
Exploration of Short Reads Genome Mapping in Hardware

Edward Fernandez, Walid Najjar
Department of Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

Elena Harris, Stefano Lonardi
Department of Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

Abstract— The newest generation of sequencing instruments,
such as Illumina/Solexa Genome Analyzer and ABI SOLiD, can
generate hundreds of millions of short DNA “reads” from a
single run. These reads must be matched against a reference
genome to identify their original location. Due to sequencing
errors or variations in the sequenced genome, the matching
procedure must allow a variable but limited number of
mismatches. This problem is a version of the classic approximate
string matching where a long text is searched for the occurrence
of a set of short patterns. Typical strategies to speed up the
matching involve elaborate hashing schemes that exploit the
inherent repetitions of the data. However, such large data
structures are not well suited for FPGA implementations. In this
paper we evaluate an FPGA implementation that uses a “naive”
approach which checks every possible read-genome alignment.
We compare the performance of the naive approach to popular
software tools currently used to map short reads to a reference
genome showing a speedup of up to 4X over the fastest software
tool.

Keywords-component: Reconfigurable computing, bioinformatics,
string-matching,

I. INTRODUCTION

The newest generation of sequencing instruments, such as
Illumina/Solexa Genome Analyzer [1] and ABI SOLiD [8],
produce hundreds of millions of short DNA reads from a single
three to four days run. The length of the reads currently ranges
between 16 and 40 characters in length, but is progressively
increasing with improvements in sequencing technology. The
reads must be mapped to a reference genome allowing a
limited but variable number of mismatches due to sequencing
errors and variations in the sequenced genome. The size of the
reference genomes ranges from 106 to 109 characters. The
mapping problem is essentially a version of the classic
approximate string-matching problem. It can become
computationally challenging due to the size of the genome and
the large number of reads generated by the sequencing
instruments. It can be, however, parallelized and the basic
problem of string matching has been shown to be well suited
for FPGA implementations. However, proposed string
matching approaches, outside of bioinformatics, do not
consider approximate matches. The existing software tools rely
on sophisticated hashing schemes that exploit the inherent
repetitions in the genome data. Such large data structures,
however, are not very well suited for FPGA implementations.

In this paper we develop and evaluate a “naive” approach
using FPGAs that checks all possible alignments between the
reads and the reference genome. The genome is streamed one
character at a time per stream through the FPGA and matched

against a subset of the reads. Since this algorithmic approach
is highly parallelizable, we evaluate variants where the genome
is split into multiple parallel streams. Experimental results
show that two to four streams maximize the throughput of the
FPGA.

In this approach, the hardware architecture is independent
of the input reads and the target genome. The read data is
loaded into the FPGA structure before initiating the streaming
of the data. No FPGA reconfiguration is required among
different sets of inputs.

We compared the performance of the naïve method to that
of three popular software tools. For these evaluations, we used
one million reads of sizes 16, 24 and 36 characters to be
matched against the entire human genome (~3x109 characters).
Our results show that our FPGA implementation can achieve
up to 4X speed up over the fastest software tools.

The paper is organized as follows: the next section
discusses the architecture of the naive method. The third
section reports on the performance of the three software tools
and compares them to the naive approach. The fourth section
discusses related studies on string matching and the last section
presents the conclusion and directions of future research.

II. NAÏVE IMPLEMENTATION

A. Architecture

As its name indicates, the naïve approach is a
straightforward implementation that matches a subset of the
reads against the streaming genome at every character position.
The reads are initially loaded in registers before initiating the
streaming of the genome. By adding up the number of matches
in a given string (read), we can determine the number of
mismatches.

Figure 1: A read is held in the read register (here shown
with four base pairs) for the duration of the current
stream. The genome is streamed through the genome shift
register.

Figure 1 illustrates the basic hardware architecture that
carries out naive method string comparisons. In the set-up

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2 2010
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/FPL.2010.78

364

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2 2010
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/FPL.2010.78

360

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2 2010
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/FPL.2010.78

360

2010 International Conference on Field Programmable Logic and Applications

1946-1488 2010
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/FPL.2010.78

360

phase, the read is loaded in the read register from the input
stream. Subsequently, the genome is streamed through the
genome shift register and matched against the read at every
cycle. Note that the streams are of DNA characters and are 2-
bits wide. To detect multiple mismatches, the results of the
comparators are added using a pipelined saturating adder
computing the total number of mismatches. For example, if we
allow one or two mismatches then a saturating adder of two
bits is used. If we allow three up to six mismatches then a
saturating adder of three bits is needed. Figure 2 illustrates the
diagram of the adder. However, for the case of searching
perfect matches, instead of using saturating adders, an AND
gate is used to save logic resources.

The basic structure of Figure 1 is replicated in two
dimensions. Figure 3 shows the structure in Figure 1 replicated
four times horizontally. The same stream is run through four
string matching structures. We can also replicate the structure
in Figure 1 vertically as shown in Figure 4. The idea is to split
the genome into four streams, that are matched against the
same read (string). So the same read is matched against
multiple locations in the genome at the same time.

The overall structure is shown in Figure 5. The match outputs
of all the comparisons in one block are OR’ed together in order
to reduce the pressure on the fan-out. The occurrence of a
match, a rare event, is tagged as a location in each of the
streams.

B. Design Space Exploration

This design space exploration identifies the structure that
maximizes throughput which is defined by the number of
character matches per second. It is therefore the product of the
frequency, the number of string comparisons performed per
cycle, and the read length.

The designs have are implemented on a Xilinx Virtex 5
LX330. The number of string comparisons per cycle aims at
maximizing the resource utilization of the chip. We have
implemented designs for reads with lengths of 16, 24 and 36,
with one, two, four and eight streams and supporting three
mismatches. All data are reported after physical synthesis,
place and route. In all experiments, we attempted to maximize
the FPGA area utilization as measured in number of slices.

The number of string comparisons per cycle on the FPGA
is shown in Figure 6 and the frequencies in Figure 7. From
these figures we can observe the following:

• The number of string comparisons on the FPGA
 increases as more streams are used. This observation
 can be explained using Figures 3 and 4. Both support
 four concurrent string comparisons, Figure 3 requires
 eight registers (four read registers and four shift
 registers) while Figure 4 requires five registers (one
 read register and four shift registers).

• Frequency generally decreases as more streams
 are used. This is because more streams incur fan-out
 penalties in comparing the read register to multiple
 shift registers. These penalties result to longer
 clock periods.

The throughput results are shown in Figure 8. We observe
that using two or four streams results in the highest throughput
for all read lengths. This is because having fewer streams
results in higher frequencies. Although a single stream achieves
the highest frequency, it utilizes more logic resources resulting
in fewer character comparisons per cycle that fit on the FPGA.
Using more streams utilizes less logic resources but operates at
a lower frequency resulting in a lower throughput.

Figure 5: A portion of the entire architecture showing
three chained block of eight shift registers each.

Figure 4: A block of four streams matched against one read

register

2

2

2

2

Figure 3: Chaining of stream shift registers.

2

Figure 2: Diagram of pipelined saturating adder. The entire
adder is organized as a pipelined tree to obtain a higher
operating frequency.

365361361361

Figure 6: Number of string comparisons versus read length
for 1 to 8 streams with ~90% of the slices of the FPGA
(~60% register slices) using the naive implementation
allowing three mismatches.

Figure 7: Operating frequency versus read length for 1 to 8
streams with ~90% of the slices of the FPGA (~60%
register slices) using the naive implementation allowing
three mismatches.

Figure 8: Throughput versus read length for 1 to 8 streams
with ~90% of the slices of the FPGA (~60% register slices)
using the naive implementation allowing three mismatches.

III. COMPARISON OF NAÏVE APPROACH AND SOFTWARE

BLAST, which is the most commonly used tool in
bioinformatics, was not included in this comparative evaluation
because BLAST was designed to search a few reads in a very
large database of DNA/protein data. Here the number of reads
is in the millions, and the ‘database’ (i.e., reference genome) is
only one. We compared the naive implementation to three
popular software tools, namely MAQ [3], RMAP [6], and
ELAND [2]. These tools use seeds to speed up the process of
finding potential matches. Seeds are short substrings of fixed
length on which a hash table is built. The indexes in the hash
table are used to identify possible candidate positions. The
candidate positions are then verified one by one. Table 2 shows
the various programs used for this evaluation. Each software
tool has limitations either in either the maximum read length or
in the allowed number of mismatches.

The three tools were executed on a Quad-core Intel Xeon
Harpertown at 2.5 GHz with 12 MB cache, but only one core
was used in these experiments. This is to perform a chip to chip
comparison between one core and one FPGA, as both can be
parallelized. Note that the Harpertown is a 45 nm technology
while the Xilinx Virtex 5 is a 65 nm technology device. We
tested the tools using the human genome (3.3 billion
characters) and one million reads of 16, 24 and 36 characters in
length while allowing zero, two and three mismatches.

Table 1: Software tools possible configurations

Program Read
Length

Allowable
Mismatches

MAQ <=63 3
RMAP 16-64 Up to 64
ELAND 16-32 2

Table 3 shows the various execution times of the tools
evaluated for the three read lengths and three allowed
mismatches. Table 4 shows the execution time of the fastest
software tool with the execution time of the FPGA based on
throughput. The rightmost column shows the speed up of the
FPGA implementation. Observe that it achieves speed-ups as
high as 4X over the software tool. However, ELAND achieves
better execution time than the FPGA for two mismatches and
read length of 24, but has a worse execution time than the
FPGA for read length of 16. Furthermore, ELAND can only
allow up to two mismatches and can only match reads of size
up to 32 characters. In general, FPGA speed up generally
decreases for increasing read lengths. This is mainly because
when reads are longer, fewer reads can be placed on the FPGA
thereby decreasing the throughput of the FPGA.

Table 2: Execution time of software tools for different
read lengths and allowing different count of mismatches.

 Execution time (s)

Mismatch
count

Read
length

16 24 36

3 RMAP 11,531 16,662 19,931

MAQ 285,97
5

61,117 32,791

ELAND n/a n/a n/a

2 RMAP 16,936 19,182 19,477

MAQ 95,727 25,595 19,947

ELAND 11,463 3,450 n/a

0 RMAP 11,602 16,106 17,704

MAQ n/a n/a n/a

ELAND n/a n/a n/a

IV. RELATED WORK

The problem of string matching on FPGAs has been
extensively studied and researched with focus on two
application domains: network intrusion detection systems
(NIDS) and bioinformatics. In intrusion detection, packets are
scanned for the presence of signatures of known network
attacks. In bioinformatics, DNA or amino acid sequences are
searched on a reference genome allowing a limited number of
character mismatches during matching.

366362362362

Table 3: Best software tool and FPGA execution time.

Mis-
match

Read
length-

Program

Software
time (s)

FPGA
time
(s)

Speed
up

3 16-RMAP 11,531 4,510 2.56

24-RMAP 16,662 6,700 2.49

36-RMAP 19,931 12,300 1.62

2 16-ELAND 11,463 5,720 2.00

24-ELAND 3,450 8,200 0.42

36-RMAP 19,477 13,300 2.36

0 16-RMAP 11,602 2,820 4.11

24-RMAP 16,106 5,020 3.21

36-RMAP 17,074 7,230 2.36

One of the major differences in requirements between
NIDS and bioinformatics is allowing character mismatches
which is known as approximate string matching. Mismatches
are necessary to account for errors from sequencing machines
and mutation in the genome itself.

An implementation of approximate string matching is
related to the adaptation in hardware of a software tool known
as BLAST [14]. The seed generation phase of the BLAST
heuristic is implemented in hardware in [9]. A more recent
study explores the design space of the BLAST hardware
implementations [10]. This study includes tuning memory
elements of the architecture such as registers and FIFO
queues.

A major direction in approximate string-matching in
bioinformatics utilizes various dynamic programming
algorithms to compute the edit distance. Edit distance is the
number of character conversions to transform one string to the
other. The two main algorithms in focus are Needleman-
Wunch and Smith-Waterman. A study implements a hardware
platform that can be parameterized for these two algorithms
[11]. The parameters include length of pattern, number of
symbols, and allowed mismatches. Other studies concerned on
dynamic programming focused on generating systolic arrays
on FPGAs of the Smith-Waterman algorithm [8, 11, 12, 13].
Another dynamic programming approach [15] also involved in
computing the edit distance of two strings besides Needleman-
Wunch and Smith-Waterman is implemented in [4].

Another option to perform string matching is to break the
text into various sections [5]. The text sections are streamed
and compared in parallel to the patterns. This is the basis of
the naive method discussed in this paper.

V. CONCLUSION

In this paper, we investigated the feasibility of a hardware
approach using naive method for large scale string matching.
Surprisingly, the naive method achieves higher throughput
than the convolution-based approach, when implemented in

hardware. The naive method is also faster than existing
software tools, showing a 1.6X-4X speed up. The limitation of
our hardware approach is related to longer read lengths. For
longer read lengths, only few reads can be placed on the
FPGA, which increases the execution time because a higher
number of streaming of the genome through the FPGA is
needed. The trend of new sequencing machines is to output
longer and longer reads at each technology advance, which
would require different hardware architecture.

REFERENCES

[1] Illumina Inc. http://www.illumina.com
[2] O. Cret, Z. Mathe, P. Ciobanu, S. Marginean, and A. Darabant.

A Hardware Algorithm for the Exact Subsequence Matching
Problem in DNA Strings. Romanian Journal of Information
Science and Technology, 2009.

[3] H. Li, J. Ruan, and R. Durbin. Mapping Short DNA Sequencing
Reads and Calling Variants Using Mapping Quality Scores.
Genome Research, Vol. 18, No. 11, pp1851-1858, 2008.

[4] S. Mikami, Y. Kawanaka, S. Wakabayashi, and S. Nagayama.
Efficient FPGA-based Hardware Algorithms for Approximate
String Matching. In the Proceedings of International Technical
Conference on Circuits/Systems, Computers and
Communications, 2008.

[5] A.N.M.E. Rafiq, F. Gebali, and M.W. El-Kharashi. A Systolic
Array Structure for String Searching. In the Proceedings of the
International Conference on Electrical, Electronic and Computer
Engineering, 2004.

[6] A.D. Smith, Z. Xuan, and M.Q. Zhang. Using quality scores and
longer reads improves accuracy of Solexa Read Mapping. BMC
Bioinformatics , February, Vol. 9, No. 128, pp1471-2105, 2008.

[7] Applied Biosystems.
http://www3.appliedbiosystems.com/AB_Home/applicationstec
hnologies/SOLiDSystemSequencing/index.htm

[8] B. Buyukkurt and W. Najjar. Compiler Generated Systolic
Arrays for Wavefront Algorithm Acceleration on FPGAs. In the
Proceedings of 18th International Conference on Field
Programmable Logic and Applications (FPL), 2008.

[9] A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain. FPGA
accelerated seed generation in Mercury BLASTP. International
Symposium on Field Programmable Custom Computing
Machines (FCCM), 2007.

[10] E. Sotoriades and A. Dollas. Design Space Exploration for the
BLAST Algorithm Implementation. International Symposium on
Field Programmable Custom Computing Machines (FCCM),
2007.

[11] G. Caffarena, S. Bojanic, J. Lopez, C. Pedreira, and O. Nieto-
Taladriz. High-Speed Systolic Array for Gene Matching.
International Symposium on Field Programmable Gate Arrays
(FPGA), 2004.

[12] M. Gok and C. Yilmaz, Efficient Cell Designs for Systolic
Smith-Waterman Implementations. International Conference on
Field Programmable Logic and Applications (FPL), 2006.

[13] P. Zhang, G. Tan, and G. Gao. Implementation of the Smith-
Waterman algorithm on a Reconfigurable Supercomputing
Platform. Conference on High Performance Networking and
Computing, 2007.

[14] BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi
[15] R.A. Wagner and M.J. Fisher. The string-to-string correction

problem. Journal of ACM, vol 21, pp. 168-173. 1974.

367363363363

