that directly executes the input program. It targets
asynchronous ASIC implementations. Catapult C [Mentor Graphics 2010] is
a C++-to-RTL compiler that generates hardware for ASICs/FPGAs. The com-
piler performs loop unrolling, loop pipelining, and bit-width resizing. ROCCC
harnesses its smart buffer architecture to increase the throughput by reusing
input data.

Optimus [Hormati et al. 2008] is a StreamlIt [Thies et al. 2002]-to-Verilog
compiler that is built on top of the Trimaran [2010] compiler. Optimus first
compiles the input language to a canonical IR, where a program is composed
of interconnected filters. Next, it applies different sets of optimizations target-
ing interfilter (macrofunctional) and inner-filter (microfunctional) operations.
Optimus then uses a specialized filter template to synthesize the resulting IR’s
components.

Compared to previous efforts in translating HLLs to HDLs, ROCCC’s dis-
tinguishing features are its emphasis on maximizing parallelism via exten-
sive set of high-level transformations, maximizing clock speed via pipelin-
ing, minimizing area, and minimizing memory accesses using smart buffers,
a feature unique to ROCCC. ROCCC handles 2D arrays and can optimize
memory accesses for window operations. Moreover, ROCCC replaces the soft-
ware implementations of the algorithms with hardware-efficient counterparts
where selected by the user as a package and the necessary patterns are
detected.

6. CONCLUSION

In this article we have presented the high-level transformations of ROCCC
(Riverside Optimizing Compiler for Configurable Computing), a C-to-VHDL

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

Impact of High-Level Transformations within the ROCCC Framework . 17:35

compiler whose focus is on extensive compile-time transformations and op-
timizations intended to maximize parallelism and clock rate and minimize
memory accesses and circuit area. We used several applications to show the
potential of ROCCC’s transformations. In this article we showed how ROCCC
utilizes: (1) several array access optimizations to eliminate redundant memory
accesses, (2) procedure-level optimizations to achieve circuit area reductions of
up to 88% compared to circuit areas generated from unoptimized codes, (3) loop-
level optimizations in increasing the throughput, and (4) application-specific
transformations, such as the hardware lookup table generation, in mapping
software implementations of various classes of algorithms most effectively to
hardware. The previously listed features help ROCCC generate circuits with
very large degrees of parallelism capable of very high computation rates.

REFERENCES

AIGNER, G., Diwan, A., HEINE, D. L., Lam, M. S., Moorg, D. L., Murpny, B. R., AND SAPUNTZAKIS,
C. 2010. An overview of the SUIF2 compiler infrastructure. Tech. rep., Computer Systems
Laboratory, Stanford University.

ArtERA. 2010a. Automated generation of hardware accelerators with direct memory access from
ANSI/ISO standard C functions. http:/www.altera.com/literature/wp/wp-aghrdwr.pdf.

ArtErA. 2010b. Nios II C2H user guide. http://www.altera.com/literature/ug/ug nios2_c2h_
compiler.pdf.

Bonpavarati, K., Diniz, P., Duncan, P., GraNackl, J., Hai, M., JaiN, R., AND ZIEGLER, H. 1999.
Defacto: A design environment for adaptive computing technology. In Proceedings of the
IPPS /|SPDP Workshops. 570-578.

Bupiu, M., VENKATARAMANI, G., CHELCEA, T., AND GoLDsTEIN, S. C. 2004. Spatial computation.
SIGPLAN Not. 39, 11, 14-26.

Buvukkurr, B., Guo, Z., AND Najsar, W. 2005. Compiler optimization for configurable accelerators.
In Proceedings of the Conference on Optimizations for DSP and Embedded Systems (ODES) In
conjunction with International Symposium on Code Generation and Optimization (CGO’05).

Buvukkurr, B., Guo, Z., AND Najjar, W. 2006. Impact of loop unrolling on throughput, area and
clock frequency in ROCCC: C to VHDL compiler for FPGAs. In Proceedings of the Workshop On
Applied Reconfigurable Computing (ARC06).

CaLLaHAN, T. J., HAUSER, J. R., AND WAWRZYNEK, J. 2000. The Garp architecture and C compiler.
IEEE Comput. 33, 4, 62-69.

Ceroxica INc. 2010. Handel-C language. http://www.celoxica.com.

DELLSON, A., SANDBERG, G., AND MoHL, S. 2006. Turning fpgas into supercomputers—Debunking
the myths about fpga-based software acceleration. Tech. rep.

Diniz, P. anp Parg, J. 2000. Automatic synthesis of data storage and control structures for
fpga-based computing engines. In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’00). 91.

Diniz, P. AND Pagrg, J. 2002. Data reorganization engines for the next generation of system-
on-a-chip fpgas. In Proceedings of the ACM/SIGDA 10" International Symposium on Field-
Programmable Gate Arrays (FPGA02). 237-244.

DvypEL, S. AND Bara, P. 2004. Large scale protein sequence alignment using fpga reprogrammable
logic devices. In Field Programmable Logic and Application. Springer, 23—-32.

Fan, K., KupLur, M., Park, H., aND MaHLKE, S. 2006. Increasing hardware efficiency with
multifunction loop accelerators. In Proceedings of the 4th International Conference on
Hardware | Software Codesign and System Synthesis (CODES+ISSS’06). ACM, New York, 276—
281.

Frico, J., GorHALE, M., AND Lavenier, D. 2001. Evaluation of the streams-c c-to-FPGA compiler:
An applications perspective. In Proceedings of the ACM /SIGDA 9 International Symposium
on Field Programmable Gate Arrays(FPGA01). 134-140.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

17:36 . B. Buyukkurt et al.

GOKHALE, M., STONE, J., ARNOLD, dJ., AND KarLivowski, M. 2000. Stream-Oriented fpga comput-
ing in the streams-c high level language. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’00). 49-56.

Guo, Z., BUYUKRKURT, B., AND NaJjar, W. 2004. Input data reuse in compiling window operations
onto reconfigurable hardware. In Proceedings of the ACM SIGPLAN /SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’04). 249-256.

Guo, Z., BUYURKURT, B., NAJjjar, W., AND Vissers, K. 2005. Optimized generation of data-path from
C codes for FPGAs. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’05). 112-117.

GuPTA, S., DutT, N., GUPTA, R., AND Nicorau, A. 2003. Spark : A high-level synthesis framework for
applying parallelizing compiler transformations. In Proceeding of the International Conference
on VLSI Design (VLSI'03).

GutHAUS, M., RINGENBERG, J., Ernst, D., AustiN, T., MUDGE, T., AND BRowN, R. 2001. Mibench:
A free, commercially representative embedded benchmark suite. In Proceedings of the IEEE
International Workshop on Workload Characterization (WWC’01). 3—-14.

HorwMmari, A., KupLUR, M., MAHLKE, S., Bacon, D., aND RaBBan, R. 2008. Optimus: Efficient real-
ization of streaming applications on fpgas. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems (CASES’08). ACM, New York,
41-50.

ImpULSEC. 2010. ImpulseC homepage. http:/www.impulsec.com.

Jacosr, R., Avara-Rincon, M., CARvALHO, L., Liranos, C., AND HARTENSTEIN, R. 2005. Reconfigurable
systems for sequence alignment and for general dynamic programming. Genet Mol. Res. 4, 3,
543-552.

KATHAIL, V., AHITYA, S., SHREIBER, R., RAMAKRISHA, B., CRONQUIST, D., AND SivaramMAN, M. 2002. PICO
(program in, chip out): Automatically designing custom computers. IEEE Comput. 35, 9, 39-47.

MEenTOR GrAPHICS. 2010. Catapult C synthesis. http:/www.mentor.com/products/c-based.design/
catapult.c.synthesis/index.cfm.

Nagsar, W. A., Boum, A. P. W., DrapPER, B. A., HamMES, J., RINKER, R., BEVERIDGE, R., CHAWATHE,
M., anp Ross, C. 2003. From algorithms to hardware—A high-level language abstraction for
reconfigurable computing. IEEE Comput. 36, 8, 63—69.

Purtecowna, K., Worek, W., Pappas, N., DANDAPANT, A., ATHANAS, P., AND DicKERMAN, A. 2003. A run-
time reconfigurable system for gene-sequence searching. In Proceedings of the 16th International
Conference on VLSI Design (VLSID’03). 561-566.

SGI Inc. SGI RASC RC100 Blade. http://www.sgi.com/products/rasc/datasheets.html.

SingeieL, H., StmmLer, H., KuceL, A., MANNER, R., VIEIRA, A. C. C., GALVEZ-DURAND, F., DE ALCANTARA,
J. M. S., anp Awves, V. C. 2000. Implementation of cryptographic applications on the recon-
figurable fpga coprocessor microenable. In Proceedings of the 13th Symposium on Integrated
Circuits and Systems Design (SBCCI'00). IEEE Computer Society, 359.

SwmitH, M. D. anp HoLrLoway, G. 2010a. An introduction to Machine SUIF and its portable libraries
for analysis and optimization. Tech. rep., Division of Engineering and Applied Sciences, Harvard
University.

SwmitH, M. D. anpD HorLLoway, G. 2010b. Machine-SUIF SUIFvm Library. Tech. rep., Division of
Engineering and Applied Sciences, Harvard University.

SYNFORA, I. 2010a. Synfora homepage. http://www.synfora.com.

SynrFora, I. 2010b. PICO technology white paper (v.10). http:/www.synfora.com/about/files/
PICO_technology-whitepaper_v1.0.pdf.

SystEMC. 2010. SystemC consortium. http://www.systemc.org.

THiEs, B., KARCZMAREK, M., AND AMARASINGHE, S. 2002. Streamit: A language for streaming appli-
cations. In Proceedings of the International Conference on Compiler Construction. 179-196.

TriMARAN. 2010. An infrastructure for research in ILP. http:/www.trimaran.org.

Received March 2007; revised April 2009; accepted August 2010

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 4, Article 17, Pub. date: December 2010.

