
Compiled Code Acceleration of NAMD on FPGAs
Jason Villarreal, John Cortes, and Walid A. Najjar
Department of Computer Science and Engineering

University of California, Riverside

Abstract— Spatial computing, as implemented on reconfig-
urable platforms, such as FPGAs, presents an effective solution
to high performance computing applications where computations
are applied repeatedly to streams of data. Bridging the gap
between program descriptions and hardware system implemen-
tations, however, is a challenging problem. ROCCC is a C/C++
to VHDL compiler that focuses on extensive loop, array and
procedure code transformations. In this paper we report on using
ROCCC to compile NAMD, a modern and popular molecular
dynamics program, and executing it on the SGI Altix 4700 with
a RASC blade. The critical region of NAMD is a loop nest that
computes the non-bonded forces on the atoms in a molecule.
An instance of this loop consists of 52 floating point operations
performed on several input arrays. Using ROCCC, this loop was
translated to VHDL and then mapped onto the Virtex 4 LX200
of the RASC blade. Our results show a speedup exceeding 800x
over a 1.6 GHz Itanium processor with a potential sustained rate
of 7.7 Gflops on the FPGA for a single precision floating point
implementation.

I. INTRODUCTION
Spatial computing, the implementation of a computation as

a circuit rather than as a sequence of instructions, is extremely
effective in applications where one or more computations are
applied repeatedly to a very large set of data. These include
image, video and signal processing, cryptography, dynamic
programming, and many high-performance computing applica-
tions. One such high performance computing application that
fits this profile is NAMD (Nanoscale Molecular Dynamics).

As discussed in [21], FPGAs are now highly capable of
performing many floating point operations in parallel, making
their use in high performance computing applications even
more attractive.

The difficulty in reconfigurable computing is programming
the system and translating sequential computing systems into
an equivalent and efficient spatial implementation.

The most common approach for creating these systems is to
manually partition the original system description into a spatial
section that is going to go into hardware and a sequential
section that is going to go into software, and then hand-code
the hardware section using a hardware description language
such as VHDL or Verilog. This hardware portion must then
interface with other hardware components on an environment
specific basis as well as interface to the software portion of
the code using a vendor-supplied library.

The main problem with this approach is that the system
designer requires some hardware knowledge. Software design-
ers typically lack the experience to design good hardware.
Hardware description languages are not well suited to algo-
rithmic or behavioral descriptions of problems and require low

level knowledge that most software designers are unfamiliar
with. Additionally, most hardware description languages have
several tedious details and idiosyncrasies that could cause
problems are often unfamiliar to a software designer. Further,
software companies are reluctant to try new languages and
will tend to stay with computation models they have used in
the past.

A popular alternative is to recode spatial portions of a
system in a special high level language such as MapC for
the SRC platform [10], ImpulseC [13], or Mitrion-C for the
Mitrion Virtual Processor [18], that require explicit parallel
information to be added to the code. The parallelism is
described either with special constructs or by writing the code
in a parallel, single assignment way. This typically involves
reworking and reimplementing large portions of the original
code base to support these constructs as these constructs differ
significantly from the original sequential constructs.

We have developed the ROCCC compiler system as an
alternative. ROCCC is an optimizing compiler that translates
C code into pipelined VHDL for use on FPGAs. ROCCC is
designed to translate computationally intensive kernels written
in a subset of C into highly parallel spatial implementations in
order to improve performance of the entire system. Sections
of the system may still have to be rewritten, but can be coded
in a subset of C (without any explicit parallel statements) that
should be familiar to most software designers.

We applied our toolset to NAMD, a popular molecular
dynamics implementation used for the simulation of large
biomolecular systems.

Molecular dynamics simulations are based on the use of
a molecular mechanics force field and the availability of
three-dimensional structural templates derived using crystal-
lographic data (from X-ray or neutron diffraction) or nuclear
magnetic resonance (NMR) data [16]. The force field is based
on a potential energy function that accounts for all pairwise
interactions of a biomolecular system. The potential energy
function is used to simultaneously solve Newton’s equations
of motion for all atoms of the biomolecular system.

Current processors barely allow for molecular dynamics
simulations up to microsecond timescales, using explicit solva-
tion models and atomic resolution. Atomic-level resolution and
the presence of explicit solvent molecules are necessary for
a realistic physiochemical representation of the biomolecular
system. Another limiting factor is the size of the simulated
system. Although the first molecular dynamics simulation
was performed for a protein of a mere 500 atoms in 1976,
the biologically interesting systems of today involve 10

4-10
6



atoms [1]. There is a great need to increase both the size
of the simulated systems and the accessible timescales. The
size is important to resemble the actual physically functional
systems, as biomolecules do not act alone but form large
complexes and multicomponent assemblies. The timescale is
important to address unsolved fundamental problems, such as
protein folding, but also the driving principles of biomolecular
interactions.

NAMD is one of the most popular molecular dynamics
software packages and has been optimized for use on multi-
processor systems. The most computationally intensive portion
of a NAMD execution is the computation of the pairwise
interactions between nonbonded atoms.

Using ROCCC, we were able to completely place a single
precision implementation of the most frequently executed loop
of NAMD in hardware starting from a C description. For the
single precision loop we obtained a speedup of 808 times
over the same loop iteration running on a 1.6 GHz Itanium
processor.

The rest of the paper is organized as follows: Section
2 describes the ROCCC compiler. Section 3 describes the
way we implemented NAMD and section 4 describes the
final results. Section 5 describes related work in molecular
dynamics and high level synthesis from C, and section 6
presents our conclusions and future directions.

II. THE ROCCC SYSTEM
The ROCCC compiler (ROCCC) is a system developed

with the intention of converting portions of C code into
highly parallel hardware implementations to be placed on
reconfigurable computing platforms.

The focus of ROCCC is on generating highly parallel and
optimized circuits from portions of C programs rather than
statement-by-statement translation of C programs to VHDL.
The main distinguishing feature of the ROCCC framework
is its emphasis on compile-time loop transformations and
optimizations. The objectives of ROCCC optimizations are:

1) Maximize the parallelism in the circuit
2) Maximize the clock rate at which the resultant circuit

operates.
3) Minimize the number of off-chip memory accesses
4) Minimize the area of the circuit.
ROCCC is not designed to compile a whole program,

instead ROCCC relies on the user to identify the functions
that are the most compute-intensive in a given application.
These functions typically consist of one or more loop nests.
The functions are compiled to hardware and invoked via a
specialized API that interfaces between the host processor
and the FPGA fabric. The remainder of the code executes in
software on the host. The source code that will be translated
to hardware is constrained such that the code contains no
pointers, no break or continue statements, and all memory
addresses must be resolvable at compile-time.

The ROCCC system implements two intermediate represen-
tations that are referred to as Hi-CIRRF and Lo-CIRRF (Com-
piler Intermediate Representation for Reconfigurable Fabrics)

[8]. Hi-CIRRF can be represented by C code with special
macros that represent specialized hardware blocks. Lo-CIRRF
is an intermediate representation much closer to the actual
hardware we generate.

The ROCCC system is currently built on the SUIF2 [22] and
Machine-SUIF [11] [19] platforms, with the SUIF2 platform
being used to process many optimizations and generate Hi-
CIRRF while the Machine-SUIF platform is used to specialize
hardware further and process Lo-CIRRF into VHDL. High
level information such as loop-level bounds and strides and
extraction of high-level hardware components such as con-
trollers and address generators are extracted at the Hi-CIRRF
level.

We have added new analysis and optimization passes to
SUIF2 and Machine-SUIF that target reconfigurable devices.
Specifically, taking the IR generated by SUIF’s front end as
input, our compiler detects and optimizes memory accesses.
Our compiler also takes the IR generated by the Machine-SUIF
front end as input and generates the data flow information. The
array access pattern information, which is obtained through
memory reference analysis, combined with the pipeline infor-
mation, which is created during data flow generation, is fed
into the controller generation pass to generate controllers in
VHDL. We rely on commercial tools to synthesize the VHDL
code generated by our compiler.

A. Available Passes

The ROCCC system’s optimizations include loop normal-
ization, invariant code motion, peeling, full and partial un-
rolling, fusion, tiling (a.k.a. blocking), strip mining, inter-
changing, skewing, unswitching, forward and induction vari-
able substitution. ROCCC’s procedure or global transforma-
tions include code hoisting and sinking, constant propaga-
tion and folding, elimination of algebraic identities, copy
propagation, dead and unreachable code elimination, scalar
renaming, reduction parallelization, division and multiplication
by constant approximations. Finally, ROCCC’s array transfor-
mations include array read after write (RAW) and write after
write (WAW) elimination, scalar replacement, array renaming,
and feedback reference elimination. With the exception of
feedback reference elimination the rest of the transformations
are also implemented in traditional/parallelizing compilers.

The designer is allowed to pick and choose from among all
of the above transformations and specify the ordering and the
granularity of each pass.

B. Hardware Generated

The hardware that we generated from the NAMD code
consisted of 52 floating point operations. In addition, we had
to generate a special floating point accumulator construct built
up from one pipelined floating point adder. The entire datapath
is pipelined (including the floating point units embedded in the
datapath) and data is pushed into the datapath from a smart
buffer [7], which handles the fetching of data from memory
and manages the reuse of that data, each clock cycle.



The interface between the FPGA and the microprocessors
is platform dependent, and the communication cost is inde-
pendent of the hardware we generate.. We currently generate
an interface with two of the SRAMs located on the SGI Re-
configurable Application-Specific Computing (RASC) blade,
which have a bus width of 128 bits and a data throughput rate
of 3.2 GB/s each. One SRAM is used to store input for use
by the FPGA and one is used as a buffer for output that is
sent back to the processors on the Altix machine. The actual
transfer of memory to and from the host processors and FPGA
is handled by the proprietary RASC API library and is only
utilized by ROCCC.

C. High Level Code Restrictions

There are a few restrictions that the software designer must
follow in order to have a section of code translated into
hardware. None of these restrictions require any low level
knowledge of the hardware being constructed or the platform
being targeted .

The first restriction is that only loop nests are suitable to go
through ROCCC and be converted into hardware. This follows
our scheme that we are not converting entire programs into
hardware, but only critical kernels of computation, which are
going to be found in loop nests.

A second restriction we put on the software designer is
that we only allow well structured memory accesses through
arrays. Scalar variables can be passed in and out of the
hardware without any changes to the C code, but accessing
random memory through pointers is not allowed and arrays
must be accessed in a linear fashion. This is because memory
transfers to FPGAs are slow and there is no cache hierarchy
to hide this latency. By streaming the data in bursts and
storing only what we know will be reused through compile-
time analysis we can maximize the amount of computation
versus the memory transfer overhead.

Reuse of memory elements are automatically detected, but
all accesses inside the loop nest to array elements must be
based off of the loop indices. We further restrict the use of
loop indices to be only used as loop indices and not modified
inside the loop nest.

There are also a few minor restrictions to how the C is writ-
ten, such as declarations and initializations must be separate
in the C code with the exception of array initializations, but
these do not fundamentally change the code in any way other
than syntactically.

III. EXPERIMENTAL EVALUATION
A. SGI RASC RC100 Blade

The SGI Altix 4700 is a distributed shared memory multi-
processor machine that contains from 16 to 512 Intel Itanium
2 processors as a single system image implementing a cache-
coherent system. The single system image is supported by the
NUMAlink architecture, in which all processors and memory
are tied together with special crossbar switches.

The Altix system supports the SGI Reconfigurable
Application-Specific Computing (RASC) blade, which is our

target. The RASC blade connects to the processing nodes of
the Altix system through the NUMAlink interconnect system.
This connection system makes the two Virtex 4 LX200 FPGA
chips appear as part of the single system image visible from
every processor and allows the FPGAs to have the same
bandwidth (6.4 GB/s/FPGA) as the rest of the system. The
RASC blade also supports the streaming of the same data to
different algorithm blocks on different FPGAs concurrently
[15].

The provided RASC API library handles the configuration
of DMAs to transfer data between main memory and the
RASC blade and handles memory transfers between the pro-
cessors’ main memory and the SRAMs on the FPGA without
any additional hardware support necessary.

B. Critical Region

The most frequently executed section of code was previ-
ously identified as the code responsible for computing the
forces between an atom and a list of paired nonbonded atoms
[10]. This list of pairs differed for each atom and for each
time frame, but the data was independent of the computations
performed on them.

For one time step, each atom must calculate the electric
and Van Der Waal forces between itself and every other atom.
Depending on the distances between these atoms, NAMD
performs different calculations. For example, if two atoms
were far away, NAMD would perform a fast version of the
Van Der Waal energy calculation that provides less accuracy
than the calculations for two atoms that were closer.

There were 60 distinct ranges of distances that NAMD
identified and performed different calculations for. All of the
atoms in each range was calculated individually and collected
into a list that was iterated through in a loop that performed
the specific calculations required for that range. In our sample
runs, most of these ranges were empty, so we took only the
most frequently executed configuration and converted that to
hardware.

We also created a hardware component that consisted of the
union of all the different configurations and translated that into
hardware as well, but the final size of the hardware component
of this combined loop was too large to fit on the FPGA we
were targeting, so this approach proved infeasible.

As an alternative to the union approach, we observed that we
could take the distance calculation that was being performed
in software and modify the hardware to include this. Instead
of simply taking one loop into hardware, we could reengineer
this section of NAMD into something more appropriate for
hardware. We separated out each range’s loop instance and
created a hardware implementation for that one range that
included the distance calculation. We would then have 60
different FPGAs, each running one range’s set of calculations.
We would then stream all atoms to all FPGAs simultaneously
and each FPGA would either perform the calculations on that
atom or ignore that atom based upon the distance that was
calculated. In this paper, we only report on the most frequently
executed of these ranges without the distance calculation and



are currently working on an implementation with distance
calculation integrated in.

C. Transformations

Once the critical region was identified, we then performed
several transformations on that region to change that region
into C code that ROCCC could process. One of the restrictions
of ROCCC is that memory accesses must follow a linear
progression. The original code accessed memory in a non-
linear pattern. Our transformations made memory accesses
linear across the pairs of atoms and condensed many arrays
into one general array. The resulting code is functionally
equivalent to the original code and is valid C code that can be
compiled by any standard C compiler.

The original code’s nonlinear memory accesses were caused
by a linear progression through a pairlist of atoms which
determined the indices into another array. We transformed this
code into three passes. The first pass fetched and stored the
non-linear memory accesses into an array in a linear fashion.
The second pass performed the computations on this data and
stored the results in a separate array in the same linear order.
The third pass processed the output array of the second pass
and placed the data back into the original data arrays in the
correct order as determined by the pairlist.

The first and third pass were partitioned to remain in the
software while the second pass was translated into hardware
on the FPGA. Further, in order to prevent the overhead we
introduced as well as the overhead of activating the hardware,
we only conditionally perform this section, having a check in
the host code to call the hardware only when the number of
iterations of the critical loop is sufficiently large enough to
overcome the overhead. ROCCC determines which portion of
the C code is going to be translated into hardware by identify-
ing calls to the empty functions begin hw() and end hw(), so
no additions to the C language were necessary to make these
transformations.

In the linearization of the original code, many variables were
fetched from non-linear locations in memory and transformed
into arrays. The inclusion of all these arrays in parallel used
more I/O pins than were available on the chip and resulted in
unnecessary overhead. To alleviate this problem, we packed all
of the necessary information for the critical loop into one array
that was accessed linearly twelve variables at a time, resulting
in 48 bytes per cycle for the single precision implementation.
This data could be streamed in and managed by the smart
buffer using fewer pins and not consuming all of the I/O
resources of the LX200 chip.

The only dependencies in the loop were for variables
that accumulate over all iterations. These dependencies can
be eliminated by storing each iteration’s value in an array
and summing the array after all iterations are performed.
In the hardware we generated, this was reduced to a single
accumulator component based upon one floating point adder.

Due to the lack of dependencies, the loop can be further
parallelized until either the memory bandwidth is saturated

or the FPGA is filled by unrolling the loop. Currently, the
memory bandwidth is the limiting factor.

Using ROCCC we generated a VHDL description to be
placed on an FPGA and act as a co-processor that was
explicitly called from the C code. The C code explicitly called
library functions to pass data to and from the FPGA and turn
the hardware computation engine on.

The VHDL implementation was targeted to the Xilinx
LX200 FPGAs located on an SGI-RASC blade.

IV. RESULTS

Our generated code was synthesized using Xilinx ISE 8.1
and optimized for area targeting the Xilinx LX200 FPGA. To
handle the floating point operations we used the floating point
cores from Xilinx Core Generator and integrated these into
our main datapath pipeline. The cores are fully pipelined and
caused a delay of 10 cycles for floating point addition and
subtraction and 9 cycles for floating point multiplication. The
critical loop contained 52 floating point arithmetic operations,
consisting of additions, subtractions, multiplications, and di-
visions.

The original C code contained six floating point divisions.
All six of these divisions were on constant values, and four
of these divisions were of powers of two. We were able
to optimize away these divisions. We modified the ROCCC
system to identify divisions of floating point by constants
in the original C code and replace them with more efficient
hardware than a floating point divider. The divisions by a
power of two were replaced with an integer subtracter that
subtracted the exponent portion of the floating point number.
The division by a constant that was not a power of two was
replaced with a multiplication of the inverse of that number.
The inverse was calculated at compile-time and retained the
precision of the original constant. These optimizations reduced
both the area and latency of the circuit dramatically.

These floating point optimizations were performed by our
compiler and reflected only in the hardware we generated
using our compiler and was not performed by gcc or icc
for the software comparison. Further, opportunities for these
optimizations were detected automatically and required no
knowledge from the C programmer.

The variables in the original C code that acted as accu-
mulators over all iterations of the loop had no corresponding
floating point accumulator component. We created one built
around a pipelined floating point adder and incorporated this
into our datapath.

A. Single Precision Results

We place the entire critical loop on the chip using single
precision floating point operations. This implementation took
approximately 44% of the entire FPGA and had a clock speed
of 149 MHz.

We compared the throughput of our circuit against software
implementations running on an Itanium processor running at
1.6 GHz. We used both gcc 4.1.0 and icc 9.1 to compile our
code and compare results.



X Y Z All Streams
Additions 13 14 14 21

Subtractions 4 4 4 8
Multiplications 10 11 10 17

Divisions 6 6 6 6
Total 33 35 34 52

TABLE I
THE NUMBER OF FLOATING POINT OPERATIONS FOR THE X STREAM, Y

STREAM, Z STREAM, AND ALL STREAMS TOGETHER IN THE MOST

CRITICAL LOOP

Using gcc 4.1.0 to compile the critical loop we observed
a run time of 35.92 microseconds per loop iteration (which
we measured using the user time field of the “time” command
in Unix). Since our implementation is pipelined and gener-
ates one value per cycle, our rate is 6.707 nanoseconds per
iteration, giving us a 5355x speedup over the observed run
time.

Using icc 9.1, the run time in software went down to
5.424 microseconds per iteration, as icc is a heavily optimized
compiler for the Itanium processor. Compared with our rate
we still have a 808x speedup over the actual run time.

The NUMAlink architecture can provide 6.4 GB/s to an
SRAM located on the RASC blade. The single precision
implementation requires 5.856 GB/s, so using one SRAM we
can fully supply our datapath with enough data to execute each
cycle. With 52 floating point operations performed each clock
cycle, this gives us performance of 7.7 GFLOPS.

B. Double Precision Results

When we attempted to synthesize the critical loop using
double precision floating point operations, we quickly ex-
ceeded the capacity of the chip. We noticed, however, that
the computation performed inside the critical loop consisted of
three independent computational streams, one for the x vector,
one for the y vector, and one for the z vector of each atom.
Each of these vectors could be separated out from one another
and implemented in double precision on a single FPGA. The
number of floating point operations for each loop configuration
is summarized Table 1.

In order to perform the complete double precision imple-
mentation, it is possible to have each vector implemented on
a different FPGA executing in parallel. The SGI-RASC board
supports sending the same data streams to multiple FPGAs
simultaneously, resulting in only one pass through the input
data feeding the entire implementation. The speedup would
then be comparable to having the entire implementation on
one FPGA and reading/writing to memory once, like the single
precision implementation does.

Since the SGI-RASC board does not currently have three
FPGAs, we separated out the x vector stream, y vector stream,
and z vector stream from the most critical loop and used
the same procedure as above to generate a double precision

Implementation Slices Clock speed
Single Precision 39478 (44%) 149 MHz

Double Precision X 56262 (63%) 168 MHz
Double Precision Y 56354 (63%) 150 MHz
Double Precision Z 56352 (63%) 167 MHz

TABLE II
THE NUMBER OF SLICES AND CLOCK SPEED OF OUR HARDWARE

IMPLEMENTATIONS ON THE LX200 FPGA

Clock Speed Vs. Measured gcc Vs. Measured icc
Single prec. 5355 808

Double prec. X 2635 145

TABLE III
CIRCUIT SPEEDUP VERSUS SOFTWARE IMPLEMENTATIONS. DOUBLE

PRECISION REPRESENTS CLOCK RATE FOR MAXIMUM THROUGHPUT.

hardware implementation. Table 2 summarizes the result of
placing these implementations on the LX200 chip. The double
precision implementation of each individual stream stream
only took up approximately 63% of the FPGA and had a clock
speed of 168 MHz. A slice on the Virtex 4 architecture is
defined to be two registers and two 4-input/2-output lookup
tables.

Since all three vectors are approximately the same, we
examined the x vector stream as a representative stream. Using
gcc 4.1.0, the observed time per iteration that we saw for
the double precision x vector stream was 31.36 microseconds,
giving us a 5259x speedup over the actual.

Using icc 9.1, the observed time per iteration for the double
precision x vector was 1.72 microseconds, giving our hardware
a 289x speedup over the software implementation.

The double precision x vector stream, however, requires
16.099 GB/s (96 bytes per cycle to run constantly). The FPGA
on the RASC blade can be configured to fetch a total of 48
bytes from three memories per cycle, so we would have to
clock our datapath at half speed to provide enough data every
clock cycle. For the double precision x vector stream, this
results in 2.767 GFLOPS instead of the ideal 5.534 GFLOPS
our hardware could support.

Table 3 summarizes our throughput compared to software
implementations. The double precision x stream has results for
running at the clock speed required by the memory bandwidth.

V. RELATED WORK
There are two commercial tools that are similar to ROCCC:

Mitrion [18] and ImpulseC [13]. The Mitrion’s approach is to
instantiate a Mitrion Virtual Processor (MVP) on the FPGA, a
massively parallel core that is programmed using the Mitrion-
C language, a single assignment flavor of C. The Mitrion-



C language has a special loop statement using the key word
foreach. In Mitrion-C, memory interfaces have to be defined
by the user through particular key words such as memread and
memwrite. The keyword wait provides timing information.

In [4] Gu reported an 88 time improvement on molecular
dynamics code. The code that they used was not NAMD
but rather their own hand coded implementation that used
a fixed point implementation rather than a floating point
implementation.

In [10], the authors put portions of NAMD on an FPGA.
They modified the code to be 32-bit single precision floating
point numbers as well as other restrictions. They also ported
the work to MAP C, a language specific to one specific
architecture whereas we create our datapath from C.

In [17], the authors wrote their own molecular dynamics
program to compute nonbonded force interaction. They did
not use NAMD and restricted their computations to single
precision.

The MDGRAPE-3 project [12] is a specially built super-
computer dedicated to molecular dynamics problems. The
MDGRAPE-3 is running a custom molecular dynamics pro-
gram that has custom hardware support and is inflexible.

Celoxica introduced Handel-C [9] as a solution to the
high level synthesis problem. Handel-C is a low level hard-
ware/software construction language with C syntax and sup-
ports behavioral descriptions and uses a Communicating Se-
quential Process (CSP) communication model. The ROCCC
system is designed to deal with portions of high level C code
and does not require that the C code be written with hardware
description hooks.

SystemC [23] is a library of C++ classes that specify
hardware constructs and supports a subset that is synthesizable.
Writing code in SystemC, however, is like writing code in
a hardware description language. SystemC is designed to
provide roughly the same expressive functionality of VHDL
or Verilog and is suitable for designing software-hardware
synchronized systems.

Streams-C [6] relies on the CSP model for communication
between processes, both hardware and software. Streams-C
can meet relatively high-density control requirements. The
compiler generates both the pipelined datapath and the cor-
responding state machine to sequence the basic and pipeline
blocks of the datapath. Streams-C does not handle two-
dimensional arrays.

ImpulseC is the commercialization of Streams-C. Streams-
C relies on the user explicitly partitioning the code into hard-
ware and software processes and setting up communicating
sequential processes based communication channels between
them. Streams-C can meet relatively high-density control
requirements. The compiler generates both the pipelined dat-
apath and the corresponding state machine to sequence the
basic and pipeline blocks of the datapath. ROCCC supports
two-dimensional array access and performs input data reuse
analysis on array accesses to reduce the memory bandwidth
requirement.

SA-C [2] is a single-assignment, high-level, synthesizable

language. Because of special constructs specific to SA-C (such
as window constructs) and its functional nature, its compiler
can easily exploit data reuse for window operations. SA-
C does not support while-loops and requires uses to write
algorithms in a single-assignment fashion.

The DEFACTO [5] system takes C as input and generates
VHDL code. DEFACTO allows arbitrary memory accesses
within the datapath. The memory channel architecture has its
FIFO queue and a memory-scheduling controller.

GARP’s [3] compiler is designed for the GARP reconfig-
urable architecture. The compiler generates a GARP configura-
tion file instead of standard VHDL. GARP’s memory interface
consists of three configurable queues. The starting and ending
addresses of the queues are configurable. The queues’ reading
actions can be stalled. GARP does not handle 2d arrays.

SPARK is another C to VHDL compiler [20]. Its opti-
mizations include code motion, variable renaming, and loop
unrolling. The transformations implemented in SPARK reduce
the number of states in the controller FSM and the cycles on
the longest path. SPARK does not perform optimizations on
input data reuse.

Compared to previous efforts in translating C to HDLs,
ROCCC’s distinguishing features are its emphasis on maxi-
mizing parallelism via loop transformations, maximizing clock
speed via pipelining, and minimizing area and memory ac-
cesses, a feature unique to ROCCC. ROCCC handles 2D
arrays and can optimize memory accesses for window opera-
tions.

VI. CONCLUSIONS AND FUTURE WORK
We successfully compiled the critical region of NAMD

from C into an efficient pipelined datapath to fit on the
Virtex 4 LX200 FPGA on the SGI RASC blade with trivial
modifications to the source code. The single precision imple-
mentation gave us a real speedup of over 808 times versus the
best software implementation. We also were able to compile
individual streams of computation for each of the different
vectors in double precision, resulting in an improvement of
over 145 times over the software implementation.

As future work we hope to be able to dynamically recon-
figure small sections of the chip to accommodate the y and z
portions of the computation, by swapping out the x computa-
tions and replacing them with the y and z computations. This
will allow us to execute all of the computation in hardware and
reuse the data stream without sending that stream to multiple
FPGAs.

VII. ACKNOWLEDGMENTS
NAMD was developed by the Theoretical and Computa-

tional Biophysics Group in the Beckman Institute for Ad-
vanced Science and Technology at the University of Illinois
at Urbana-Champaign.

REFERENCES

[1] S. A. Adcock and J.A. McCammon. Molecular Dynamics: Survey of
Methods For Simulating The Activity Of Proteins. Chemical Reviews
106, 1589-1615, 2006.



[2] W. Bohm, J. Hammes, B. Draper, M. Cahwathe, C. Ross, R. Rinker,
and W. Najjar. Mapping a Single Assignment Programming Language
to Reconfigurable Systems. Supercomputing, 21:117-130, 2002.

[3] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp Architecture and
C Compiler. IEEE Computer, April 2000.

[4] Y. Gu, T. VanCourt, and M. Herbordt. Accelerating Molecular Dynamics
Simulations with Configurable Circuits. Computers and Digital Tech-
niques, Volume 153, Issue 3, May 2006, pages 189-195.

[5] P. Diniz, M. Hall Park, J. Park, B. So and H. Ziegler. Bridging the
Gap between Compilation and Synthesis in the DEFACTO System.
Proceedings of the 14th Workshop on Languages and Compilers for
Parallel Computing Synthesis (LCPC’01), Oct. 2001.

[6] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski. Stream-
oriented FPGA computing in the Streams-C high level language. In IEEE
Symp. on FPGAs for Custom Computing Machines (FCCM), 2000.

[7] Z. Guo, A. B. Buyukkurt, and W. Najjar. Input Data Reuse in Compiling
Window Operations Onto Reconfigurable Hardware. ACM Symposium
on Languages, Compilers, and Tools for Embedded Systems (LCTES),
June 2004.

[8] Z. Guo and W. Najjar. A Compiler Intermediate Representation for Re-
configurable Fabrics. International Conference on Field Programmable
Logic and Applications, August 2006.

[9] Handel-C Language Overview. Celoxica, Inc. http://www.celoxica.com.
2004.

[10] Volodymyr Kindratenko and David Pointer. A case study in porting
a production scientific supercomputing application to a reconfigurable
computer. IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2006.

[11] Machine-SUIF. http://www.eecs.harvard.edu/hube/research/machsuif.html,
2004

[12] The MDGRAPE-3 computer. http://mdgrape.gsc.riken.jp
[13] David Pellerein and Scott Thibault. Practical FPGA Programming in C.

Prentice Hall, 2005.
[14] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad

Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel,
Laxmikant Kale, and Klaus Schulten. Scalable molecular dynamics with
NAMD. Journal of Computational Chemistry, 26:1781-1802, 2005.

[15] Reconfigurable Application-Specific Computing User’s Guide. SGI,
2006.

[16] L. Saiz and M. L Klein. Computer Simulation Studies of Model
Biological Membranes. Accounts of Chemical Research 35, 422-429,
2002.

[17] R. Scrofano and V. Prasanna. Preliminary Investigation of Advanced
Electostatics in Molecular Dynamics on Reconfigurable Computers.
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2006.

[18] SGI Reconfigurable Application Specific Computing: Accelerating Pro-
duction Workflows. White paper, SGI.

[19] M. D. Smith and G. Holloway. An introduction to Machine SUIF and its
portable libraries for analysis and optimization. Division of Engineering
and Applied Sci-ences, Harvard University.

[20] SPARK project. http://mesl.ucsd.edu/spark/, 2005.
[21] Dave Strenski. FPGA Floating Point Performance – a

pencil and paper evaluation. HPC Wire, January 12, 2007,
http://www.hpcwire.com/hpc/1195762.html

[22] SUIF Compiler System. http://suif.stanford.edu, 2004
[23] SystemC Consortium. http://www.systemc.org, 2005.


