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The wider acceptance of FPGAs as a computing device requires a higher level of programming abstraction. 
ROCCC is an optimizing C to HDL compiler. We describe the code generation approach in ROCCC. The smart 
buffer is a component that reuses input data between adjacent iterations. It significantly improves the 
performance of the circuit and simplifies loop control. The ROCCC-generated data-path can execute one loop 
iteration per clock-cycle when there is no loop-dependency or there is only scalar recurrence variable 
dependency. ROCCC's approach to supporting while-loops operating on scalars makes the compiler able to 
move scalar iterative computation into hardware. 
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1. INTRODUCTION  

Continued increases in integrated circuit chip capacity have led to the recent introduction 

of the Configurable System-on-a-Chip (CSoC), which has one or more microprocessors 

integrated with a field-programmable gate array (FPGA) and memory blocks on a single 

chip [23][2][24]. The capabilities of these platforms span a wide range, having the 

flexibility of software along with the efficiency of hardware. They combine on one chip 

the sequential and the spatial computation models: The sequential parts of an application 

execute on the microprocessor, while the compute intensive computations, which 

typically consist of parallel loops, are mapped as circuits on the FPGA. In other words, 

the FPGA acts as a configurable hardware accelerator or co-processor to the 

microprocessor itself. Speedups ranging from 10x to 1000x over microprocessors have 

been reported for a variety of applications including image and signal processing, DNA 

string matching and protein folding [25][16][4]. Such speedups are the result of two main 

factors: large-scale parallelism and customized circuits. Applications such as signal, 

image and video processing exhibit very large amounts of parallelism, so mapping such a 

computation to a circuit can drastically improve its efficiency as compared to a traditional 

microprocessor. These factors have been described and quantitatively evaluated in [7]. 

The main problem standing in the way of wider acceptance of CSoC platforms is 

their programmability. Currently, application developers must have extensive hardware 

expertise, in addition to their application area expertise, to develop efficient designs that 

can fully exploit the potential of CSoC. Designing and mapping large applications onto 
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FPGAs is a long and tedious task that involves a large amount of low-level design in a 

Hardware Description Language (HDL). To bring CSoCs into the mainstream, tools are 

needed that would map applications expressed in a High-Level Language to an efficient 

circuit in HDL.   

Optimizing compilers for traditional processors have benefited from several decades 

of extensive research that has led to extremely powerful tools. Similarly, electronic 

design automation (EDA) tools have also benefited from several decades of research and 

development leading to powerful tools that can translate VHDL and Verilog code, and 

recently SystemC [27] code, into efficient circuits. However, little work has been done to 

combine these two approaches. Several projects have implemented various types of HLL 

to HDL translations (GARP [3], Streams-C [6], SA-C [19], DEFACTO [30], SPARK 

[26], Handel-C [11] etc.). Two papers [5][8] have reported on the performance gap 

between compiler-generated VHDL and hand-crafted VHDL for medium size codes. In 

both cases it is reported that the hand-crafted versions ran twice as fast.  

ROCCC (Riverside Optimizing Configurable Computing Compiler) is a second-

generation compilation tool targeting CSoC leveraging on our prior experience with SA-

C [19]. It takes high-level code, such as C or FORTRAN, as input and generates RTL 

VHDL code for FPGAs. One of its objectives is to bridge the above-described 

performance gap. Compiling to FPGAs is challenging. Traditional CPUs, including 

VLIW, have a fixed hardware structure with pre-determined resources, such as ALUs and 

registers, and a protocol to use these resources, the instruction set architecture (ISA). 

FPGAs, on the other hand, are completely amorphous. The task of an FPGA compiler is 

to generate both the data-path and the sequence of operations (control flow). This lack of 

architectural structure, however, presents a number of advantages: 

(1) The parallelism is very high and limited only by the size of the FPGA device or 

by the data memory bandwidth in and out the FPGA. Therefore loop 

transformations that can maximize the parallelism are of paramount importance. 

(2) On-chip storage can be configured at will: registers are created by the compiler 

and distributed throughout the data-path where needed, thereby increasing data 

reuse and reducing accesses to memory.  

(3) Circuit customization: the data-path and sequence controller are tailored to the 

specific computation being mapped to hardware. Examples include pipelining 

and customized data-path bit-width. 
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In this paper we focus on the last two points. In previous work [10], we described our 

approach for the generation of pipelined data-paths for do-all for-loops. In our 

implementation a new instance of the loop body is started each cycle in the data-path. In 

order to sustain that throughput we must have a storage mechanism that is capable of 

feeding the data-path with the required data. In [9], we introduced the smart buffer, an 

interface between on-chip memory and the loop data-path, whose objective is to 

minimize the number of data re-fetches from memory.  

This paper complements and extends our previous work [9][10]. In addition to the 

code generation of parallel (for) loops we present and demonstrate through examples our 

approach for sequential (while) loops’ data-path generation. We describe a novel and 

improved implementation of the smart buffer [9] that (1) supports loops having multiple 

input and output arrays, (2) is more area and clock cycle efficient. The smart buffer, by 

reusing the previously fetched data, makes the most of the memory bandwidth and 

minimizes the stall cycles of the pipelined data-path. 

The rest of this paper is organized as follows: the next section presents an overview of 

the ROCCC compiler framework. Section 3 presents the data-path generation for do-all 

for-loops and while-loops. Results for each loop type are given in the subsections where 

the corresponding data-path generation is described. Section 4 introduces the smart 

buffer. Section 5 discusses related work. Section 6 concludes the paper. 

 

2. ROCCC OVERVIEW 

ROCCC is built on the SUIF2 [1][20] and Machine-SUIF [21][18] platforms. Figure 1 

shows ROCCC’s system overview. It compiles code written in C/C++ or Fortran to 

VHDL code for mapping onto the FPGA fabric of a CSoC device. In the execution model 

underlying ROCCC, sequential computations are carried out on the microprocessor in the 

CSoC, while the compute intensive code segments are mapped onto the FPGA. These 

typically consist of loop nests, most often parallel loops, operating on large arrays or 
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Figure 1 - ROCCC system overview 
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streams of data. The front-end of ROCCC performs a very extensive set of loop analysis 

and transformations aiming at maximizing parallelism and minimizing the area. The 

transformations include loop unrolling and strip-mining, loop fusion and common sub-

expression elimination across multiple loop iterations1. Most of the information needed to 

design high-level components, such as controllers and address generators, is extracted 

from this level’s IRs. 

The machine model of ROCCC, shown in Figure 2, consists of on-chip memories 

(BRAM on the Xilinx architecture), memory interfaces and a pipelined scalar data-path. 

The scalar data-path accesses memory only through memory interfaces. The compiler 

performs scalar replacement transformation at front-end. Figure 3 shows a simple 

example. The compiler converts the code segment in Figure 3(a) into the segment in 

Figure 3(b), separating memory accesses from computations. Figure 3(c) is the hardware 

implementation of the highlighted segment (the scalar data-path). 

ROCCC uses Machine-SUIF virtual machine (SUIFvm) [12] intermediate 

representation as the back-end IR. The original SUIFvm assembly-like instructions, by 

themselves, cannot completely cover HDLs’ functionality. For example, the statement 

(sum = sum + x) in a loop body will result in a loop carried dependency. On FPGAs, this 

dependency can be simply removed by inserting a feedback variable between two 

adjacent pipeline stages. But the SUIFvm assembly-like instruction set does not have an 

equivalent operation to describe this behavior. To compensate for this lack, ROCCC 

                                                 
1 These transformations are beyond the scope of this paper. 
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performs high-level data flow analysis at the front-end and the analysis information is 

transferred through pre-defined macros to assist the back-end hardware generation. 

The front-end’s optimized output is fed into Machine-SUIF to generate low-level IRs. 

Machine-SUIF is an infrastructure for constructing the back-end of a compiler. We 

modify Machine-SUIF's virtual machine (SUIFvm) Intermediate Representation (IR) [12] 

to build our data flow. All arithmetic opcodes in SUIFvm have corresponding 

functionality in IEEE 1076.3 VHDL, with the exception of division. Machine-SUIF's 

existing passes, like the Control Flow Graph (CFG) library [13], Data Flow Analysis 

library [14] and Static Single Assignment (SSA) library [15], provide useful optimization 

and analysis tools for our compilation system. After applying SSA, control flow graph 

information is visible and every virtual register is assigned only once.  

After back-end analyses and optimizations, the compiler generates VHDL code. We 

rely on commercial tools, such as Synplicity [22], to synthesize the VHDL code 

generated by our compiler. 

We constrain the source code that will be translated to hardware, which is loop nests, 

as follows: no pointers, no break or continue statements, and all memory addresses must 

be resolvable at compile-time. 

 

3. DATA-PATH GENERATION 

In terms of executing a loop in high-level languages, such as C, on reconfigurable fabric, 

FPGA’s most significant advantages are its lack of pre-designed structure and its capacity 

for parallelism, both at the loop and instruction levels. One of its main weaknesses is the 

inefficiency of the automatic generation of custom control logic. For parallel loops, the 

main objectives of our data-path code generation are:  

for (i=0; i<N; i=i+1) { 
 C[i] = (3*A[i] + 5*A[i+1]) +  
       (7*A[i+2] + 9*A[i+3]) + 11 * A[i+4];  } 

          (a) A 5-tap FIR in original C code     

Figure 3 - A 5-tap FIR and the corresponding data-path 
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                (c) The pipelined data-path 
Each pipeline stage is one instantiation of an 
iteration and three iterations can be executed at 
the same time. 

for (i=0; i<17; i=i+1) { 
   A0 = A[i];       A1 = A[i+1];   A2 = A[i+2];   
   A3 = A[i+3];   A4 = A[i+4]; 
   Tmp0 = 3*A0 + 5*A1 + 7*A2 
                                        + 9*A3 + 11*A4; 
   C[i] = Tmp0;  } 
           (b) The FIR after scalar replacement.  
  The highlighted region has only scalars and 
corresponds to the data-path. 
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1. Exploiting potential loop-level and instruction-level parallelism.   

2. Simple control of the generated data-path.  

3. Pipelining to achieve maximum throughput. 

This section describes our approach for the compiler’s data-path generation. 

 

3.1 Preparation Passes 

After applying scalar replacement and front-end dataflow analysis, the program, such as 

the code shown in Figure 4(c), is passed to Machine-SUIF. ROCCC performs circuit 

level optimizations and eventually generates the data-path in a modified version of the 

Machine-SUIF virtual machine intermediate representation. Figure 4(b) shows an 

accumulator after applying scalar replacement in C. The variable sum is detected as a 

recurrence variable and will be a feedback signal in hardware. Figure 4(c) shows the 

resultant code segment in C. The macros ROCCC_load_prev() and ROCCC_store2next() 

implement the recurrence. 

Macros are converted into ROCCC-specific opcodes. For example, 

ROCCC_load_prev() and ROCCC_store2next() in Figure 4(c) are converted into 

instructions with opcodes LPR (load previous) and SNX (store next), respectively. LPR is 

implemented as a feedback wire and SNX is implemented as a register. This pair of 

instructions duplicates the variable of the present iteration to the next one and removes 

the loop carried dependency. Lookup-table macros are also converted into corresponding 

LUT instructions. 

 

   

int sum = 0; 
for ( i = 0; i < 32; i++) { 
sum = sum + A[i]; 
} 
(a) Original C code 
   

   int sum = 0; 
   for ( i = 0; i < 32; i++) { 
     main_Tmp0 = A[i]; 
     sum = sum + main_Tmp0; 
  } 
 (b) After scalar replacement by ROCCC 

 
int sum = 0; 
for( i=0; i<32; i++) { 
   int main_dp_Tmp2; 
   main_Tmp0 = A[i]; 
   main_dp_Tmp2 = ROCCC_load_prev(sum)  
                                  + main_Tmp0; 
   ROCCC_store2next(sum, main_dp_Tmp2); 
} 

(c) Macros inserted by ROCCC eliminate  
loop-carried dependency 

 
 

Figure 4 – The C code and the data-path of an accumulator 

 
(d) The Data-path. 
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3.2 Building the Data-Path 

Each instruction that goes to hardware is assigned a location in the data-path.  We add 

a new field, [n], as shown in Equation 1, into Machine-SUIF IR to record the location of 

each arithmetic, logic or register copying instruction in the data-path. We call this 

location the execution level. The higher level an instruction is located, the earlier it is 

executed. 

32.3$,32.2$32.1$]][[ svrsvrsvraddmn −<     (1) 

The compiler groups the instructions in each node into different execution levels to 

exploit instruction (operation) level parallelism. Instructions at the same level are 

executed simultaneously. Additional mov instructions are added where needed as pass-

through nodes. Each instruction's location in the data-path satisfies the following 

requirements: 

• If an instruction's source operand(s) is the live-in operand of this node, the instruction 

must be at the top level of the data-path. If an instruction's destination operand is the 

live-out operand of this node, the instruction must be at the bottom level of the data-

path. 

• An instruction's source operands are the destination operands of the instructions one 

level higher. 

• If a live-in operand is also in the live-out operand set, it is copied down to the bottom 

level. 

• Mux nodes are added to implement if-conversion. Latch nodes are added to copy live 

operands from a branch-node's preceding node down to their succeeding node. 

Alternative branches of the data-path have the same number of levels. 

At this point, every level of the dataflow graph corresponds to the instantiation of one 

loop iteration. Superfluous mov instructions are eliminated by the synthesis tool.   

ROCCC automatically places latches to pipeline a data-path. Each execution level is 

marked as either latched or un-latched, according to the estimated sum of the signal 

propagation delay from the most recently latched level, and the special timing 

requirement of some instructions. Another field, [m], shown in Equation 1, is added to 

record the latch level of an instruction. At a given execution level all the instructions of 

that level are either latched or un-latched. All the operations between two latched levels 

are synthesized as one combinational circuit. Every latched level corresponds to one 

pipeline stage, and has a delay of one cycle. A parameterized controller is generated to 

clock the pipeline. 
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ROCCC generates one VHDL component for each CFG node that goes to hardware. 

In a node, every virtual register is single assigned and is converted into wires in hardware. 

Arithmetic, logic and copying instructions become combinational or sequential VHDL 

statements according to whether they are latched or not. A LUT instruction invokes an 

instantiation of a lookup table component. If the lookup table is a pre-existing one, such 

as trigonometric or logarithmic function, the compiler automatically inserts the relevant 

values. Otherwise, the user provides the table entries, for example to describe a 

probability distribution function. In this case the compiler instantiates the lookup table as 

a regular ROM IP core unit in the VHDL code.  

By adding more data types in Machine-SUIF, ROCCC supports any signed and 

unsigned integer and fixed-point type and size. The compiler infers the inner signals’ bit 

size automatically from the arithmetic operations. 

 

3.3 Comparison with Xilinx IP cores 

Two previous works have compared compiler generated to hand-written VHDL codes for 

SA-C [8] and StreamsC [5]. In both cases it was shown, independently and on different 

examples, that the hand-written VHDL achieved a clock frequency half as large as the 

compiler generated codes. Achieving a comparable clock rate is one of the objectives of 

ROCCC. We therefore compare the hardware performance generated from Xilinx IP 

cores and ROCCC-generated VHDL code. We use Xilinx ISE 5.1i and IP core 5.1i. All 

the Xilinx IP cores and ROCCC-generated VHDL code are synthesized targeting a Xilinx 

Virtex-II xc2v2000-5 FPGA. All the benchmarks in Table 1 are from Xilinx IP core, 

except the DWT engine that we wrote. The input and output variables of ROCCC 

equivalents have the same bit sizes as that of the IP cores.  

Bit_correlator counts the number of bits of an 8-bit input data that are the same as of 

a constant mask. Mul_acc is a multiplier-accumulator, whose input variables are a pair of 

12-bit data. Udiv is an 8-bit unsigned divider. Square_root calculates a 24-bit data’s 

square root. Cos’s input is 10-bit, its output is 16-bit. The arbitrary LUT, whose content 

can be defined by users in a text file before synthesis, has the same port size as that of cos. 

FIR is two 5-tap 8-bit constant coefficient finite impulse response filters, whose bus sizes 

are 16-bit. DCT is a one-dimensional 8-data discrete cosine transform. The input data size 

and output data size are 8-bit and 19-bit, respectively. For Xilinx IP FIR and DCT, 

multiplications with constants are implemented using the distributed arithmetic technique, 

which performs multiplication with lookup-table based schemes. Therefore, we set the 
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synthesis option ‘multiplier style’ as ‘LUT’ for the ROCCC-generated DCT and FIR. The 

second through the fourth column of Table 1 show Xilinx IP cores’ clock rate, delay in 

clock cycle, and device utilization, respectively. The fifth through the seventh column 

show ROCCC’s corresponding performance.  %Clock is the percentage difference in 

clock rate of ROCCC-generated VHDL compared to Xilinx IP. %Area is the percentage 

difference in area of ROCCC-generated VHDL compared to Xilinx IP.  

Bit-correlator, udiv and square root consist of a large number of bit manipulation 

operations, which for the C language is not well suited to express. This is the major 

source of the performance difference. Xilinx mul_acc IP has a control input signal nd 

(new data) whose Boolean value true indicates the present data is valid. In C code, we 

describe the equivalent behavior using an if-else statement whose condition evaluates the 

Boolean input nd, requiring extra nodes and latches to be added to support the alternative 

branch, consuming extra area. (We also tried changing this C code simply by multiplying 

nd with the new input data instead of using the if-else statement. Though one more 

multiplier was used, the overall area and clock rate performance was better than that 

listed in Table 1. Obviously, that is not a compile level optimization, but it does show one 

of the advantages of high-level synthesis: ease of algorithm level optimizations). In terms 

of lookup tables, the ROCCC-generated VHDL code instantiates Xilinx IP cores, so they 

have exactly the same performance.  In Xilinx Virtex-II, 10-bit-input-16-bit-output 

cos/sin lookup table stores only half wave, which is one of the reasons that this cos/sin 

lookup table utilizes less area compared with the arbitrary ROM lookup table with the 

same port size. Fir operates on an array: basically, a 5-data element window slides over 

the one-dimensional array, and ROCCC generates a smart buffer to reuse the previous 

Table 1 - A comparison of hardware performance from Xilinx IPs and ROCCC-
generated VHDL code. (*DWT code is handwritten.) 

Example

Clock

(MHz)

Delay

 (cycl)

Area

(slice)

Clock

(MHz)

Delay

 (cycl)

Area

(slice) %Clock %Area

bit_correlator 212 1 9 144 2 19 0.679 2.11

mul_acc 238 1 18 238 1 59 1.00 3.28

udiv 216 11 144 272 25 495 1.26 3.44

square root 167 25 585 220 37 1199 1.32 2.05

cos 170 1 150 170 1 150 1.00 1.00

Arbitrary LUT 170 1 549 170 1 549 1.00 1.00

FIR 185 17 270 194 1 293 1.05 1.09

DCT 181 20 412 133 2 724 0.735 1.76

DWT* 104 1 1464 101 3 2415 0.971 1.65

1.001 1.93

Xilinx IP ROCCC

Average:  
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input data. The FIR’s data-path consists of multipliers and adders with no branch. 

ROCCC fits this type of algorithm and gets comparable performance with IP cores. The 

IP core has several handshaking signals. The ROCCC-generated FIR does not have those 

handshaking signals since its data communication method with outside is known at 

compile time. Like FIR, DCT has high computational density and no branch. The 

throughput of Xilinx DCT IP is one output data element per clock cycle, while ROCCC’s 

throughput is eight output data elements per clock cycle. Therefore, though ROCCC-

generated DCT runs at a lower speed (73.5%), the overall throughput of the ROCCC-

generated circuit is higher. Both ROCCC DCT and Xilinx IP DCT exploit the symmetry 

within the cosine coefficients. The last row in Table 1 shows an implementation of a two-

dimensional (5, 3) wavelet transform engine, which is the standard lossless JPEG2000 

compression transform. This DWT engine includes the address generator, smart buffer 

and data-path. The ROCCC-generated circuit is compared with a handwritten one.  

We derive the bit-width information based only on port size and opcodes. More 

aggressive bit-width narrowing transformations, performed by users and/or the compiler, 

may further reduce device area utilization.      

 

3.4 The Data-path Generation and the Control of a While-loop 

A while-loop is an inherently sequential construct that is not usually considered a 

candidate for mapping to hardware. However, often signal and image processing 

algorithms have a while-loop nested in a parallel for-loop or vice versa. The internal 

structure of a von Neumann processor is tailored for the execution of sequential codes, 

and can therefore easily support the execution of a while-loop. A spatial implementation, 

           for (int i = 0; i < 128; ++i) { 
int temp, j; 
temp = 3*x[i]*x[i] + 5*x[i] + 7; 
j = 0; 
while (temp != 0) { 
    temp = temp >> 1; 
    j++;   } 

              y[i] = 32 - j; 
           } 
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(a) The source code in C. We 
support while-loops to exploit 

parallelism in outer loops 

(b) The execution architecture. 
Node 2 is the header node. 

 

Figure 5 - A while-loop embedded in a for-loop  
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however, lacks a program counter, so the compiler must generate a simple yet efficient 

customized control structure for each while-loop. Figure 5 (a) shows an example in C, in 

which the main computational burden is in the multiplication that squares x[i]. In order to 

put the whole for-loop in hardware, we need to also support the inner while-loop in 

hardware. While-loops usually cannot be unrolled and their implementation must support 

feedback of variables between iterations. 

In Figure 5, nodes 2 and 3 correspond to the while-loop:  at the bottom of node 2, 

there is a branch instruction to assert whether the loop body, node 3, should be executed 

or not. Node 2 is called the header node of a while-loop. The loop controller consists of 

two sub-controllers, the while-loop controller, and the outer loop controller. 

The controller first activates the while-loop’s predecessor node(s) - for example, node 

1 in Figure 5 (b). In the predecessor nodes, multiple loop iterations are instantiated since 

each level corresponds to one iteration and we have assumed no loop dependency. Once 

the earliest iteration reaches the bottom of node 1, the controller halts node 1 and 

activates node 2. The while-loop controller here does not activate the whole data-path of 

node 2: rather, it activates the while-loop data-path from top to bottom, stage by stage. 

The while-loop branch instruction, which is at the bottom level of node 2, generates the 

assertion loop_again signal to the while-loop controller. After the execution of the branch 

instruction in the header node, the controller evaluates the loop_again signal from the 

data-path to determine whether to enter the loop body or the successor node following it. 

If the loop_again is set, the controller signals the while-loop body to execute, after 

which, the controller rewinds to execute the header node again. If, instead, the 

loop_again signal is clear, the controller halts the while-loop body and activates the 

while-loop’s successor node as it did to the predecessor nodes. The loop controllers are 

written in synthesizable VHDL with heavy use of generics. These generics describe the 

length of the while-loop data-path and that of the outer for-loop, the while-loop’s location 

relative to the outer loop, and the location of the branch instruction of the while-loop. 

The most significant difference between a while-loop data-path and the rest of the 

outer for-loop data-path is that the former has to deal with feedback variables from the 

while-loop body nodes to the header node. In order to simplify the controller, ROCCC 

forces all feedback variables to be assigned in the bottom while-loop body node. 

Otherwise, the variable is copied down to the bottom node. We create a new instruction 

in the Machine-SUIF virtual machine instruction set, FOI (feedback or initialization). The 

instruction format of FOI is as following. 
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foi $vr1.s32 < − $vr2.s32, $vr3.s32     (2) 

This instruction only appears on the top of a while-loop’s header node. When 

executed, it evaluates signal FOI_i, which comes from the while-loop controller. If FOI_i 

is clear, the destination operand equals the first source operand; otherwise, the destination 

operand equals the second source operand. The hardware implementation of instruction 

FOI is a multiplexer. The first time a header node is executed, the controller signals the 

FOI instructions (multiplexers in hardware) to select the upper node’s output variables. 

From then on, the controller signals the FOI instructions to select the feedback variables. 

The FOI instruction is also used to copy constant variables from a while-loop’s 

predecessor node to the while-loop body. 

 

Table 2 - Description and source code of the while loop examples  

 Description Source code 

GCD 
_ifelse 

The segment calculates the 
greatest common divisor using 
if-else statement. 
 
 

  a = x;    b = y; 
  while (a != b) { 
      if (a > b)     a = a - b; 
      else    b = b - a; } 
  gcd = a; 

GCD 
_minmax 

The segment calculates the 
greatest common divisor using 
min() and max() macros. 
 
 

 a = x;    b = y;    min = x;    max = y; 
 while (a != b) { 
     min = ROCCC_min(a, b); 
     max = ROCCC_max(a, b); 
     a = min;       b = max - min; } 
   gcd = min ; 

Dif_equi 

The algorithm numerically 
obtains y in equation 

033
2

2

=+ y
dx

dy
x

dx

yd ＋   

where x starts from x_in to a 
with step dx. 
 

 u = u_in;    x = x_in;  y = y_in;     
 u1 = u;    x1 = x;    y1 = y; 
 while ( x < a) { 
    x1 = x + dx;   u1 = u - 3*dx*(u*x + y); 
    y1 = y + u *dx;   x = x1;       y = y1;    u = u1;  } 
 x_out = x1;    
 y_out = y1;  
 u_out = u1; 

Integ_equi 

The algorithm numerically 
solves equation 

constxdx
y

a
=∫ 2cos  

 

 sum = 0;    x = a; 
 while (sum < const) { 
  temp = cos(x);  sum = sum + temp*temp; 
  x = x + 1;   } 
  y = x; 

Bisect-
root 

Using bisection method, the 
algorithm finds the root of 

equation 0500602
=+− xx  

in the range of [a, b]. 
 
 

 a1 = a;    b1 = b;  mid = a1; 
 while ( ROCCC_abs(b1-a1) > 1) { 
  mid = (b1 + a1 ) >> 1; 
  right_root=(b1*b1)-(60*b1)+500; 
  mid_root=(mid*mid)-(60*mid)+500; 
  if((right_root*mid_root)>0)     
         b1 = mid;   
  else       
        a1 = mid;    } 
 root = mid; 
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3.5 While-loop examples  

Table 2 lists five examples having a while-loop inside a for-loop. Figure 6 shows the IR 

and data-path of the Bisect root example.  

 

Table 3 shows the place-and-route results and execution results from simulation. The 

bit size of Integ_equi is 10-bit and all the other examples’ signals are 32-bit. The last 

column is the number of cycles per iteration. In GCD_ifelse the if-else statement is 

converted by ROCCC: both branches execute and the predicate selects the outcome. 

Node: 2 (the while loop’s header node) 
 top latch level: 8, bottom latch level: 7 
[8] foi     $vr231.s32 <- $vr230.s32,$vr37.s32 
[8] foi     $vr229.s32 <- $vr228.s32,$vr36.s32 
[8] foi     $vr227.s32 <- $vr226.s32,$vr35.s32 
[8] foi     $vr225.s32 <- $vr224.s32,$vr34.s32 
[7] mov     $vr220.s32 <- $vr225.s32 
[7] mov     $vr221.s32 <- $vr227.s32 
[7] mov     $vr222.s32 <- $vr229.s32 
[7] mov     $vr223.s32 <- $vr231.s32 
[7] ble     $vr231.s32,1,df_bisection._bisectionTmp1 
 
Node: 3 (one of the while loop’s body nodes) 
top latch level: 6, bottom latch level: 5 
[0] add     $vr67.s32 <- $vr221.s32,$vr220.s32 
[0] mul     $vr78.s32 <- $vr221.s32,$vr221.s32 
[0] mul     $vr80.s32 <- 60,$vr221.s32 
[0] mov     $vr220.s32 <- $vr220.s32 
[0] mov     $vr221.s32 <- $vr221.s32 
[0] asr     $vr232.s32 <- $vr67.s32,1 
[0] sub     $vr81.s32 <- $vr78.s32,$vr80.s32 
[6] mov     $vr70.s32 <- $vr232.s32 
[6] add     $vr84.s32 <- $vr81.s32,500 
[6] mul     $vr85.s32 <- $vr232.s32,$vr232.s32 
[6] mul     $vr87.s32 <- 60,$vr232.s32 
[0] sub     $vr88.s32 <- $vr85.s32,$vr87.s32 
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(a) IR. We are only presenting the IR of node 
2 and node 3. The foi instructions are 

highlighted. The instructions with zero latch 
level correspond to combinational logic. 

    (b) The data-path. Node n2 is the while-
loop’s header node. 

 
 

Figure 6 - IR and data-path of bisect_root 

Table 3 – The hardware performance of the while-loop examples 

A r e a

( s l i c e s )

M u l tp l

( 1 8 x 1 8 )

C lo c k

( M H z )

c y c le  p e r

i t e r a t i o n

G C D _ i f e ls e 2 7 5 0 6 9 .9 6

G C D _ m in m a x 1 9 1 0 7 6 .7 3

D i f _ e q u i 3 7 0 1 2 4 0 .9 5

In t e g _ e q u i 1 4 0 1 5 6 .5 4

B i s e c t_ r o o t 5 9 0 1 5 5 1 .1 8  
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GCD_minmax, on the other hand, utilizes predefined macros to pick min and max values. 

These macros, instantiated as RTL VHDL function calls in the generated VHDL code, 

are more efficient. GCD_minmax’s generated data-path is shorter and takes fewer clock 

cycles compared with GCD_ifelse with  no pipeline idle cycles. 

 

4. INPUT DATA REUSE 

Signal, image, and video processing are among the primary target applications of 

reconfigurable computing. Window operators are frequently used in these applications. 

Examples include FIR (finite impulse response) filters in signal processing, edge 

detectors, erosion/dilation operators and texture measures in image/video processing. All 

these window operators have similar calculation patterns — a loop or a loop nest operates 

on a window of data (in other word, a pixel/sample and its neighbors), while the window 

slides over an array, as shown in Figure 7 (a). In most cases, these window operators are 

do-all for-loops and their data-paths can be generated using the approach presented in the 

previous section.  

However, in order to take advantage of the high-throughput of the data-path, input 

data has to be organized and fed in efficiently.  Figure 7(b) shows a five-tap FIR filter 

example code in C. B[i] is the filter’s output and A[i] is the input. C0, C1, C2, C3 and C4 

are the filter’s constant coefficients. In the previous section we already showed that the 

throughput of the compiler-generated data-path is one-iteration per clock cycle. However, 

if a reconfigurable computing compiler performs a straightforward hardware generation, 

the functional unit would need to access all five input data values in the current window. 

This would require a large amount of memory bandwidth and involve pipeline bubbles in 

the data-path.  

 
* * * 

* * * 

* * * 

* * * 

* 

* 

* 

* 

* 

* 

* 

* 

* * * * 

    for (i = 0; i < N; i = i + 1)    { 
           B[i] =    C0 * A[i] +  

C1 * A[i+1] +  
C2 * A[i+2] +  
C3 * A[i+3] +  
C4 * A[i+4] ; 

    } 

(a) 1D and 2D window operators (b) A 5-tap FIR in C 

 
Figure 7 – One-dimensional and two-dimensional window operation examples 
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Balancing computation with I/O has been considered a critical factor of the overall 

performance for quite some time [17]. When a high-density computation is performed on 

a large amount of input data, as the case in window operations, data I/O often dominates 

the overall computation performance. For instance, for the window operations reported in 

[7], the general-purpose CPU performed 64X to 112X more load operations per pixel 

than a hand-crafted circuit on an FPGA. Therefore, in order to achieve high performance, 

a reconfigurable computing compiler needs to generate smart hardware in HDL to reduce 

the memory bandwidth pressure by exploiting data reuse whenever possible. We call this 

piece of synthesizable HDL module smart buffer. The compiler must implement the 

smart buffer tailored for the applications, and schedule the buffer’s reads and writes.  

 

4.2 Execution Architecture and Code Analysis 

In window-based operations, the input and output arrays (or streams) are separate and 

therefore there is no loop-carried dependency on a single array.  

An execution architecture of window operators is shown in Figure 8. The ROCCC 

framework is not board-specific in that it does not assume a pre-set number of memory 

modules connected to the FPGA. The data communication engine between the on-chip 

block RAMs and the inter-chip data streams is not part of the ROCCC code generation. 

The loop has n input arrays and m output arrays. If n is equal to one, the compiler 

generates a single-mode smart buffer. Otherwise, it generates multi-mode smart buffers. 

Each input/output array of a loop corresponds to an input/output memory. One of the 

most important characteristics of window operations is that the compiler can decouple the 

memory accesses from the computations and thereby can maximize data reuse. Every 
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Figure 8 - Overall window operator execution architecture. Memory 
accessing is decoupled with calculation. 
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input memory or output memory is connected to a compiler-generated smart buffer, or a 

compiler-generated FIFO (first-in-first-out) buffer, respectively. The compiler performs 

scalar replacement on the loop body in the front-end. Therefore in Figure 8 the data-path, 

by itself, does not access memory directly. The address generators are VHDL libraries. 

The input address generator generates memory load addresses and feeds the addresses to 

the on-chip block memory. The smart buffer gets the input data streams from the block 

memory, exploits data reuse and makes the data of the current window available to the 

data-path. In other words, the smart buffer collects/reuses the input data of one iteration 

and exports them into the data-path at the same time. In this way, the computation and 

memory access are decoupled. The write buffer collects the results from the data-path and 

presents it to the output memory. The output address generator generates memory store 

addresses.  

A one-dimensional example algorithm and a two-dimensional example algorithm are 

shown in Figure 7(b) and Figure 9, respectively. We use them to explain how the 

ROCCC compiler generates smart buffer. For the algorithm in Figure 9, the output pixel 

is the difference between the output of the low-pass filter (upper part in Figure 9) and the 

* * * 

* * * 

* * * 

8 8 8 

8 2 8 

8 8 8 

  ÷ *  Σ  = 

input image 
pixels (array 
A in figure 9) 

reference image pixel (array B 

in figure 9) 

−−−− 

* 

*  = 

output image 
pixels (array 
C in figure 9) 

 

Figure 9 - 3x3 Motion detection window. The upper part is a 2D low-pass filter. 

  for(i = 1; i < 62; i = i + 2) { 

    for(j = 1; j < 62; j = j + 2) { 

C[i-1][j-1] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] + A[i][j-1] + A[i][j+1] + A[i+1][j-1] + A[i+1][j] +       

A[i+1][j+1]) >> 3 + (A[i][j]>>1) - B[i-1][j-1]; 

C[i-1][j]   = (A[i-1][j] + A[i-1][j+1] + A[i-1][j+2]  + A[i][j] + A[i][j+2] + A[i+1][j] + A[i+1][j+1] +  

                    A[i+1][j+2]) >> 3 + (A[i][j+1]>>1) - B[i-1][j]; 

C[i][j-1]   = (A[i][j-1] + A[i][j] + A[i][j+1] + A[i+1][j-1] + A[i+1][j+1] + A[i+2][j-1] + A[i+2][j] +  

                     A[i+2][j+1])  >> 3 + (A[i+1][j]>>1) - B[i][j-1]; 

C[i][j]      = (A[i][j] + A[i][j+1] + A[i][j+2] + A[i+1][j] + A[i+1][j+2] + A[i+2][j] + A[i+2][j+1] +  

                     A[i+2][j+2])  >> 3 + (A[i+1][j+1]>>1) - B[i][j]; 

 } 

    } 
 

Figure 10 - Motion detection C code 
2 x 2 unrolled loop for the algorithm in Figure 9. Array A and B correspond to input 

memory banks, and array C correspond to output memory bank. 
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pixel of the reference image. Figure 10 gives the unrolled C code before undergoing 

scalar replacement. The compiler walks through all the memory references in the SUIF 

IR and confirms that there is no array being both read and written. The compiler also 

checks the following constraints. 

1. Loop counters are assigned and updated only in the loop statements. 

2. Each loop counter determines the memory address calculation in only one 

dimension.  

 

4.3 VHDL Code Generation  

Figure 11 shows the registers of the FIR filter [Figure 7 (b)]’s one-dimensional smart 

buffer. In this figure, we assume that the memory I/O bus is 32-bit and the data width is 

8-bit. In order to fully utilize memory bandwidth, we unroll the for-loop four times. The 

unrolled for-loop body has four copies of the original loop body. Now each iteration 

reads eight contiguous array elements, but the stride between two iterations is four (i = i + 

4). The smart buffer has eight elements. In Figure 11, subfigures (1) through (3) show the 

smart buffer’s status from clock cycle one through clock cycle four.  At cycle two, the 

smart buffer gets the first four data. At cycle three, the smart buffer collects the eight data 

elements needed for the current iteration and exports them to the data-path initiatively. 

Notice that also at cycle three, the left-most four elements are killed to reclaim space for 

word 2. At cycle four, window 1 starts from the right-most four elements in the buffer. 

The ROCCC compiler generates both the registers and the logic to schedule the registers’ 

* * * *     

* * * * * * * * 

* * * * * * * * 

(cycle 2) 

window 0 

window 1 
1st half 

Word 0 

Word 0 Word 1 

Word 2 Word 1 
window 1 
2nd half 

(cycle 3) 

(cycle 4) 

        

(cycle 1) 

 
Figure 11 – The smart buffer of the four-time-unrolled 5-tap FIR filter 
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action. 

In this subsection we present ROCCC’s approach to the generation of efficient VHDL 

code for the smart buffers and related components. The goal is to minimize run-time 

control calculation and maximize input data reuse. 

 

4.3.1 Address Generation 

Window operations have one or more windows sliding over one or more arrays. Both the 

read and the write array addresses are known are compile time. We also assume that the 

on-chip memory read latency is known2.  

Consider the code in Figure 10 as an example. According to the memory load 

references and the loop unrolling parameters, the following parameters are known at 

compile time: 

1. Starting and ending addresses 

2. The number of clock cycles between two consecutive memory accesses 

3. The unrolled window’s size 

4. The unrolled window’s strides in each dimension 

5. The array’s row size 

6. The starting address-difference between two adjacent outer-loop iterations. 

In Figure 8, each smart buffer has an address generator to generate the loading address 

stream to the input memory bank. These address generators are parameterized finite state 

machines (FSMs) in VHDL. Figure 12 shows the loading address stream of the two-

                                                 
2 This is not an unusual assumption in FPGA design. 

 

* * * 

* * * 

* * * 

* * * 

* 

* 

* 

* 

* The 2nd outer iteration 
goes this way 

* 

One row of the 
2D input array: 

 

Figure 12 - The reference address order of array A in Figure 10 
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dimensional array A in Figure 10. An address generator does not produce all the loading 

addresses of the corresponding array for the current iteration; rather, it only produces the 

new data’s addresses. The remaining recently loaded data are already in the smart buffer. 

In Figure 12, the input data needed by each outer-loop iteration are loaded only once. But 

there are overlaps between adjacent outer iterations since we cannot afford a smart buffer 

to hold whole rows of data. Notice that the first inner-loop iteration of each outer-loop 

iteration might read more columns of data compared with other inner-loop iterations 

because for the first iteration all the loads are new. We call these extra new columns 

warm-up columns. 

 In the case of the data-path producing output data at a higher rate than the loading rate 

from the input memory, and the output memory bandwidth is limited, the loading address 

generator has to slow down its address stream to balance the I/O throughput by inserting 

extra idle cycles after each iteration’s loading. All these analyses can be done at compile-

time and thereby simplify the controller. 

The VHDL generics of an address generator include: 

• The number of warmup_columns (the number of warmup_data for one-

dimensional address generators.). 

• The number of new columns per iteration (the number of new data per iteration for 

one-dimensional address generators.). 

• The number of cycles to halt between iterations. This parameter might be zero. 

These halt cycles are inserted to balance the I/O throughput between input 

memories and output memories. 

• The number of loads per outer-loop, the number of data per row, and the address 

difference between two adjacent outer-loop iterations’ upper-left-most loads. 

These parameters only apply to two-dimensional address generators. 

With the above parameters, each input memory’s address generator is able to generate 

the address stream of the current iteration’s new data, and each output memory’s address 

generator can generate the corresponding storing addresses for the current iteration’s 

output data. Once the generation of the current iteration’s address stream is done, all 

address generators check if the loop and memory access controller has issued the next 

iteration, and act accordingly. For two-dimensional-array cases, the above parameters 

also ensure that the loading address generators are able to determine when a new outer-

loop iteration starts, and wait until then to flush the smart buffers. Notice that all loading 

address generators have to flush the smart buffers though the loop and memory access 
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controller. The latter flushes all the smart buffers at the same cycle to maintain the 

synchronicity of the data-path’s input data. 

4.3.2 Smart Buffer Generation 

An input array’s smart buffer accomplishes the following tasks: 

• Collecting the new input data for the current iteration. 

• If the new input data are needed by future iterations, storing them to buffer 

registers whose contents are expired. 

• Exporting the window data to the data-path when they are all ready. For multiple-

input-array loops, the multi-mode smart buffers hold the window data until the 

controller signals it to release. This way all smart buffers are synchronized. A 

single-input-array loop’s smart buffer pushes the window data into data-path 

immediately. 

A smart buffer is implemented in VHDL at compile-time. It consists of registers to 

store the data and a finite state machine (FSM). The FSM traces which register is expired 

and would be overwritten by new data, determines when a window of data is ready to 

export, and manages the counterpart relationship between the buffer registers and the 

data-path’s input variables. 

We use the two-dimensional array A in Figure 10 as an example. Figure 13 shows the 

status of array A’s smart buffer at different clock cycles. Each iteration of the nested loop 

loads a 4x4 window. We assume the memory bus is twice the width of the pixel bit-size, 

so each memory load reads in two pixels. In this example the window's row size is an 

integer multiple of the bus-load (one row is two bus-loads). If this is not the case, for 

example each window row has five pixels, we round the smart buffer row size to an 

integer multiple of the bus-size, which makes the smart buffer row size six pixels (three 

bus-loads). Each FSM state is assigned one of the three states: 

• Prologue-state: The computation is in a warm-up state of the first iteration of 

loops working on one-dimensional arrays or of the first inner-loop iteration of 

every outer-loop iteration of loops working on two-dimensional arrays. The smart 

buffers are collecting data to form the first window. 

• Export-state: In this state, a window of data is ready. If the loop has only one input 

array, the smart buffer’s FSM initiates the export of the window data to the data-

path and keeps going to the next state. For multi-mode smart buffers, the FSM 

stays in this state until the loop controller signals it to release.  
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• Idle-state:  In this state, the smart buffer is waiting for the new data that have not 

been loaded in previous iterations. Once all the new data have arrived, the smart 

buffer goes to the export_state. 

Generally, for a two-dimensional smart buffer, the row size of the buffer is the smallest 

integer multiple of the bus-size that makes the row size larger than the sliding window’s 

row size. The smart buffer’s column size is equal to the height of the sliding window. For 

a one-dimensional smart buffer, the column size is always one. 

As shown in Figure 13, the state machine initially starts from state Pro_0. Once it gets 

export-state Exp_0, window_0 is exported to the input port of the data-path. Since array 

A is one of the two input arrays in Figure 10, the FSM stays in this state until the loop 

controller signals it to go to the next iteration. If at Exp_0 state the smart buffer gets 
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Figure 13 – FSM Status of a two-dimensional smart buffer 
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another new bus of data, which would only happen in single-input-array cases, the state 

machine jumps to Idle_1. Otherwise it goes to Idle_0. Once the FSM leaves state Exp_0, 

the data elements in the left-most and the second-left-most columns are killed to reclaim 

the registers for new data. In state Exp_1, the smart buffer exports window_1. Notice that 

the first column of this window is the third column in the buffer. The compiler is aware 

of this relationship and implements it in the export states accordingly. The new data to 

state Idle_7 switches the state machine back to Exp_0. In fact, the last columns of idle 

states (Idle_4 through Idle_7) are identical to the last column of prologue states (Pro_4 

through Pro_7). 

A two-dimensional array’s smart buffer is able to be flushed and start the FSM from 

the first prologue state. 

The generated VHDL code, by itself, does not have the concepts of windows. The 

VHDL code only describes the logical and sequential relationship between 

signals/registers. 

Implementing smart buffers using shift registers, while is an option, would require too 

many counters inside the smart buffer. There also would have to be a great deal of logic 

between the counters to control the smart buffer’s import and export actions. Besides, for 

the multiple-input-array case, the synchronization requirement increases the complexity 

of the logic. By using the FSM, the compiler’s analysis effort simplifies the generated 

circuit, and the FSM tracks the smart buffer’s status efficiently. 

 

4.4 Experimental Results 

We use the five benchmarks listed in Table 4 in our experiments. These benchmarks are 

selected for the diversity of their numbers of input arrays, dimension of arrays and 

memory interface bandwidth. 

Constant_FIR is a constant-coefficient finite-impulse-response (FIR) filter. Its source 

code is given in Figure 3. Array A is the only input array, whose dimension is one. 

Variable_FIR is a variable-coefficient FIR filter. Its coefficients are also variables stored 

in Array B. This example has two one-dimensional input arrays. Each iteration of 

Complex_FIR produces a complex integer. The complex integer’s real part and imaginary 

part are stored in Array C alternately. Therefore every iteration loads in two new data. 

The loop counter step of Complex_FIR is two. 2D_lowpass_filter is a 3x3 low-pass filter 

used in image processing. For each 3x3 window in the input image, the nine pixels are 

divided by the corresponding coefficients (they really are shifting operations). The output 
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pixel is the summation of the division’s nine results. We unroll the loop twice in both 

horizontal and vertical directions. Therefore, each iteration computes four of these 3x3 

windows, and produces a 2x2 output window. The input of 2D_lowpass_filter is a two-

dimensional array. Motion_detection is the implementation of the code in Figure 10. 

Motion_detection’s input windows are 4x4 and 2x2. These two windows come from the 

image array to be detected and the reference image array, respectively. There is no data 

reuse to the reference image array and the smart buffer of it is used only to decouple the 

data-path with memory accessing. ROCCC supports multiple output arrays, though all 

these examples have only one output array. We do not show a multiple-output-array 

example because writing to each array is an independent process, and the implementation 

is a straightforward replication. 

We use the Xilinx ISE 6.2.03i tool chain to do synthesis and place-and-route. The 

generated VHDL codes are simulated using ModelSim 5.8c. The target architecture of all 

synthesis is Xilinx XC2V8000-5, whose total number of slices is 46592. We set the 

synthesis option ‘multiplier style’ as ‘LUT’ for all constant multiplications. 

In Table 4, Area is the number of slices obtained from place-and-route reports. The 

area of a buffer includes the area of the address generator associated with the buffer. # of 

reg is the number of registers that the corresponding buffer uses to store the data. Each 

register is 8-bit since all the data-path variables of these five examples are 8-bit. # of state 

Table 4: The synthesis and simulation results of buffers in five examples. The total 
number of slices is 46592 on the target FPGA chip. 
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#  o f regs 1 1 2 2 2

#  o f states 1 1 2 2 2

B us size  (b its) 8 8 8 16 1 6

A rea  (slices) 43 5  m ltp l 99 14 4 164

B it s ize 8 8 8 8 8

21 0 329 2 43 54 2 714

94 6 8 85 69 4 2

26 2 10 19 2 60 5 980 59 86

0 .96 0 .2 5 0 .48 0 .16 0 .1 6T hrough pu t (ite ra tion /cycle)

E xecu tio n  tim e (cycles)

C lock rate  (M H z)

In pu t

b u ffer

A

Inpu t

 bu ffer

B

O utpu t

b u ffer

C

D ata-path

O verall area  (slices)
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is the number of states of the buffer’s FSM. Bus size is the number of bits of the bus 

between input/output memory and the corresponding buffer. Clock rate is the clock rate 

of the whole placed-and-routed circuit. The input data set size of all one-dimensional 

examples is 256 and the input data set size of all two-dimensional examples is 64x64. 

Execution time is the number of cycles obtained from the simulation waveforms. 

Constant_FIR has only one input array, whose dimension is one. The input smart 

buffer automatically feeds its window data to the data-path whenever they are ready, 

without waiting for synchronization. The loop controller keeps issuing new iterations. 

The total execution time is just a few cycles more than the input data set size. The area 

cost on the input buffer’s address generator of constant_FIR is more significant compared 

with that on the registers (only five 8-bit registers). Variable_FIR has two input arrays. 

Both the input smart buffers and the loop controller have to spend extra clock cycles to 

do handshaking with each other, so the execution time is longer compared with 

Constant_FIR. For Complex_FIR, we intentionally set the input bus-size to be 16-bit and 

the output bus-size to be 8-bit. Each memory load can read in two input data, which is 

what one iteration needs since the loop counter step is two. However, the compiler 

detects that the output FIFO buffer needs two cycles to store two output data of one 

iteration, the real part and the imaginary part. The compiler adds one halt cycle to the 

input smart buffer’s address generator for each iteration, and this extra halt cycle explains 

the fact that Complex_FIR’s total execution time is almost the same as that of 

Constant_FIR, though the number of iterations of Complex_FIR is only half of that of 

Constant_FIR. 2D_lowpass_filter has a two-dimensional array and the compile chooses 

the corresponding smart buffer and loop controller. In contrast, Motion_detection has two 

input arrays. Like the case of Variable_FIR, synchronizing between smart buffers and 

loop controller needs extra clock cycles. But these cycles overlap with the intrinsic delay 

of two-dimensional address generators. This is the reason that Motion_detection’s 

execution time is close to that of 2D_lowpass_filter.  

Table 5- Smart buffer size and synthesis results of unrolled loops 

Un1 Un2 Un4 Un8 
 
 buffer 

size(pixel) 
slices 

buffer 
size(pixel) 

slices 
buffer 

size(pixel) 
slices 

buffer 
size(pixel) 

slices 

constant_FIR5 5 213 6 199 8 197 16 388 

constant_FIR15 15 1657 16 938 20 817 24 806 

moving_Filter9 9 623 10 431 12 421 16 453 

2D_lowpass_filter 9 242   16 376   
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The window size of 2D_lowpass_filter is 4x4. Every time the sliding window reaches 

the right of the image, it rewinds back to the left and starts from the second last row of 

the previous outer loop, since the outer loop counter’s stride is now four. Therefore, by 

using the smart buffer, we only re-read each pixel once. Without the smart buffer each 

pixel would be read four times. Obviously, the more a loop is unrolled, the more memory 

loads can be saved. Four loop unrolling examples are shown in Table 5. Constant_FIR15 

is a 15-tap constant-coefficient finite-impulse-response filter. Moving_filter9 is a nine-

element moving average filter. We assume the data-size is 16-bit. Buffer size is the 

number of the 16-bit storage units in the smart buffer. The benchmarks are unrolled 2, 4 

and 8 times, with the exception of 2D_lowpass_filter, which is unrolled four times (2x2). 

We also assume that the bus bandwidth scales up with unrolling. Notice that the buffer 

size of constant_FIR5 on Un8 is 16, though the number of memory loads per iteration is 

12. The compiler rounds the buffer size to an integer multiple of the bus-size, which is 8-

data per bus for Un8. When the loop is unrolled the buffer size increases, but it holds 

fewer distinct windows and therefore the cost of control logic decreases while the storage 

area increases. This explains why the total area of the smart buffer does not increase 

linearly with the amount of unrolling. 

The smart buffer’s control logic determines the location of the input data’s destination 

buffer registers, schedules the output data export, and determines the proper connection 

between the buffer registers and their corresponding data-path input ports. Notice that 

this connection varies for different iterations as the window slides. For example, the Smartbuffer Area Comparison
05001000150020002500

un1 un2 un4 un8 un1 un2 un4 un8 un1 un2 un4 un8 un1x1 un2x2FIR5 FIR15 MF9 2D_lowpass_filter
Area (slices)

Original Improved

  

Figure 14 - Smart buffer area comparison between original and improved architectures 
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connection is different between Exp_0 and Exp_1 in Figure 13. In our original work [9], 

all these control is fulfilled by combinational circuit. The compiler made less analysis 

effort but generated a less efficient circuit. Compared with our previous work, the current 

smart buffer’s FSM is more area efficient. The new approach requires more sophisticated 

compile-time analysis to build the FSM. The bar chart in Figure 14 depicts the smart 

buffer area comparison. With the exception of 2D_lowpass_filter(un1x1), the area 

savings of the new smart buffers range from 13% to 93%, and are 43% on average.  

  

5. RELATED WORK  

Many projects, employing various approaches, have worked on translating high-level 

languages into hardware. SystemC [27] is designed to provide roughly the same 

expressive functionality of VHDL or Verilog and is suitable for designing software-

hardware synchronized systems. Handle-C [11] is a low-level hardware/software 

construction language with C syntax, which supports behavioral descriptions and uses a 

CSP-style (Communicating Sequential Processes) communication model. Both SystemC 

and Handle-C are timed languages. 

GARP [3]’s compiler is designed for the GARP reconfigurable architecture, and 

generates GARP configuration file instead of standard VHDL. GARP's memory interface 

consists of three configurable queues, the starting and ending addresses of which are 

configurable. The queues' reading actions can be stalled. 

SA-C [19], Single Assignment C, is a single-assignment high-level synthesizable 

language. Because of special constructs specific to SA-C (such as window constructs) 

and its functional nature, its compiler can easily exploit data reuse for window 

operations. SA-C uses pre-existing parameterized VHDL library routines to perform code 

generation in a way that requires a number of control signals between components, and 

thereby involves extra clock cycles and delay. 

Streams-C [6] relies on the CSP model for communication between processes, both 

hardware and software, and can meet relatively high-density control requirements. One-

dimensional input data reuse can be manually implemented in the source code. 

SPARK [26] is another C to VHDL compiler, which takes a subset of C as input and 

outputs synthesizable VHDL. Its optimizations include code motion, variable renaming, 

etc. The transformations implemented in SPARK reduce the number of states in the 

controller FSM, and the number of cycles in the longest path.  
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GARP, Streams-C and SPARK do not support accesses to two-dimensional arrays, so 

image processing applications, including video processing, must be mapped manually. 

Phoenix project [28] has implemented a compiler called CASH, which represents the 

input program using Pegasus, a dataflow intermediate representation. CASH targets its 

asynchronous hardware. SOMA [29] is a synthesis framework for constructing Memory 

Access Network architecture, and has been integrated into CASH. SOMA features the 

support to input specifications in which memory references cannot be statically 

disambiguated. 

DEFACTO  [30] system takes C as input and generates VHDL code. In its generated 

circuit, memory units are connected to the data-path through the memory channel to reuse 

input data. The memory channel architecture has its FIFO queue and a memory-

scheduling controller. 

One main difference between ROCCC and these research projects is that ROCCC 

performs aggressive input data reuse. 

 

6. CONCLUSION  

In this paper we have presented the code generation part of ROCCC, an open framework 

built on the SUIF platform that compiles C programs to VHDL for mapping 

reconfigurable devices. At the front-end, the compiler performs high-level data flow 

analysis as well as an extensive set of loop transformations. It transfers the analysis 

information through preserved macros. At the back-end, the compiler explores low-level 

parallelism, pipelines the data-path and narrows the bit sizes of the inner signals. 

When compiling parallel loops, the ROCCC compiler generates a pipelined data-path 

in which each pipeline stage corresponds to one iteration, so that the throughput is one 

iteration per clock cycle. We present our approach to maintaining the same throughput 

when there is only scalar recurrence between iterations. ROCCC supports lookup tables 

through automatically instantiating pre-existing lookup table IPs or ROM IPs. The 

synthesis result shows that ROCCC-generated circuits take around 2x ~ 3x the area but 

run at a clock rate comparable to that of existing Xilinx IPs. In many cases the throughput 

of ROCCC generated code is higher than that of the original IP. As expected, ROCCC 

performs better on high computational density examples than on high control density 

ones. When compiling sequential (while) loops, the compiler pipelines the data-path in a 

similar way, but only one iteration is executed at a time. We created a new instruction to 
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select a while-loop body’s input variables between the feedback variables from the 

bottom of the loop body and the initial variables from the loop’s predecessor node. 

For parallel loops, in order to make the most of data-path’s one-iteration-per-cycle 

throughput, we present a new approach to the reuse of data when compiling operations 

that involve sliding windows. We describe the compiler’s analysis and optimization of 

the memory accesses in the C code, and we propose a compile-time scheme that 

generates a smart buffer for storing all the fetched data elements. Based on the number of 

input arrays, the smart buffer is generated in either single-mode or multi-mode. Using its 

internal FSM, the smart buffer keeps track of the input data stream, exports valid window 

data to data-path for each iteration, and kills expired data to reclaim registers for new 

ones. The smart buffer minimizes the rate of data re-fetch from external memory and also 

simplifies the loop control. At compile time the compiler balances the I/O throughput by 

inserting halt clock cycles in the input memory address generators. This approach 

simplifies the loop controller and saves feedback handshake signals between input and 

output buffers. 
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