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Abstract— The newest generation of sequencing instruments, 
such as Illumina/Solexa Genome Analyzer and ABI SOLiD, can 
generate hundreds of millions of short DNA “reads” from a 
single run. These reads must be matched against a reference 
genome to identify their original location. Due to sequencing 
errors or variations in the sequenced genome, the matching 
procedure must allow a variable but limited number of 
mismatches. This problem is a version of the classic approximate 
string matching where a long text is searched for the occurrence 
of a set of short patterns. Typical strategies to speed up the 
matching involve elaborate hashing schemes that exploit the 
inherent repetitions of the data. However, such large data 
structures are not well suited for FPGA implementations. In this 
paper we evaluate an FPGA implementation that uses a “naive” 
approach which checks every possible read-genome alignment. 
We compare the performance of the naive approach to popular 
software tools currently used to map short reads to a reference 
genome showing a speedup of up to 4X over the fastest software 
tool. 

Keywords-component: Reconfigurable computing, bioinformatics, 
string-matching, 

I.  INTRODUCTION 

The newest generation of sequencing instruments, such as 
Illumina/Solexa Genome Analyzer [1] and ABI SOLiD [8], 
produce hundreds of millions of short DNA reads from a single 
three to four days run. The length of the reads currently ranges 
between 16 and 40 characters in length, but is progressively 
increasing with improvements in sequencing technology. The 
reads must be mapped to a reference genome allowing a 
limited but variable number of mismatches due to sequencing 
errors and variations in the sequenced genome. The size of the 
reference genomes ranges from 106 to 109 characters. The 
mapping problem is essentially a version of the classic 
approximate string-matching problem. It can become 
computationally challenging due to the size of the genome and 
the large number of reads generated by the sequencing 
instruments. It can be, however, parallelized and the basic 
problem of string matching has been shown to be well suited 
for FPGA implementations. However, proposed string 
matching approaches, outside of bioinformatics, do not 
consider approximate matches. The existing software tools rely 
on sophisticated hashing schemes that exploit the inherent 
repetitions in the genome data. Such large data structures, 
however, are not very well suited for FPGA implementations.  

In this paper we develop and evaluate a “naive” approach 
using FPGAs that checks all possible alignments between the 
reads and the reference genome. The genome is streamed one 
character at a time per stream through the FPGA and matched 

against a subset of the reads.  Since this algorithmic approach 
is highly parallelizable, we evaluate variants where the genome 
is split into multiple parallel streams. Experimental results 
show that two to four streams maximize the throughput of the 
FPGA.  

In this approach, the hardware architecture is independent 
of the input reads and the target genome. The read data is 
loaded into the FPGA structure before initiating the streaming 
of the data. No FPGA reconfiguration is required among 
different sets of inputs.  

We compared the performance of the naïve method to that 
of three popular software tools. For these evaluations, we used 
one million reads of sizes 16, 24 and 36 characters to be 
matched against the entire human genome (~3x109 characters). 
Our results show that our FPGA implementation can achieve 
up to 4X speed up over the fastest software tools. 

The paper is organized as follows: the next section 
discusses the architecture of the naive method. The third 
section reports on the performance of the three software tools 
and compares them to the naive approach. The fourth section 
discusses related studies on string matching and the last section 
presents the conclusion and directions of future research. 

II. NAÏVE IMPLEMENTATION 

A. Architecture 

As its name indicates, the naïve approach is a 
straightforward implementation that matches a subset of the 
reads against the streaming genome at every character position. 
The reads are initially loaded in registers before initiating the 
streaming of the genome. By adding up the number of matches 
in a given string (read), we can determine the number of 
mismatches. 

Figure 1: A read is held in the read register (here shown 
with four base pairs) for the duration of the current 
stream. The genome is streamed through the genome shift 
register. 

Figure 1 illustrates the basic hardware architecture that 
carries out naive method string comparisons. In the set-up 
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phase, the read is loaded in the read register from the input 
stream. Subsequently, the genome is streamed through the 
genome shift register and matched against the read at every 
cycle. Note that the streams are of DNA characters and are 2-
bits wide. To detect multiple mismatches, the results of the 
comparators are added using a pipelined saturating adder 
computing the total number of mismatches. For example, if we 
allow one or two mismatches then a saturating adder of two 
bits is used. If we allow three up to six mismatches then a 
saturating adder of three bits is needed. Figure 2 illustrates the 
diagram of the adder. However, for the case of searching 
perfect matches, instead of using saturating adders, an AND 
gate is used to save logic resources. 

The basic structure of Figure 1 is replicated in two 
dimensions. Figure 3 shows the structure in Figure 1 replicated 
four times horizontally. The same stream is run through four 
string matching structures. We can also replicate the structure 
in Figure 1 vertically as shown in Figure 4. The idea is to split 
the genome into four streams, that are matched against the 
same read (string). So the same read is matched against 
multiple locations in the genome at the same time. 

 

The overall structure is shown in Figure 5. The match outputs 
of all the comparisons in one block are OR’ed together in order 
to reduce the pressure on the fan-out. The occurrence of a 
match, a rare event, is tagged as a location in each of the 
streams. 

 

 

 

B. Design Space Exploration 

This design space exploration identifies the structure that 
maximizes throughput which is defined by the number of 
character matches per second. It is therefore the product of the 
frequency, the number of string comparisons performed per 
cycle, and the read length.  

The designs have are implemented on a Xilinx Virtex 5 
LX330. The number of string comparisons per cycle aims at 
maximizing the resource utilization of the chip.  We have 
implemented designs for reads with lengths of 16, 24 and 36, 
with one, two, four and eight streams and supporting three 
mismatches. All data are reported after physical synthesis, 
place and route. In all experiments, we attempted to maximize 
the FPGA area utilization as measured in number of slices. 

The number of string comparisons per cycle on the FPGA 
is shown in Figure 6 and the frequencies in Figure 7. From 
these figures we can observe the following: 

• The number of string comparisons on the FPGA 
 increases as more streams are used. This observation 
 can be explained using Figures 3 and 4. Both support 
 four concurrent string comparisons, Figure 3 requires 
 eight registers (four read registers and four shift 
 registers) while Figure 4 requires five registers (one 
 read register and four shift registers). 

• Frequency generally decreases as more streams 
 are used. This is because more streams incur  fan-out 
 penalties in comparing the read register to multiple 
 shift registers. These penalties result to longer 
 clock periods. 

The throughput results are shown in Figure 8. We observe 
that using two or four streams results in the highest throughput 
for all read lengths. This is because having fewer streams 
results in higher frequencies. Although a single stream achieves 
the highest frequency, it utilizes more logic resources resulting 
in fewer character comparisons per cycle that fit on the FPGA. 
Using more streams utilizes less logic resources but operates at 
a lower frequency resulting in a lower throughput.  

Figure 5: A portion of the entire architecture showing 
three chained block of eight shift registers each. 

Figure 4: A block of four streams matched against one read  

register 

2 

2 

2 
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Figure 3: Chaining of stream shift registers. 

2 

Figure 2: Diagram of pipelined saturating adder. The entire 
adder is organized as a pipelined tree to obtain a higher 
operating frequency.  
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Figure 6: Number of string comparisons versus read length 
for 1 to 8 streams with ~90% of the slices of the FPGA 
(~60% register slices) using the naive implementation 
allowing three mismatches. 

 

Figure 7: Operating frequency versus read length for 1 to 8 
streams with ~90% of the slices of the FPGA (~60% 
register slices) using the naive implementation allowing 
three mismatches. 

 

Figure 8: Throughput versus read length for 1 to 8 streams 
with ~90% of the slices of the FPGA (~60% register slices) 
using the naive implementation allowing three mismatches. 

III. COMPARISON OF NAÏVE APPROACH AND SOFTWARE 

BLAST, which is the most commonly used tool in 
bioinformatics, was not included in this comparative evaluation 
because BLAST was designed to search a few reads in a very 
large database of DNA/protein data. Here the number of reads 
is in the millions, and the ‘database’ (i.e., reference genome) is 
only one. We compared the naive implementation to three 
popular software tools, namely MAQ [3], RMAP [6], and 
ELAND [2]. These tools use seeds to speed up the process of 
finding potential matches. Seeds are short substrings of fixed 
length on which a hash table is built. The indexes in the hash 
table are used to identify possible candidate positions. The 
candidate positions are then verified one by one. Table 2 shows 
the various programs used for this evaluation. Each software 
tool has limitations either in either the maximum read length or 
in the allowed number of mismatches. 

The three tools were executed on a Quad-core Intel Xeon 
Harpertown at 2.5 GHz with 12 MB cache, but only one core 
was used in these experiments. This is to perform a chip to chip 
comparison between one core and one FPGA, as both can be 
parallelized. Note that the Harpertown is a 45 nm technology 
while the Xilinx Virtex 5 is a 65 nm technology device. We 
tested the tools using the human genome (3.3 billion 
characters) and one million reads of 16, 24 and 36 characters in 
length while allowing zero, two and three mismatches. 

Table 1: Software tools possible configurations 

Program Read 
Length 

Allowable 
Mismatches 

MAQ <=63 3 
RMAP 16-64 Up to 64 
ELAND 16-32 2 

Table 3 shows the various execution times of the tools 
evaluated for the three read lengths and three allowed 
mismatches. Table 4 shows the execution time of the fastest 
software tool with the execution time of the FPGA based on 
throughput. The rightmost column shows the speed up of the 
FPGA implementation. Observe that it achieves speed-ups as 
high as 4X over the software tool. However, ELAND achieves 
better execution time than the FPGA for two mismatches and 
read length of 24, but has a worse execution time than the 
FPGA for read length of 16. Furthermore, ELAND can only 
allow up to two mismatches and can only match reads of size 
up to 32 characters. In general, FPGA speed up generally 
decreases for increasing read lengths. This is mainly because 
when reads are longer, fewer reads can be placed on the FPGA 
thereby decreasing the throughput of the FPGA. 

Table 2: Execution time of software tools for different 
read lengths and allowing different count of mismatches. 

  Execution time (s) 

Mismatch 
count 

Read 
length 

16 24 36 

3 RMAP 11,531 16,662 19,931 

MAQ 285,97
5 

61,117 32,791 

ELAND n/a n/a n/a 

2 RMAP 16,936 19,182 19,477 

MAQ 95,727 25,595 19,947 

ELAND 11,463 3,450 n/a 

0 RMAP 11,602 16,106 17,704 

MAQ n/a n/a n/a 

ELAND n/a n/a n/a 

IV. RELATED WORK 

The problem of string matching on FPGAs has been 
extensively studied and researched with focus on two 
application domains: network intrusion detection systems 
(NIDS) and bioinformatics. In intrusion detection, packets are 
scanned for the presence of signatures of known network 
attacks. In bioinformatics, DNA or amino acid sequences are 
searched on a reference genome allowing a limited number of 
character mismatches during matching. 
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Table 3: Best software tool and FPGA execution time. 

Mis-
match 

Read 
length- 

Program 

Software 
time (s) 

FPGA 
time 
(s) 

Speed 
up 

3 16-RMAP 11,531 4,510 2.56 

24-RMAP 16,662 6,700 2.49 

36-RMAP 19,931 12,300 1.62 

2 16-ELAND 11,463 5,720 2.00 

24-ELAND 3,450 8,200 0.42 

36-RMAP 19,477 13,300 2.36 

0 16-RMAP 11,602 2,820 4.11 

24-RMAP 16,106 5,020 3.21 

36-RMAP 17,074 7,230 2.36 

 

One of the major differences in requirements between 
NIDS and bioinformatics is allowing character mismatches 
which is known as approximate string matching. Mismatches 
are necessary to account for errors from sequencing machines 
and mutation in the genome itself.  

An implementation of approximate string matching is 
related to the adaptation in hardware of a software tool known 
as BLAST [14]. The seed generation phase of the BLAST 
heuristic is implemented in hardware in [9]. A more recent 
study explores the design space of the BLAST hardware 
implementations [10]. This study includes tuning memory 
elements of the architecture such as registers and FIFO 
queues.  

A major direction in approximate string-matching in 
bioinformatics utilizes various dynamic programming 
algorithms to compute the edit distance. Edit distance is the 
number of character conversions to transform one string to the 
other. The two main algorithms in focus are Needleman-
Wunch and Smith-Waterman. A study implements a hardware 
platform that can be parameterized for these two algorithms 
[11]. The parameters include length of pattern, number of 
symbols, and allowed mismatches. Other studies concerned on 
dynamic programming focused on generating systolic arrays 
on FPGAs of the Smith-Waterman algorithm [8, 11, 12, 13]. 
Another dynamic programming approach [15] also involved in 
computing the edit distance of two strings besides Needleman-
Wunch and Smith-Waterman is implemented in [4].  

Another option to perform string matching is to break the 
text into various sections [5]. The text sections are streamed 
and compared in parallel to the patterns. This is the basis of 
the naive method discussed in this paper. 

V. CONCLUSION 

In this paper, we investigated the feasibility of a hardware 
approach using naive method for large scale string matching. 
Surprisingly, the naive method achieves higher throughput 
than the convolution-based approach, when implemented in 

hardware. The naive method is also faster than existing 
software tools, showing a 1.6X-4X speed up. The limitation of 
our hardware approach is related to longer read lengths. For 
longer read lengths, only few reads can be placed on the 
FPGA, which increases the execution time because a higher 
number of streaming of the genome through the FPGA is 
needed. The trend of new sequencing machines is to output 
longer and longer reads at each technology advance, which 
would require different hardware architecture. 
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