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ABSTRACT
Deep Payload Inspection systems like SNORT and BRO
utilize regular expression for their rules due to their high
expressibility and compactness. The SNORT IDS system
uses the PCRE Engine for regular expression matching on
the payload. The software based PCRE Engine utilizes an
NFA engine based on certain opcodes which are determined
by the regular expression operators in a rule. Each rule in
the SNORT ruleset is translated by PCRE compiler into an
unique regular expression engine. Since the software based
PCRE engine can match the payload with a single regular
expression at a time, and needs to do so for multiple rules
in the ruleset, the throughput of the SNORT IDS system
dwindles as each packet is processed through a multitude of
regular expressions.

In this paper we detail our implementation of hardware
based regular expression engines for the SNORT IDS by
transforming the PCRE opcodes generated by the PCRE
compiler from SNORT regular expression rules. Our com-
piler generates VHDL code corresponding to the opcodes
generated for the SNORT regular expression rules. We have
tuned our hardware implementation to utilize an NFA based
regular expression engine, using greedy quantifiers, in much
the same way as the software based PCRE engine. Our
system implements a regular expression only once for each
new rule in the SNORT ruleset, thus resulting in a fast sys-
tem that scales well with new updates. We implement two
hundred PCRE engines based on a plethora of SNORT IDS
rules, and use a Virtex-4 LX200 FPGA, on the SGI RASC
RC 100 Blade connected to the SGI ALTIX 4700 supercom-
puting system as a testbed. We obtain an interface through-
put of (12.9 GBits/s) and also a maximum speedup of
353X over software based PCRE execution.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.2.0 [Computer Communication Networks]: General—
Security and Protection
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1. INTRODUCTION
Increase in malicious activities using computer networks

as a medium, has also resulted in an increased deployment of
intrusion detection systems(IDS) to scan and intercept net-
work packets containing signatures of such activities. The
SNORT [4] software is a popular and widely used open
source IDS for securing the network of an organization from
malicious activities. The SNORT IDS interacts with the
TCP/IP stack on a computer or a security appliance, to in-
tercept and scan the network payload, in order to identify
signatures of malicious activities such as Buffer Overflow
attacks, Denial of Service Attacks, Man in the Middle at-
tacks, etc. on the network packets and thus avoid potential
contingencies. The SNORT IDS utilizes regular expression
based matching in addition to string based matching for
identification of malicious signatures in the network pay-
load. The signatures of vulnerabilities and malicious activ-
ities are represented as a set of rules, which are frequently
updated by the security community. The growing number
of the vulnerabilities, has led to an ever growing number
of rules in the SNORT ruleset. As a result, the SNORT
IDS ends up expending an ever increasing number of CPU
cycles for each payload, scanning through the list of rules.
With the rapid enhancement of the bandwidth of network
connections, viz. of the order of Tens of Gbps; it has thus
been necessary to offload network processing applications to
dedicated hardware [19] and free up the host processor. In
fact, even the current state of the art processors such as
Intel XEON Woodcrest (3.0 GHz) and Intel Itanium Mon-
tecito (1.6GHz) are unable to maintain the necessary [11]
throughput while running the SNORT IDS with multiple
Regular Expression Engines, thus necessitating the execu-
tion of the IDS engines in dedicated hardware. The Field
Programmable Gate Array (FPGA) arena has seen rapid
development in speed and silicon logic size in recent years,
with the latest devices supporting multi Gigabit through-
put interfaces to the host processor. Moreover the inherent
flexibility of an FPGA based design, allows us to leverage
them for implementing highly optimized parallel logic cir-
cuits, supporting a multitude of regular expression engines.
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Table 1: Example Rules in SNORT DB 2.6
SNORT Ruleset Regular Expression Rule Attack Type Implication
backdoor pcre:“/ˆNetbus\s+\d+\x2E\d+/smi” Netbus Trojan Captures the header of the Netbus

trojan i.e. Netbus followed by one
or more spaces, one or more digits,
character ‘.’ and one or more digits.

web-misc pcre:“/ˆ[ˆ\x3e\x3f\x26]{63}/R” Buffer Overflow Captures a McAfee specific buffer
overflow attack sequence i.e. Any 63
characters other than >, ? or & .

Table 2: Format of a typical PCRE Rule in SNORT
IDS with the optional modifiers

pcre:“/<regex>/[ismxAEGRUB]”;

In this paper we present a novel method to compile PCRE
Operation Codes (opcodes) directly to Very High Speed In-
tegrated Circuits Hardware Description Language (VHDL),
for parallel implementation on FPGA hardware. We imple-
ment the PCRE regular expressions from the SNORT IDS
using a two stage translation process. In the first stage, the
SNORT IDS rulesets are compiled using the PCRE compiler
to generate PCRE opcodes. In the second stage the PCRE
opcodes are translated to VHDL hardware blocks suitable
for implementation on FPGA and connected together using
a NFA based control logic. Our system maintains the ex-
ecution semantics of the software based regular expression
engine on the FPGA hardware, thus ensuring compatibil-
ity with the SNORT IDS ruleset. The interface throughput
suffices for wire-speed payload scanning of even the fastest
available ethernet interfaces. Our design is a compile once,
NFA based design, with re-compilation necessary only for
new and updated rules. We obtain more than 350X speedup
with our FPGA based regular expression engine architecture
when compared to a baseline state of the art CPU viz. the
Intel Xeon 5160 and our design can sustain a throughput of
12.9 Gbps.

The rest of the paper is organized as follows: In Section
2, we lay out the background work related to the SNORT
IDS, Regular Expressions, PCRE, and using FPGA based
hardware for accelerating software code. Section 3 details on
our compilation process, on how the PCRE opcodes are han-
dled by our scripts in a two stage process to generate VHDL
blocks and NFA control logic. We also discuss our parallel
PCRE engine architecture implemented on the FPGA. In
section 4 we detail our experimentation method and finally
the results and speedup, when executing parallel PCRE en-
gines on FPGA based hardware. Related work vis-a-vis
PCRE and SNORT IDS is discussed in section 5. Finally
we sum up with the conclusions and future directions in sec-
tion 6.

2. BACKGROUND
The following section describes the benefits of using Perl

Compatible Regular Expressions (PCRE) [6] vis-á-vis SNORT
IDS. We describe the mechanism by which SNORT IDS uti-
lizes the PCRE compiler for translating the regular expres-
sion based rules from the SNORT database and matching
them on the payload using the PCRE engine. We also pro-
vide insight into the implementation of PCRE engines de-

Figure 1: SNORT IDS and PCRE Engine usage on
CPU

rived from SNORT ruleset on actual hardware viz. Virtex-4
LX 200 FPGA on SGI RASC RC 100 blade[20].

2.1 SNORT IDS
Intrusion Detection Systems(IDS) such as SNORT and

BRO [5] started as string matching engines for deep pay-
load inspection of network packets using a database of sig-
nature strings known as the rulesets. As the database of
string based signatures expanded, the efficiency of the rules
started to dwindle. Therefore regular expressions are in-
creasingly used due to their advantages of expressibility and
compactness. A single regular expression can possibly en-
compass tens and hundreds of individual string representa-
tions, and thus they have become a highly popular method
for constructing signatures for IDS.

SNORT is a GPL’d IDS based on a community driven
ruleset wherein the rules are updated frequently by the se-
curity community thus capturing the signatures vis-a-vis the
newest vulnerabilities and malicious packets. PERL based
regular expressions are being increasingly utilized for chart-
ing out the SNORT ruleset due to their compact representa-
tion, excellent expressibility and wide usage across the com-
munity. The SNORT IDS utilizes a plugin oriented architec-
ture to enable regular expression matching as well as various
additional features. Table 1 exemplifies two different PCRE
rules from the SNORT database ver. 2.6. More than four
thousand such rules make up the SNORT PCRE rulesets.
The PCRE engine is used as a plugin by SNORT IDS to run
a regular expression match on the intercepted payloads as
depicted in Figure 1. Table 2 highlights the format of a
typical PCRE rule in SNORT IDS with the optional PCRE
specific flags. The commonly used PCRE flags include ‘i’
for case insensitive match, ‘s’ for inclusion of newlines in the
dot operator, ‘m’ for enabling anchors to match immediately
following a newline, and ’x’ to ignore whitespace between
regular expression token.
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Table 3: Occurences of important PCRE operators
in SNORT DB 2.6

Regular Expression Operator Occurences
Anchor: Match the first character “ˆ” 3087
Anchor: Match the last character “$” 3
Quantifiers “{}” 2833
Ranged Quantifiers “{n,x}” 303
Negated Character Class “[ˆ...]” 1575
Repetition “*” 1492
Repetition “+” 1386
Back References “\1,\2,\3,\4,\5,\6 ” 298

2.2 PERL and PCRE
PERL is a very popular string oriented language with a

rich set of regular expressions, thus making it highly suitable
for creating regular expressions based rules for SNORT IDS.
PCRE software consists of two parts namely the PCRE com-
piler and the PCRE Engine. The PCRE compiler compiles
PERL based regular expressions into a set of op-codes, which
would then be suitable for execution on the PCRE engine.
The engine executes the regular expression represented as
opcodes with a given string to recognize whether the regular
expression matches the string. The PCRE engine executes
a greedy quantifier matching NFA which conforms to the
PERL regular expression semantics. The important PCRE
operators including the anchors, quantifiers, ranged quanti-
fiers, character classes, and their occurences in the SNORT
rulesets is highlighted in Table 3 and example rule snippets
demonstrating their implications in tabulated in Table 4.
Regular expressions can produce different results depend-
ing on the execution engine. As an example a greedy NFA
would provide a different result when compared to a non
greedy execution engine. Since PERL utilizes a NFA based,
greedy quantifier match strategy as default and the SNORT
rules have been generated by the community to adhere to
the PERL regular expression standards, thus it is extremely
important for the accelerated regular expression engine in
hardware to adhere to the PERL regular expression stan-
dards in order to successfully detect malicious activity. It
is possible that non-conforming implementations may result
in false negatives, which could result in potential security
issues. As an example a greedy quantifier regular expres-
sion engine, using the regular expression /test.*test/ on
the string “This test is testing greedy and lazy tests”, would
match and return “test is testing greedy and lazy test” while
a lazy quantifier match would return “test is test” i.e. up
until at the fourth word which is “testing”.

2.3 Regular Expression Engines on FPGA
The basic buiding block of regular expression engines im-

plemented on FPGA are finite automata. The basic FPGA
logic elements in an FPGA are LUTs, which are volatile
SRAM memory elements that store given data. These LUTs
are connected to other LUTs on chip via routing network,
thus an output of one LUT may look up values in another
LUT, and through a series of such chains, the FPGA imple-
ments complex logic on its fabric. An example of a finite
automata is depicted in Figure 2. The language of the de-
picted finite automata matches a string with even numbers
of zeros. The states of the finite automata are encoded as
‘0’ corresponding to S1 and ‘1’ corresponding to S2. The

Table 4: Example snippets from SNORT Rules high-
lighting the use of PCRE operators

Operator Snippet Implication
“ˆ” ˆNetBus Netbus at the start of

line
“$” [\x26|\s]|$ Ends with either a ‘&’,

space
or End Of Line

“{}” [\x26]“{63}” ‘&’ Exactly Sixty
Three Times

“{n,x}” [ˆ\n]“{244,255}” Any character but
newline, more than 244
but less than 255 times

“[ˆ...]” [ˆ\r\n] Any character but
CR,LF

“*” [ˆ\r\n]* Any character but
CR,LF Zero or more
number of times

“+” \s + White Spaces One or
more
number of times

“\1,\2,\3,” (\x22|\x27|) If ‘ ” ’ was matched
“\4,\5,\6 ” ... \1 earlier then match ‘ ” ’,

if ‘ ’ ’ was matched
then match ‘ ’ ’

Figure 2: A Finite Automata Implemented on
FPGA using LUTs.
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Figure 3: Multiple NFA engines executing in paral-
lel on a FPGA.

first lookup table of size four elements is addressed by the
current state of the automata and the current input data.
As an example, if the automata is in state S1 and receives an
input character ‘1’, the corresponding address in the LUT
is ‘01’. The data stored at address ‘01’ is ‘0’ and is routed
to the next LUT on the right which contains two locations.
Since the corresponding data at address ’0’ in the second
LUT is S1 hence the finite automata selects state S1 as its
next state. The gray section in Figure 2 demonstrates the
state transitions as the automata processes and accepts an
example string “0110100”.

The software implementation of regular expression engines
can only run a single instance of an engine on a CPU core,
which results in limited throughput of the software based
IDS. However hardware based IDS use multiple instantia-
tions of regular expression engines on reconfigurable silicon,
such as an FPGA, in order to enable a multitude of parallel
engines, as shown in Figure 3, thus speeding up the system
many times. Various optimizations to the engine are pos-
sible, including sharing of prefix, common subexpressions
and constant matches in the hardware along with choice of
engines implemented as a DFA or as a NFA.

Since the logic design on an FPGA can be updated as
and when required, it makes them an ideal platform for sup-
porting newer or updated regular expressions, and thus any
modification to the SNORT IDS ruleset would result in the
re-compilation of the new or modified rule only.

3. COMPILING PCRE ENGINES TO FPGA
The heart of our automated compiling system lies in the

way regular expressions from the SNORT database are con-
verted to engines on FPGA. The initial step involves in-
voking the PCRE compiler software which is part of the
PCRE package version 7.0. We have added a mechanism
for the PCRE compiler to emit compiled opcodes from reg-
ular expressions to a local database. Our AWK script parses
the database and extracts the opcodes corresponding to the
regular expression based rules. Thereafter the rules are pro-
cessed by the opcode to VHDL script. This script first gener-
ates storage block for each opcode that matches one or more
characters. A second script processes the sequence of PCRE
operators, in the list of opcodes and generates a NFA based
control logic in VHDL. A third script combines them to a
VHDL entity that interacts with the memory interface mod-
ule. Once all the regular expression engines are generated,
the fourth script generates a payload buffer and a matchdata
buffer. The payload buffer receives TCP / IP payload from

the software and on each clock cycle retrieves a character
into each of the engine through the memory interface mod-
ule. The matchdata buffer is connected to the match output
of each of the NFA engines, and the data is sent back to the
CPU once the complete payload has streamed through the
regular expression engines.

3.1 The SGI RASC RC100 Hardware
FPGAs allow speedup of slow sequential software by ef-

ficient hardware execution, as well as executing multiple
threads in parallel, thus augmenting the host processor. We
utilize the SGI RASC RC100 Blade as a proof of concept
platform for demonstrating the performance of PCRE on
hardware. The RASC RC 100 blade consists of two Virtex-
4 LX 200 FPGAs, with 40MBytes of SRAM logically orga-
nized as two 16MBytes blocks and an 8MBytes block, as
shown in Figure 4. The SRAM are 36Bit QDR devices with
4 bit parity, thus transferring 128bit data every clock cycle.
The RC100 Blade is connected using the low latency NU-
MALink interconnect to the SGI Altix 4700 Host System, for
a rated bandwidth of 6.4GB per second per FPGA. We are
able to implement two hundred PCRE engines which operate
in parallel on the network payload, thus achieving through-
put rates of the order of 12.9 Gigabits per second. The SGI
Altix 4700 allows multiple RASC Blades to be installed on
the host system, thus potentially allowing for implementing
of the complete SNORT Database on hardware. The Virtex
4 LX 200 FPGA is the largest FPGA chip in the Virtex-4
series, containing 200,448 logic cells. The FPGA also con-
tains 700KBytes of Block SRAM memory on the chip, that
appends the memory capacity of the distributed logic. Two
rulesets in the SNORT rules database viz. the oracle and the
web-client rules consist of a multitude of rules with long list
of back-reference data. Such a long list of data is unsuitable
for storage in the distributed logic on the FPGA, and due
to its sheer size, causes overmapping of logic resources. Our
compiler uses the Block RAM for storing back reference data
for the aforementioned rulesets, thus mitigating the problem
of overmapping. Each FPGA on the RASC RC 100 Blade
operates independently of each other. A set of API known
as RASC Abstraction Layer manages the data transfer be-
tween the host processor on SGI Altix system and the RASC
RC 100 Blade. The block diagram in Figure 5 depicts the
integration of the SGI RASClib (RASC Abstraction Layer)
APIs and SNORT IDS for executing PCRE matches in hard-
ware.

3.2 Compiling PCRE rules from SNORT rule-
sets

The SNORT IDS accesses the rules by rulesets when en-
abling PCRE based IDS. Thus each of the rulesets are avail-
able as separate files in the available SNORT Database. As a
first step of processing, our compiler script extracts all rules
from the SNORT database that have a pcre field and stores
them into local ruleset files for further processing. These
rules contain the various regular expressions which are used
by SNORT IDS.

3.2.1 PCRE Compiler
Once the PCRE rules are segregated out from the SNORT

Database, they are compiled through the PCRE compiler.
The PCRE compiler software is part of the PCRE package
and converts PCRE regular expressions into PCRE opcodes.
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Figure 4: Organization of the RASC RC 100 Blade
with the Virtex 4 LX 200 FPGA.

Figure 5: SNORT IDS and PCRE Engine usage on
FPGA

The PCRE opcodes are kind of a machine code that defines
the structure of the regular expression engine compiled from
the PCRE regular expression.

3.2.2 PCRE Opcodes
The PCRE Opcodes are the instructions for the software

based PCRE engine, and are defined in the pcre internal.h
file, and is part of the PCRE package. As an example Ta-
ble 5 highlights important PCRE opcodes in the SNORT
database. Each of the PCRE opcodes have an equivalent
hardware description, i.e. the behavior of each of the opcode
may be described in VHDL code, that is suitable for hard-
ware implementation. Our second stage scripts is invoked
to first extract caseful character matching PCRE opcodes
for each regular expression. The caseful character match-
ing blocks are implemented as simple text match circuits
on hardware first. These blocks receive characters from the
payload memory via the NFA controller circuit. Moreover
when the repetition type PCRE opcodes are encountered,
the blocks additionally are endowed with a local counter to
count the number of occurrences of characters. As discussed
earlier, since the hardware implementation on an NFA is in-
herently parallel in nature, it is possible to process one new
character every clock cycle.

3.2.3 Local Storage of Back References
The PCRE engine allow for back-references to be used

primarily for the convenience of recollecting the marshalling
/ enclosing meta-characters which are useful for a multitude
of payload containing programming language specific con-
structs. As an example some programming languages allow

Table 5: PCRE opcodes corresponding to aforemen-
tioned Regular Expression operators
Regular Expression Operator PCRE

Op Code
Match after the first character “ˆ” OP CIRC 19
Match after the last character “$” OP DOLL 20
Quantifiers “{}” OP EXACT 32
Ranged Quantifiers “{n,x}” OP UPTO 30
Negated Character Class “[ˆ...]” OP NCLASS 60
Repetition “*” OP STAR 24
Repetition “+” OP PLUS 26
Back References “\1,\2,\3,\4,\5,\6 ” OP REF 62

strings to be enclosed either in single quotes ‘ ’ or double
quotes “ ”. A backreference on the enclosing quotes would
store the opening quote in the memory, and would recollect
it while encountering the closing quote. Since the back ref-
erences are essentially a type of addressible memory with
the contents as the available backreferences, they may be
stored on the FPGAs’ on chip Block RAM. While gener-
ating VHDL code of the regular expression engine from the
PCRE opcodes, our compiler allows utilizing the Block RAM
for local storage of Back Reference thus saving on I/O costs
to the SRAM on board, and allowing for faster hardware
design.

3.2.4 Generating the NFA control structure
Our third stage compiler script combines the generated

VHDL storage and counting blocks into a final entity that
defines the actual regular expression engine on hardware.
The opcode defining the regular expression operators are it-
eratively analysed by the script, and the control structure
for the NFA is generated in VHDL. The control structure
receives a new character every clock cycle and also is up-
dated of the status of each storage and counter blocks. The
NFA generating script converts the sequence of regular ex-
pression operator to a tree based hierarchical representation
and thereafter the tree is parsed and converted to an exten-
sive set of if - else statements in VHDL. The NFA control
structure is thereafter tied together with the storage and
counter blocks in a single VHDL file which is tied together
to the payload buffer via the memory interface module. Fig-
ure 7 depicts the internal organization of an NFA generated
from a SNORT rule.

3.2.5 Common Prefix Optimization
Since the SNORT IDS regular expressions are based on

a collection of similar rules grouped by the rulesets, many
of which contain regular expressions that share a common
prefix. These prefixes are a potential point of design consid-
eration which may lead to conservation of on-chip area, and
are discussed in [18]. We generated an AWK script to ex-
tract common prefixes from regular expression in the oracle
rule set of SNORT IDS, and compile them together into a
single hardware block. The optimized design resulted in a
savings of 26% area on the chip, but unfortunately that lead
to a tradeoff on performance of more than 50%. As a result
we chose not to enable the Common Prefix Optimizations to
the regular expressions since it constrains the digital clock
routes on the FPGA to operate at a lower frequency, thus
affecting the throughput of the regular expression engines.
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Figure 6: Architecture of parallel PCRE Engines on Virtex-4 LX 200 FPGA

3.2.6 PCRE engines on the FPGA
PCRE engines from the SNORT rulesets are aggregated

together in a single FPGA design, to be implemented and
run in parallel on the FPGA. As depicted in Figure 6 there
are two hundred and fourteen NFA engines which operate
in parallel on a single FPGA chip. The NFA engines receive
a character every clock cycle on the 8 bit payload line. The
RASC RC 100 Blade allows for 128 bits to be retrieved from
the Payload buffer each clock cycle, thus a total of sixteen
separate payload lines are generated, that operate in paral-
lel. As depicted in the architecture, the FPGA processes six-
teen parallel payload threads, and each thread except thread
16 has fourteen parallel NFAs. The memory interface mod-
ule is a SRAM memory controller, that interfaces to the
Memory 1 on the RC 100 Blade. The Memory 1 serves as a
Payload Buffer that receives the data worth sixteen payloads
from the host CPU on the SGI Altix 4700. The payload
buffer needs to store 16 * 65536 Bytes viz. 1,048,576 Bytes,
since the maximum size of each payload is 64KBytes, and
sixteen of them are processed in parallel on the FPGA. The
FPGA based PCRE engines representing regular expressions
with back-references are allocated memory space on the on-
chip Block RAM, to store and retrieve the back-reference
data. Each PCRE NFA engine generates a 1 bit output
data that represents whether the payload matches the reg-
ular expression. A total of 224 bits are transferred back to
the host upon completion of streaming of the packet through
the PCRE engines on the FPGA. The 224 bit match data
is then de-multiplexed at the host to obtain the individual
match status of each of the regular expression engine.

4. EXPERIMENTAL RESULTS
Our compilation and hardware implementation of PCRE

engines are compared against PCRE engines executed on
software on actual SNORT rules. We run the experiment
on a set of network dump of size 2.0 GigaByte. Our net-
work dump file has been generated by running tcpdump on
the SGI Altix 4700 supercomputer, over a period of time,

Figure 7: The NFA derived from a SNORT Rule.

and collecting the payload data in a single file. We load
the payload file on the main memory of the Altix machine
before sending it onto the RASC Blade. When evaluating
the baseline software implementation of PCRE, we store the
file on a ramdisk on a SGI workstation. We have created
five project directories with 25, 50, 75, 100 and 200 reg-
ular expression derived from the backdoor, web-client, and
spyware-put rulesets to allow us to obtain speedup data with
varying number of regular expressions. Since any more than
200 regular expressions caused an overmapped FPGA, we
had to limit our tests to 200 regular expressions. 1

For our software baseline testing, we utilize the aforemen-
tioned rulesets and create five project locations each with the
same set of rules that were implemented on hardware. Each
of the project directory is accessed by a shell script that in-
vokes pcre compile on the regular expression and thereafter
executes by invoking pcre execute. The time measured us-
ing the benchmark does involve compilation overhead, since
that duplicates the actual behavior of SNORT IDS. Each
iteration of the experiment was executed 100 times to de-
termine the average execution time, and hence the average
throughput. We run the software baseline benchmarks on
an Intel XEON 5160 (Woodcrest 3.0GHz) based SGI Work-
station, with 16 GByte Ram and 1333MHz Front Side Bus.

1As discussed later, we are in the process of developing the
required host code, that would help utilize the second FPGA
on the RASC RC 100 Blade in a future implementation.
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Figure 8: Speedup obtained by implementing PCRE engines on the SGI RASC RC100 Blade.

We utilize the three aforementioned rulesets for compi-
lation into VHDL and thereafter implementation onto the
FPGA hardware on the SGI RASC RC 100 Blade. The
VHDL conversion of regular expression engines from each of
the ruleset are collated together in a project location, along
with the payload buffer and the memory interface module.
We utilize the Xilinx ISE 9.1i synthesis tool namely ‘XST’
to synthesize the project into lower level hardware descrip-
tion known as the netlist. Thereafter the netlist containing
the regular expressions and the payload buffer is mapped
onto the Virtex-4 LX 200 FPGA, along with the SGI Core
services using the ‘MAP’ tool. The next stage involves run-
ning the Place and Route (PAR) and Bitgen tools to finally
generate a bitstream file that would configure the hardware
resources on the FPGA. The bitstream file is copied to the
bitstream repository, that would be accessible by the SGI Al-
tix RASC daemon. All the FPGA compilation tools are run
on the baseline SGI XEON 5160 workstation. The host code
that reads the payload file, calls the RASClib APIs and re-
ceives the match data is a ‘C’ program. The SGI Altix 4700
at our site, utilizes two partitions, each with 32 Intel Ita-
nium2 (Montecito 1.6GHz) processor cores, and 642 GByte
main memory. The host code has been compiled using In-
tel C Compiler version 9.1.042, for optimum performance on
the Itanium2.

In order to benchmark the performance of the hardware,
we program the FPGA first with the bitstream containing 25
regular expression engines. Next we call the RASClib API’s
to send the 2.0 GigaByte worth of payload, to the RASC
Blade, and obtain the match data for the 32,768 packets.
We then repeat the experiment with each set of regular ex-
pressions, each time sending 2.0 GigaByte payload to the
RASC Blade, and receiving the match data. Each iteration
of the experiment is run 100 times and the average time of
execution is recorded to obtain the average throughput. We
include the bit-stream loading time overhead for each run of
the benchmark. Since the RASC RC 100 Blade is connected
to a NUMA Link interconnect on the Altix 4700 system,
that is a shared memory system, the throughput data shows
slight variability, which is dependent of a number of factors
including the location of the memory that stores the pay-
load, the actual system load at the time, etc.

As depicted in Figure 8, the speedup and throughput is
charted for both the baseline case (cyan) bars and on the
RASC RC 100 blade viz. the (orange) bars. The hardware
design synthesized at a little more than 150MHz for all the
five regular expression rulesets, and hence was clocked at 150
MHz. As the number of regular expressions on the hardware
increased each packet was processed through many more
regular expressions in parallel. Since the baseline software
entails serial execution of the same payload over multiple
regular expressions, the effective throughput declines with
increasing number of regular expression engines. Therefore
the speedup provided by the hardware increased linearly
with increasing number of regular expressions when com-
pared to the baseline software execution scenario.

5. RELATED WORK
Regular Expressions are a powerful method for generating

rules and inspecting payload for IDS applications, including
SNORT, BRO, and L7-filter.[4] [5][2].

Initial versions of SNORT started with string based pat-
tern matching on a ruleset comprising of string matches.
They were implemented on Software as well as improved
versions were implemented on a variety of Hardware such as
FPGA and ASICs. Suresh et al have documented a method
to compile C code of bloom filter based text scanners to
VHDL and achieve high throughput (18 Gbps) on Virtex II
FPGA. [3] Tan et al [1] detail on a high throughout design
of the Aho-Corasick engine for string matching based IDS
on Application specific silicon. Young H. Cho et al [8][9]
detail out a silicon to implement a hardware based string
matching coprocessor for SNORT IDS that runs at 7 Gbps.
Their ASIC design provides a high performance platform
for pattern matching. Baker et al [13] [7] demonstrate an
FPGA implementation of the Knuth-Morris-Pratt algorithm
for string matching suitable for IDS applications at 2.4Gbps

Current research initiatives have resulted in optimized
Regular Expression engines in software which result in fast
execution on CPUs. Yu et al suggest optimizing techniques
on DFAs generated from regular expressions to reduce their
execution times and achieve 50 to 700 times speedup[10].
But their method also asks for rewriting of the SNORT rule-
sets, which may not be supported by the community due to
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Figure 9: A comparison of throughput of regular expression engines on various related FPGA hardware.

their adherence to PCRE standards. Kumar et al [12] have
demonstrated graph theoretic algorithm to generate D2FA
from DFA by combining multiple transitions in order to re-
duce the memory requirements of DFAs by more than 95%.
Their design enhances Cisco network appliance by reducing
embedded memory requirements.

FPGAs have been utilized on various Internet Firewall ar-
chitectures, due to their ability to execute parallel regular
expression based scanning engines. DFA based regular ex-
pression engines have been targeted towards FPGAs mainly
for parallel execution on smaller FPGAs [14][15][16]. The
authors utilize the JLex library to generate description of
regular expressions from SpamAssassin rules. The authors
also propose the use of DFAs by providing data on their com-
pactness when compared to NFAs. Since DFAs can have
only one active stage the hardware may be faster. Cur-
rent research on NFAs used for Regular Expression Match-
ing have resulted in optimization speed and area on FPGA.
NFA implemented on a FPGA can process one character
per clock cycle. Sidhu, Prasanna provide a highly detailed
work on implementing and optimizing NFAs for use on FP-
GAs. In fact they propose a fast algorithm that generates
the NFA on the FPGA hardware, rather than compiling
it from software. [17] Brodie et al develop new hardware
structures to implement FSM based regular expression en-
gine. On their actual hardware test they obtain a 4Gbps
sustained throughput on a 133MHz Virtex-II FPGA [11].
Lin, et al propose various optimization methods including
prefix infix and postfix sharing of regular expressions on an
older version of the SNORT ruleset.[18] Overall their meth-
ods bring about 20% reduction in on chip area, but its effect
on clock speed is not discussed. Tiwari, et al propose uti-
lizing Block RAM resources on the FPGA for storing LUT
data, and hence free up LUT resources on the chip. It results
in a savings of 26% power compared to LUT implementation
of control logic for Finite State Machines.[21]. Bispo et al.
[22] touch upon a VHDL generation scheme of NFAs from
SNORT ruleset. They utilize extensive size optimization on
NFAs including Prefix Sharing, Character Class Sharing and
Static Pattern sharing. Their design results in a throughout
of 2GBps on a Virtex-4FPGA, which suffice for 1GBE or

slower network connections.
As far as our contribution to the paper is concerned, di-

rect compilation of PCRE opcodes into VHDL blocks and
onto the FPGA is a novel approach to enhance throughput
and as well as maintain compatibility with the community
based rulesets. Figure 9 compares the throughput of various
FPGA platforms to the RASC RC 100 blade while executing
regular expression engines. The performance of the RASC
RC 100 blade is attributed to its high throughput connec-
tivity to the host processor by exploiting the NUMALink
fabric.

6. CONCLUSION AND FUTURE WORK
In this paper we described a method to directly compile

PCRE opcodes generated from SNORT rules to VHDL and
implement them on FPGA. We test proof-of-concept design
on a Virtex 4 LX 200 FPGA on a SGI RASC RC 100 blade.
The design runs at 150 MHz and provides a throughput of
12.9 Gbps on tcpdump payload data on a number of SNORT
rules ranging from 25 to 200. Our design performs between
45X up until 353X when compared to a baseline implemen-
tation on a Intel XEON 5160 CPU at 3.0 GHz.

At the moment we compile our design to only one FPGA
on the RASC RC 100 blade. In the future we plan to in-
corporate the second FPGA too, and instantiate 200 more
regular expression engines. Since each of the FPGA on the
board has an independent NUMA Link interface to the host
CPU, we may be able to effectively double the throughput
of the hardware implementation.

RASC Abstraction Layer also provides a streaming inter-
face to the FPGAs which would enable the host CPU to
directly write to the FPGA. This could effectively enhance
the throughput of the design, since the payload data is di-
rectly streamed to the NFAs rather than being written to
the SRAM first and then being read by the payload memory.
We plan to incorporate the streaming interface in order to
speed up our design in the future.
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