

1

Efficient Hardware Code Generation for FPGAs

ZHI GUO, WALID NAJJAR, BETUL BUYUKKURT

University of California, Riverside
__

The wider acceptance of FPGAs as a computing device requires a higher level of programming abstraction.
ROCCC is an optimizing C to HDL compiler. We describe the code generation approach in ROCCC. The smart
buffer is a component that reuses input data between adjacent iterations. It significantly improves the
performance of the circuit and simplifies loop control. The ROCCC-generated data-path can execute one loop
iteration per clock-cycle when there is no loop-dependency or there is only scalar recurrence variable
dependency. ROCCC's approach to supporting while-loops operating on scalars makes the compiler able to
move scalar iterative computation into hardware.

Categories and Subject Descriptors: B.5 [Register-transfer-level Implementation]; B.5.2 [Design Aids]; C.3
[Signal Processing Systems]
General Terms: Design, Languages, Performance
Additional Key Words and Phrases: Reconfigurable Computing, High-level Synthesis, Data Reuse, FPGA,
VHDL

__

1. INTRODUCTION

Continued increases in integrated circuit chip capacity have led to the recent introduction

of the Configurable System-on-a-Chip (CSoC), which has one or more microprocessors

integrated with a field-programmable gate array (FPGA) and memory blocks on a single

chip [23][2][24]. The capabilities of these platforms span a wide range, having the

flexibility of software along with the efficiency of hardware. They combine on one chip

the sequential and the spatial computation models: The sequential parts of an application

execute on the microprocessor, while the compute intensive computations, which

typically consist of parallel loops, are mapped as circuits on the FPGA. In other words,

the FPGA acts as a configurable hardware accelerator or co-processor to the

microprocessor itself. Speedups ranging from 10x to 1000x over microprocessors have

been reported for a variety of applications including image and signal processing, DNA

string matching and protein folding [25][16][4]. Such speedups are the result of two main

factors: large-scale parallelism and customized circuits. Applications such as signal,

image and video processing exhibit very large amounts of parallelism, so mapping such a

computation to a circuit can drastically improve its efficiency as compared to a traditional

microprocessor. These factors have been described and quantitatively evaluated in [7].

The main problem standing in the way of wider acceptance of CSoC platforms is

their programmability. Currently, application developers must have extensive hardware

expertise, in addition to their application area expertise, to develop efficient designs that

can fully exploit the potential of CSoC. Designing and mapping large applications onto

To appear in ACM Transactions on Architecture and Compiler Optimizations.

2

FPGAs is a long and tedious task that involves a large amount of low-level design in a

Hardware Description Language (HDL). To bring CSoCs into the mainstream, tools are

needed that would map applications expressed in a High-Level Language to an efficient

circuit in HDL.

Optimizing compilers for traditional processors have benefited from several decades

of extensive research that has led to extremely powerful tools. Similarly, electronic

design automation (EDA) tools have also benefited from several decades of research and

development leading to powerful tools that can translate VHDL and Verilog code, and

recently SystemC [27] code, into efficient circuits. However, little work has been done to

combine these two approaches. Several projects have implemented various types of HLL

to HDL translations (GARP [3], Streams-C [6], SA-C [19], DEFACTO [30], SPARK

[26], Handel-C [11] etc.). Two papers [5][8] have reported on the performance gap

between compiler-generated VHDL and hand-crafted VHDL for medium size codes. In

both cases it is reported that the hand-crafted versions ran twice as fast.

ROCCC (Riverside Optimizing Configurable Computing Compiler) is a second-

generation compilation tool targeting CSoC leveraging on our prior experience with SA-

C [19]. It takes high-level code, such as C or FORTRAN, as input and generates RTL

VHDL code for FPGAs. One of its objectives is to bridge the above-described

performance gap. Compiling to FPGAs is challenging. Traditional CPUs, including

VLIW, have a fixed hardware structure with pre-determined resources, such as ALUs and

registers, and a protocol to use these resources, the instruction set architecture (ISA).

FPGAs, on the other hand, are completely amorphous. The task of an FPGA compiler is

to generate both the data-path and the sequence of operations (control flow). This lack of

architectural structure, however, presents a number of advantages:

(1) The parallelism is very high and limited only by the size of the FPGA device or

by the data memory bandwidth in and out the FPGA. Therefore loop

transformations that can maximize the parallelism are of paramount importance.

(2) On-chip storage can be configured at will: registers are created by the compiler

and distributed throughout the data-path where needed, thereby increasing data

reuse and reducing accesses to memory.

(3) Circuit customization: the data-path and sequence controller are tailored to the

specific computation being mapped to hardware. Examples include pipelining

and customized data-path bit-width.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

3

In this paper we focus on the last two points. In previous work [10], we described our

approach for the generation of pipelined data-paths for do-all for-loops. In our

implementation a new instance of the loop body is started each cycle in the data-path. In

order to sustain that throughput we must have a storage mechanism that is capable of

feeding the data-path with the required data. In [9], we introduced the smart buffer, an

interface between on-chip memory and the loop data-path, whose objective is to

minimize the number of data re-fetches from memory.

This paper complements and extends our previous work [9][10]. In addition to the

code generation of parallel (for) loops we present and demonstrate through examples our

approach for sequential (while) loops’ data-path generation. We describe a novel and

improved implementation of the smart buffer [9] that (1) supports loops having multiple

input and output arrays, (2) is more area and clock cycle efficient. The smart buffer, by

reusing the previously fetched data, makes the most of the memory bandwidth and

minimizes the stall cycles of the pipelined data-path.

The rest of this paper is organized as follows: the next section presents an overview of

the ROCCC compiler framework. Section 3 presents the data-path generation for do-all

for-loops and while-loops. Results for each loop type are given in the subsections where

the corresponding data-path generation is described. Section 4 introduces the smart

buffer. Section 5 discusses related work. Section 6 concludes the paper.

2. ROCCC OVERVIEW

ROCCC is built on the SUIF2 [1][20] and Machine-SUIF [21][18] platforms. Figure 1

shows ROCCC’s system overview. It compiles code written in C/C++ or Fortran to

VHDL code for mapping onto the FPGA fabric of a CSoC device. In the execution model

underlying ROCCC, sequential computations are carried out on the microprocessor in the

CSoC, while the compute intensive code segments are mapped onto the FPGA. These

typically consist of loop nests, most often parallel loops, operating on large arrays or

Loop-level analyses,
transformations and

optimizations

User-input C

Operation-level analyses,
transformations and

optimizations

Intermediate C

Front-end

Synthesizable
VHDL

Back-end

Hardware
 IR

Conventional
IR

Figure 1 - ROCCC system overview

To appear in ACM Transactions on Architecture and Compiler Optimizations.

4

streams of data. The front-end of ROCCC performs a very extensive set of loop analysis

and transformations aiming at maximizing parallelism and minimizing the area. The

transformations include loop unrolling and strip-mining, loop fusion and common sub-

expression elimination across multiple loop iterations1. Most of the information needed to

design high-level components, such as controllers and address generators, is extracted

from this level’s IRs.

The machine model of ROCCC, shown in Figure 2, consists of on-chip memories

(BRAM on the Xilinx architecture), memory interfaces and a pipelined scalar data-path.

The scalar data-path accesses memory only through memory interfaces. The compiler

performs scalar replacement transformation at front-end. Figure 3 shows a simple

example. The compiler converts the code segment in Figure 3(a) into the segment in

Figure 3(b), separating memory accesses from computations. Figure 3(c) is the hardware

implementation of the highlighted segment (the scalar data-path).

ROCCC uses Machine-SUIF virtual machine (SUIFvm) [12] intermediate

representation as the back-end IR. The original SUIFvm assembly-like instructions, by

themselves, cannot completely cover HDLs’ functionality. For example, the statement

(sum = sum + x) in a loop body will result in a loop carried dependency. On FPGAs, this

dependency can be simply removed by inserting a feedback variable between two

adjacent pipeline stages. But the SUIFvm assembly-like instruction set does not have an

equivalent operation to describe this behavior. To compensate for this lack, ROCCC

1 These transformations are beyond the scope of this paper.

Pipelined
scalar

data-path

On-chip memory
Off-chip
memory

 Memory interface

 Memory interface

On-chip memory Off-chip
memory

ROCCC-
generated

Figure 2 - Machine model of ROCCC

To appear in ACM Transactions on Architecture and Compiler Optimizations.

5

performs high-level data flow analysis at the front-end and the analysis information is

transferred through pre-defined macros to assist the back-end hardware generation.

The front-end’s optimized output is fed into Machine-SUIF to generate low-level IRs.

Machine-SUIF is an infrastructure for constructing the back-end of a compiler. We

modify Machine-SUIF's virtual machine (SUIFvm) Intermediate Representation (IR) [12]

to build our data flow. All arithmetic opcodes in SUIFvm have corresponding

functionality in IEEE 1076.3 VHDL, with the exception of division. Machine-SUIF's

existing passes, like the Control Flow Graph (CFG) library [13], Data Flow Analysis

library [14] and Static Single Assignment (SSA) library [15], provide useful optimization

and analysis tools for our compilation system. After applying SSA, control flow graph

information is visible and every virtual register is assigned only once.

After back-end analyses and optimizations, the compiler generates VHDL code. We

rely on commercial tools, such as Synplicity [22], to synthesize the VHDL code

generated by our compiler.

We constrain the source code that will be translated to hardware, which is loop nests,

as follows: no pointers, no break or continue statements, and all memory addresses must

be resolvable at compile-time.

3. DATA-PATH GENERATION

In terms of executing a loop in high-level languages, such as C, on reconfigurable fabric,

FPGA’s most significant advantages are its lack of pre-designed structure and its capacity

for parallelism, both at the loop and instruction levels. One of its main weaknesses is the

inefficiency of the automatic generation of custom control logic. For parallel loops, the

main objectives of our data-path code generation are:

for (i=0; i<N; i=i+1) {
 C[i] = (3*A[i] + 5*A[i+1]) +
 (7*A[i+2] + 9*A[i+3]) + 11 * A[i+4]; }

 (a) A 5-tap FIR in original C code

Figure 3 - A 5-tap FIR and the corresponding data-path

*

+

3
A0

* * *

+ *

+

+

A1 A2 A3 A4
5 7 9

11

 (c) The pipelined data-path
Each pipeline stage is one instantiation of an
iteration and three iterations can be executed at
the same time.

for (i=0; i<17; i=i+1) {
 A0 = A[i]; A1 = A[i+1]; A2 = A[i+2];
 A3 = A[i+3]; A4 = A[i+4];
 Tmp0 = 3*A0 + 5*A1 + 7*A2
 + 9*A3 + 11*A4;
 C[i] = Tmp0; }
 (b) The FIR after scalar replacement.
 The highlighted region has only scalars and
corresponds to the data-path.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

6

1. Exploiting potential loop-level and instruction-level parallelism.

2. Simple control of the generated data-path.

3. Pipelining to achieve maximum throughput.

This section describes our approach for the compiler’s data-path generation.

3.1 Preparation Passes

After applying scalar replacement and front-end dataflow analysis, the program, such as

the code shown in Figure 4(c), is passed to Machine-SUIF. ROCCC performs circuit

level optimizations and eventually generates the data-path in a modified version of the

Machine-SUIF virtual machine intermediate representation. Figure 4(b) shows an

accumulator after applying scalar replacement in C. The variable sum is detected as a

recurrence variable and will be a feedback signal in hardware. Figure 4(c) shows the

resultant code segment in C. The macros ROCCC_load_prev() and ROCCC_store2next()

implement the recurrence.

Macros are converted into ROCCC-specific opcodes. For example,

ROCCC_load_prev() and ROCCC_store2next() in Figure 4(c) are converted into

instructions with opcodes LPR (load previous) and SNX (store next), respectively. LPR is

implemented as a feedback wire and SNX is implemented as a register. This pair of

instructions duplicates the variable of the present iteration to the next one and removes

the loop carried dependency. Lookup-table macros are also converted into corresponding

LUT instructions.

int sum = 0;
for (i = 0; i < 32; i++) {
sum = sum + A[i];
}
(a) Original C code

 int sum = 0;
 for (i = 0; i < 32; i++) {
 main_Tmp0 = A[i];
 sum = sum + main_Tmp0;
 }
 (b) After scalar replacement by ROCCC

int sum = 0;
for(i=0; i<32; i++) {
 int main_dp_Tmp2;
 main_Tmp0 = A[i];
 main_dp_Tmp2 = ROCCC_load_prev(sum)
 + main_Tmp0;
 ROCCC_store2next(sum, main_dp_Tmp2);
}

(c) Macros inserted by ROCCC eliminate
loop-carried dependency

Figure 4 – The C code and the data-path of an accumulator

(d) The Data-path.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

7

3.2 Building the Data-Path

Each instruction that goes to hardware is assigned a location in the data-path. We add

a new field, [n], as shown in Equation 1, into Machine-SUIF IR to record the location of

each arithmetic, logic or register copying instruction in the data-path. We call this

location the execution level. The higher level an instruction is located, the earlier it is

executed.

32.3$,32.2$32.1$]][[svrsvrsvraddmn −< (1)

The compiler groups the instructions in each node into different execution levels to

exploit instruction (operation) level parallelism. Instructions at the same level are

executed simultaneously. Additional mov instructions are added where needed as pass-

through nodes. Each instruction's location in the data-path satisfies the following

requirements:

• If an instruction's source operand(s) is the live-in operand of this node, the instruction

must be at the top level of the data-path. If an instruction's destination operand is the

live-out operand of this node, the instruction must be at the bottom level of the data-

path.

• An instruction's source operands are the destination operands of the instructions one

level higher.

• If a live-in operand is also in the live-out operand set, it is copied down to the bottom

level.

• Mux nodes are added to implement if-conversion. Latch nodes are added to copy live

operands from a branch-node's preceding node down to their succeeding node.

Alternative branches of the data-path have the same number of levels.

At this point, every level of the dataflow graph corresponds to the instantiation of one

loop iteration. Superfluous mov instructions are eliminated by the synthesis tool.

ROCCC automatically places latches to pipeline a data-path. Each execution level is

marked as either latched or un-latched, according to the estimated sum of the signal

propagation delay from the most recently latched level, and the special timing

requirement of some instructions. Another field, [m], shown in Equation 1, is added to

record the latch level of an instruction. At a given execution level all the instructions of

that level are either latched or un-latched. All the operations between two latched levels

are synthesized as one combinational circuit. Every latched level corresponds to one

pipeline stage, and has a delay of one cycle. A parameterized controller is generated to

clock the pipeline.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

8

ROCCC generates one VHDL component for each CFG node that goes to hardware.

In a node, every virtual register is single assigned and is converted into wires in hardware.

Arithmetic, logic and copying instructions become combinational or sequential VHDL

statements according to whether they are latched or not. A LUT instruction invokes an

instantiation of a lookup table component. If the lookup table is a pre-existing one, such

as trigonometric or logarithmic function, the compiler automatically inserts the relevant

values. Otherwise, the user provides the table entries, for example to describe a

probability distribution function. In this case the compiler instantiates the lookup table as

a regular ROM IP core unit in the VHDL code.

By adding more data types in Machine-SUIF, ROCCC supports any signed and

unsigned integer and fixed-point type and size. The compiler infers the inner signals’ bit

size automatically from the arithmetic operations.

3.3 Comparison with Xilinx IP cores

Two previous works have compared compiler generated to hand-written VHDL codes for

SA-C [8] and StreamsC [5]. In both cases it was shown, independently and on different

examples, that the hand-written VHDL achieved a clock frequency half as large as the

compiler generated codes. Achieving a comparable clock rate is one of the objectives of

ROCCC. We therefore compare the hardware performance generated from Xilinx IP

cores and ROCCC-generated VHDL code. We use Xilinx ISE 5.1i and IP core 5.1i. All

the Xilinx IP cores and ROCCC-generated VHDL code are synthesized targeting a Xilinx

Virtex-II xc2v2000-5 FPGA. All the benchmarks in Table 1 are from Xilinx IP core,

except the DWT engine that we wrote. The input and output variables of ROCCC

equivalents have the same bit sizes as that of the IP cores.

Bit_correlator counts the number of bits of an 8-bit input data that are the same as of

a constant mask. Mul_acc is a multiplier-accumulator, whose input variables are a pair of

12-bit data. Udiv is an 8-bit unsigned divider. Square_root calculates a 24-bit data’s

square root. Cos’s input is 10-bit, its output is 16-bit. The arbitrary LUT, whose content

can be defined by users in a text file before synthesis, has the same port size as that of cos.

FIR is two 5-tap 8-bit constant coefficient finite impulse response filters, whose bus sizes

are 16-bit. DCT is a one-dimensional 8-data discrete cosine transform. The input data size

and output data size are 8-bit and 19-bit, respectively. For Xilinx IP FIR and DCT,

multiplications with constants are implemented using the distributed arithmetic technique,

which performs multiplication with lookup-table based schemes. Therefore, we set the

To appear in ACM Transactions on Architecture and Compiler Optimizations.

9

synthesis option ‘multiplier style’ as ‘LUT’ for the ROCCC-generated DCT and FIR. The

second through the fourth column of Table 1 show Xilinx IP cores’ clock rate, delay in

clock cycle, and device utilization, respectively. The fifth through the seventh column

show ROCCC’s corresponding performance. %Clock is the percentage difference in

clock rate of ROCCC-generated VHDL compared to Xilinx IP. %Area is the percentage

difference in area of ROCCC-generated VHDL compared to Xilinx IP.

Bit-correlator, udiv and square root consist of a large number of bit manipulation

operations, which for the C language is not well suited to express. This is the major

source of the performance difference. Xilinx mul_acc IP has a control input signal nd

(new data) whose Boolean value true indicates the present data is valid. In C code, we

describe the equivalent behavior using an if-else statement whose condition evaluates the

Boolean input nd, requiring extra nodes and latches to be added to support the alternative

branch, consuming extra area. (We also tried changing this C code simply by multiplying

nd with the new input data instead of using the if-else statement. Though one more

multiplier was used, the overall area and clock rate performance was better than that

listed in Table 1. Obviously, that is not a compile level optimization, but it does show one

of the advantages of high-level synthesis: ease of algorithm level optimizations). In terms

of lookup tables, the ROCCC-generated VHDL code instantiates Xilinx IP cores, so they

have exactly the same performance. In Xilinx Virtex-II, 10-bit-input-16-bit-output

cos/sin lookup table stores only half wave, which is one of the reasons that this cos/sin

lookup table utilizes less area compared with the arbitrary ROM lookup table with the

same port size. Fir operates on an array: basically, a 5-data element window slides over

the one-dimensional array, and ROCCC generates a smart buffer to reuse the previous

Table 1 - A comparison of hardware performance from Xilinx IPs and ROCCC-
generated VHDL code. (*DWT code is handwritten.)

Example

Clock

(MHz)

Delay

 (cycl)

Area

(slice)

Clock

(MHz)

Delay

 (cycl)

Area

(slice) %Clock %Area

bit_correlator 212 1 9 144 2 19 0.679 2.11

mul_acc 238 1 18 238 1 59 1.00 3.28

udiv 216 11 144 272 25 495 1.26 3.44

square root 167 25 585 220 37 1199 1.32 2.05

cos 170 1 150 170 1 150 1.00 1.00

Arbitrary LUT 170 1 549 170 1 549 1.00 1.00

FIR 185 17 270 194 1 293 1.05 1.09

DCT 181 20 412 133 2 724 0.735 1.76

DWT* 104 1 1464 101 3 2415 0.971 1.65

1.001 1.93

Xilinx IP ROCCC

Average:

To appear in ACM Transactions on Architecture and Compiler Optimizations.

10

input data. The FIR’s data-path consists of multipliers and adders with no branch.

ROCCC fits this type of algorithm and gets comparable performance with IP cores. The

IP core has several handshaking signals. The ROCCC-generated FIR does not have those

handshaking signals since its data communication method with outside is known at

compile time. Like FIR, DCT has high computational density and no branch. The

throughput of Xilinx DCT IP is one output data element per clock cycle, while ROCCC’s

throughput is eight output data elements per clock cycle. Therefore, though ROCCC-

generated DCT runs at a lower speed (73.5%), the overall throughput of the ROCCC-

generated circuit is higher. Both ROCCC DCT and Xilinx IP DCT exploit the symmetry

within the cosine coefficients. The last row in Table 1 shows an implementation of a two-

dimensional (5, 3) wavelet transform engine, which is the standard lossless JPEG2000

compression transform. This DWT engine includes the address generator, smart buffer

and data-path. The ROCCC-generated circuit is compared with a handwritten one.

We derive the bit-width information based only on port size and opcodes. More

aggressive bit-width narrowing transformations, performed by users and/or the compiler,

may further reduce device area utilization.

3.4 The Data-path Generation and the Control of a While-loop

A while-loop is an inherently sequential construct that is not usually considered a

candidate for mapping to hardware. However, often signal and image processing

algorithms have a while-loop nested in a parallel for-loop or vice versa. The internal

structure of a von Neumann processor is tailored for the execution of sequential codes,

and can therefore easily support the execution of a while-loop. A spatial implementation,

 for (int i = 0; i < 128; ++i) {
int temp, j;
temp = 3*x[i]*x[i] + 5*x[i] + 7;
j = 0;
while (temp != 0) {
 temp = temp >> 1;
 j++; }

 y[i] = 32 - j;
 }

node

 1

node

2

node

4

node

3

loop controllers

w
h

ile-lo
o

p

co
n
tro

ller

o
u

ter lo
o

p
 co

n
tro

ller

(a) The source code in C. We
support while-loops to exploit

parallelism in outer loops

(b) The execution architecture.
Node 2 is the header node.

Figure 5 - A while-loop embedded in a for-loop

To appear in ACM Transactions on Architecture and Compiler Optimizations.

11

however, lacks a program counter, so the compiler must generate a simple yet efficient

customized control structure for each while-loop. Figure 5 (a) shows an example in C, in

which the main computational burden is in the multiplication that squares x[i]. In order to

put the whole for-loop in hardware, we need to also support the inner while-loop in

hardware. While-loops usually cannot be unrolled and their implementation must support

feedback of variables between iterations.

In Figure 5, nodes 2 and 3 correspond to the while-loop: at the bottom of node 2,

there is a branch instruction to assert whether the loop body, node 3, should be executed

or not. Node 2 is called the header node of a while-loop. The loop controller consists of

two sub-controllers, the while-loop controller, and the outer loop controller.

The controller first activates the while-loop’s predecessor node(s) - for example, node

1 in Figure 5 (b). In the predecessor nodes, multiple loop iterations are instantiated since

each level corresponds to one iteration and we have assumed no loop dependency. Once

the earliest iteration reaches the bottom of node 1, the controller halts node 1 and

activates node 2. The while-loop controller here does not activate the whole data-path of

node 2: rather, it activates the while-loop data-path from top to bottom, stage by stage.

The while-loop branch instruction, which is at the bottom level of node 2, generates the

assertion loop_again signal to the while-loop controller. After the execution of the branch

instruction in the header node, the controller evaluates the loop_again signal from the

data-path to determine whether to enter the loop body or the successor node following it.

If the loop_again is set, the controller signals the while-loop body to execute, after

which, the controller rewinds to execute the header node again. If, instead, the

loop_again signal is clear, the controller halts the while-loop body and activates the

while-loop’s successor node as it did to the predecessor nodes. The loop controllers are

written in synthesizable VHDL with heavy use of generics. These generics describe the

length of the while-loop data-path and that of the outer for-loop, the while-loop’s location

relative to the outer loop, and the location of the branch instruction of the while-loop.

The most significant difference between a while-loop data-path and the rest of the

outer for-loop data-path is that the former has to deal with feedback variables from the

while-loop body nodes to the header node. In order to simplify the controller, ROCCC

forces all feedback variables to be assigned in the bottom while-loop body node.

Otherwise, the variable is copied down to the bottom node. We create a new instruction

in the Machine-SUIF virtual machine instruction set, FOI (feedback or initialization). The

instruction format of FOI is as following.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

12

foi $vr1.s32 < − $vr2.s32, $vr3.s32 (2)

This instruction only appears on the top of a while-loop’s header node. When

executed, it evaluates signal FOI_i, which comes from the while-loop controller. If FOI_i

is clear, the destination operand equals the first source operand; otherwise, the destination

operand equals the second source operand. The hardware implementation of instruction

FOI is a multiplexer. The first time a header node is executed, the controller signals the

FOI instructions (multiplexers in hardware) to select the upper node’s output variables.

From then on, the controller signals the FOI instructions to select the feedback variables.

The FOI instruction is also used to copy constant variables from a while-loop’s

predecessor node to the while-loop body.

Table 2 - Description and source code of the while loop examples

 Description Source code

GCD
_ifelse

The segment calculates the
greatest common divisor using
if-else statement.

 a = x; b = y;
 while (a != b) {
 if (a > b) a = a - b;
 else b = b - a; }
 gcd = a;

GCD
_minmax

The segment calculates the
greatest common divisor using
min() and max() macros.

 a = x; b = y; min = x; max = y;
 while (a != b) {
 min = ROCCC_min(a, b);
 max = ROCCC_max(a, b);
 a = min; b = max - min; }
 gcd = min ;

Dif_equi

The algorithm numerically
obtains y in equation

033
2

2

=+ y
dx

dy
x

dx

yd ＋

where x starts from x_in to a
with step dx.

 u = u_in; x = x_in; y = y_in;
 u1 = u; x1 = x; y1 = y;
 while (x < a) {
 x1 = x + dx; u1 = u - 3*dx*(u*x + y);
 y1 = y + u *dx; x = x1; y = y1; u = u1; }
 x_out = x1;
 y_out = y1;
 u_out = u1;

Integ_equi

The algorithm numerically
solves equation

constxdx
y

a
=∫ 2cos

 sum = 0; x = a;
 while (sum < const) {
 temp = cos(x); sum = sum + temp*temp;
 x = x + 1; }
 y = x;

Bisect-
root

Using bisection method, the
algorithm finds the root of

equation 0500602
=+− xx

in the range of [a, b].

 a1 = a; b1 = b; mid = a1;
 while (ROCCC_abs(b1-a1) > 1) {
 mid = (b1 + a1) >> 1;
 right_root=(b1*b1)-(60*b1)+500;
 mid_root=(mid*mid)-(60*mid)+500;
 if((right_root*mid_root)>0)
 b1 = mid;
 else
 a1 = mid; }
 root = mid;

To appear in ACM Transactions on Architecture and Compiler Optimizations.

13

3.5 While-loop examples

Table 2 lists five examples having a while-loop inside a for-loop. Figure 6 shows the IR

and data-path of the Bisect root example.

Table 3 shows the place-and-route results and execution results from simulation. The

bit size of Integ_equi is 10-bit and all the other examples’ signals are 32-bit. The last

column is the number of cycles per iteration. In GCD_ifelse the if-else statement is

converted by ROCCC: both branches execute and the predicate selects the outcome.

Node: 2 (the while loop’s header node)
 top latch level: 8, bottom latch level: 7
[8] foi $vr231.s32 <- $vr230.s32,$vr37.s32
[8] foi $vr229.s32 <- $vr228.s32,$vr36.s32
[8] foi $vr227.s32 <- $vr226.s32,$vr35.s32
[8] foi $vr225.s32 <- $vr224.s32,$vr34.s32
[7] mov $vr220.s32 <- $vr225.s32
[7] mov $vr221.s32 <- $vr227.s32
[7] mov $vr222.s32 <- $vr229.s32
[7] mov $vr223.s32 <- $vr231.s32
[7] ble $vr231.s32,1,df_bisection._bisectionTmp1

Node: 3 (one of the while loop’s body nodes)
top latch level: 6, bottom latch level: 5
[0] add $vr67.s32 <- $vr221.s32,$vr220.s32
[0] mul $vr78.s32 <- $vr221.s32,$vr221.s32
[0] mul $vr80.s32 <- 60,$vr221.s32
[0] mov $vr220.s32 <- $vr220.s32
[0] mov $vr221.s32 <- $vr221.s32
[0] asr $vr232.s32 <- $vr67.s32,1
[0] sub $vr81.s32 <- $vr78.s32,$vr80.s32
[6] mov $vr70.s32 <- $vr232.s32
[6] add $vr84.s32 <- $vr81.s32,500
[6] mul $vr85.s32 <- $vr232.s32,$vr232.s32
[6] mul $vr87.s32 <- 60,$vr232.s32
[0] sub $vr88.s32 <- $vr85.s32,$vr87.s32

.

-

FOI

*

.
->1

*

"60".

+

"500" -

*

.
*

"60".

+

"500"

+

FOI FOIFOI

*

..
>1?

abs

-

..

>0? MUX

.

.

ba

-

.
abs

.

loop_again

root

.

Legend

node

I/O

0

1 2

in
n

er lo
o

p
 en

ab
le

in
n

er lo
o

p
 en

ab
le

.

loop controllers

o
u

ter lo
o

p
 en

ab
le

o
u

ter lo
o

p
 en

ab
le

70

2
2

2

70 siganl

m
in

a1

b
1

n2

n3

n5n4

n10

n1

n2

n7

n6

(a) IR. We are only presenting the IR of node
2 and node 3. The foi instructions are

highlighted. The instructions with zero latch
level correspond to combinational logic.

 (b) The data-path. Node n2 is the while-
loop’s header node.

Figure 6 - IR and data-path of bisect_root

Table 3 – The hardware performance of the while-loop examples

A r e a

(s l i c e s)

M u l tp l

(1 8 x 1 8)

C lo c k

(M H z)

c y c le p e r

i t e r a t i o n

G C D _ i f e ls e 2 7 5 0 6 9 .9 6

G C D _ m in m a x 1 9 1 0 7 6 .7 3

D i f _ e q u i 3 7 0 1 2 4 0 .9 5

In t e g _ e q u i 1 4 0 1 5 6 .5 4

B i s e c t_ r o o t 5 9 0 1 5 5 1 .1 8

To appear in ACM Transactions on Architecture and Compiler Optimizations.

14

GCD_minmax, on the other hand, utilizes predefined macros to pick min and max values.

These macros, instantiated as RTL VHDL function calls in the generated VHDL code,

are more efficient. GCD_minmax’s generated data-path is shorter and takes fewer clock

cycles compared with GCD_ifelse with no pipeline idle cycles.

4. INPUT DATA REUSE

Signal, image, and video processing are among the primary target applications of

reconfigurable computing. Window operators are frequently used in these applications.

Examples include FIR (finite impulse response) filters in signal processing, edge

detectors, erosion/dilation operators and texture measures in image/video processing. All

these window operators have similar calculation patterns — a loop or a loop nest operates

on a window of data (in other word, a pixel/sample and its neighbors), while the window

slides over an array, as shown in Figure 7 (a). In most cases, these window operators are

do-all for-loops and their data-paths can be generated using the approach presented in the

previous section.

However, in order to take advantage of the high-throughput of the data-path, input

data has to be organized and fed in efficiently. Figure 7(b) shows a five-tap FIR filter

example code in C. B[i] is the filter’s output and A[i] is the input. C0, C1, C2, C3 and C4

are the filter’s constant coefficients. In the previous section we already showed that the

throughput of the compiler-generated data-path is one-iteration per clock cycle. However,

if a reconfigurable computing compiler performs a straightforward hardware generation,

the functional unit would need to access all five input data values in the current window.

This would require a large amount of memory bandwidth and involve pipeline bubbles in

the data-path.

* * *

* * *

* * *

* * *

*

*

*

*

*

*

*

*

* * * *

 for (i = 0; i < N; i = i + 1) {
 B[i] = C0 * A[i] +

C1 * A[i+1] +
C2 * A[i+2] +
C3 * A[i+3] +
C4 * A[i+4] ;

 }

(a) 1D and 2D window operators (b) A 5-tap FIR in C

Figure 7 – One-dimensional and two-dimensional window operation examples

To appear in ACM Transactions on Architecture and Compiler Optimizations.

15

Balancing computation with I/O has been considered a critical factor of the overall

performance for quite some time [17]. When a high-density computation is performed on

a large amount of input data, as the case in window operations, data I/O often dominates

the overall computation performance. For instance, for the window operations reported in

[7], the general-purpose CPU performed 64X to 112X more load operations per pixel

than a hand-crafted circuit on an FPGA. Therefore, in order to achieve high performance,

a reconfigurable computing compiler needs to generate smart hardware in HDL to reduce

the memory bandwidth pressure by exploiting data reuse whenever possible. We call this

piece of synthesizable HDL module smart buffer. The compiler must implement the

smart buffer tailored for the applications, and schedule the buffer’s reads and writes.

4.2 Execution Architecture and Code Analysis

In window-based operations, the input and output arrays (or streams) are separate and

therefore there is no loop-carried dependency on a single array.

An execution architecture of window operators is shown in Figure 8. The ROCCC

framework is not board-specific in that it does not assume a pre-set number of memory

modules connected to the FPGA. The data communication engine between the on-chip

block RAMs and the inter-chip data streams is not part of the ROCCC code generation.

The loop has n input arrays and m output arrays. If n is equal to one, the compiler

generates a single-mode smart buffer. Otherwise, it generates multi-mode smart buffers.

Each input/output array of a loop corresponds to an input/output memory. One of the

most important characteristics of window operations is that the compiler can decouple the

memory accesses from the computations and thereby can maximize data reuse. Every

sm art

buffer

0

address

generator

0

FIFO

buffer

0

address

generator

0

scalar data-path

loop &

m em ory

access

controller

input m em ory 1

output m em ory 0

input m em ory 0 input m em ory n

output m em ory 1 ou tput m em ory m

sm art

buffer

1

address

generator

1

sm art

buffer

n

address

generator

n

FIFO

buffer

1

address

generator

1

FIFO

buffer

m

address

generato r

m

Figure 8 - Overall window operator execution architecture. Memory
accessing is decoupled with calculation.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

16

input memory or output memory is connected to a compiler-generated smart buffer, or a

compiler-generated FIFO (first-in-first-out) buffer, respectively. The compiler performs

scalar replacement on the loop body in the front-end. Therefore in Figure 8 the data-path,

by itself, does not access memory directly. The address generators are VHDL libraries.

The input address generator generates memory load addresses and feeds the addresses to

the on-chip block memory. The smart buffer gets the input data streams from the block

memory, exploits data reuse and makes the data of the current window available to the

data-path. In other words, the smart buffer collects/reuses the input data of one iteration

and exports them into the data-path at the same time. In this way, the computation and

memory access are decoupled. The write buffer collects the results from the data-path and

presents it to the output memory. The output address generator generates memory store

addresses.

A one-dimensional example algorithm and a two-dimensional example algorithm are

shown in Figure 7(b) and Figure 9, respectively. We use them to explain how the

ROCCC compiler generates smart buffer. For the algorithm in Figure 9, the output pixel

is the difference between the output of the low-pass filter (upper part in Figure 9) and the

* * *

* * *

* * *

8 8 8

8 2 8

8 8 8

 ÷ * Σ =

input image
pixels (array
A in figure 9)

reference image pixel (array B

in figure 9)

−−−−

*

* =

output image
pixels (array
C in figure 9)

Figure 9 - 3x3 Motion detection window. The upper part is a 2D low-pass filter.

 for(i = 1; i < 62; i = i + 2) {

 for(j = 1; j < 62; j = j + 2) {

C[i-1][j-1] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] + A[i][j-1] + A[i][j+1] + A[i+1][j-1] + A[i+1][j] +

A[i+1][j+1]) >> 3 + (A[i][j]>>1) - B[i-1][j-1];

C[i-1][j] = (A[i-1][j] + A[i-1][j+1] + A[i-1][j+2] + A[i][j] + A[i][j+2] + A[i+1][j] + A[i+1][j+1] +

 A[i+1][j+2]) >> 3 + (A[i][j+1]>>1) - B[i-1][j];

C[i][j-1] = (A[i][j-1] + A[i][j] + A[i][j+1] + A[i+1][j-1] + A[i+1][j+1] + A[i+2][j-1] + A[i+2][j] +

 A[i+2][j+1]) >> 3 + (A[i+1][j]>>1) - B[i][j-1];

C[i][j] = (A[i][j] + A[i][j+1] + A[i][j+2] + A[i+1][j] + A[i+1][j+2] + A[i+2][j] + A[i+2][j+1] +

 A[i+2][j+2]) >> 3 + (A[i+1][j+1]>>1) - B[i][j];

 }

 }

Figure 10 - Motion detection C code
2 x 2 unrolled loop for the algorithm in Figure 9. Array A and B correspond to input

memory banks, and array C correspond to output memory bank.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

17

pixel of the reference image. Figure 10 gives the unrolled C code before undergoing

scalar replacement. The compiler walks through all the memory references in the SUIF

IR and confirms that there is no array being both read and written. The compiler also

checks the following constraints.

1. Loop counters are assigned and updated only in the loop statements.

2. Each loop counter determines the memory address calculation in only one

dimension.

4.3 VHDL Code Generation

Figure 11 shows the registers of the FIR filter [Figure 7 (b)]’s one-dimensional smart

buffer. In this figure, we assume that the memory I/O bus is 32-bit and the data width is

8-bit. In order to fully utilize memory bandwidth, we unroll the for-loop four times. The

unrolled for-loop body has four copies of the original loop body. Now each iteration

reads eight contiguous array elements, but the stride between two iterations is four (i = i +

4). The smart buffer has eight elements. In Figure 11, subfigures (1) through (3) show the

smart buffer’s status from clock cycle one through clock cycle four. At cycle two, the

smart buffer gets the first four data. At cycle three, the smart buffer collects the eight data

elements needed for the current iteration and exports them to the data-path initiatively.

Notice that also at cycle three, the left-most four elements are killed to reclaim space for

word 2. At cycle four, window 1 starts from the right-most four elements in the buffer.

The ROCCC compiler generates both the registers and the logic to schedule the registers’

* * * *

* * * * * * * *

* * * * * * * *

(cycle 2)

window 0

window 1
1st half

Word 0

Word 0 Word 1

Word 2 Word 1
window 1
2nd half

(cycle 3)

(cycle 4)

(cycle 1)

Figure 11 – The smart buffer of the four-time-unrolled 5-tap FIR filter

To appear in ACM Transactions on Architecture and Compiler Optimizations.

18

action.

In this subsection we present ROCCC’s approach to the generation of efficient VHDL

code for the smart buffers and related components. The goal is to minimize run-time

control calculation and maximize input data reuse.

4.3.1 Address Generation

Window operations have one or more windows sliding over one or more arrays. Both the

read and the write array addresses are known are compile time. We also assume that the

on-chip memory read latency is known2.

Consider the code in Figure 10 as an example. According to the memory load

references and the loop unrolling parameters, the following parameters are known at

compile time:

1. Starting and ending addresses

2. The number of clock cycles between two consecutive memory accesses

3. The unrolled window’s size

4. The unrolled window’s strides in each dimension

5. The array’s row size

6. The starting address-difference between two adjacent outer-loop iterations.

In Figure 8, each smart buffer has an address generator to generate the loading address

stream to the input memory bank. These address generators are parameterized finite state

machines (FSMs) in VHDL. Figure 12 shows the loading address stream of the two-

2 This is not an unusual assumption in FPGA design.

* * *

* * *

* * *

* * *

*

*

*

*

* The 2nd outer iteration
goes this way

*

One row of the
2D input array:

Figure 12 - The reference address order of array A in Figure 10

To appear in ACM Transactions on Architecture and Compiler Optimizations.

19

dimensional array A in Figure 10. An address generator does not produce all the loading

addresses of the corresponding array for the current iteration; rather, it only produces the

new data’s addresses. The remaining recently loaded data are already in the smart buffer.

In Figure 12, the input data needed by each outer-loop iteration are loaded only once. But

there are overlaps between adjacent outer iterations since we cannot afford a smart buffer

to hold whole rows of data. Notice that the first inner-loop iteration of each outer-loop

iteration might read more columns of data compared with other inner-loop iterations

because for the first iteration all the loads are new. We call these extra new columns

warm-up columns.

 In the case of the data-path producing output data at a higher rate than the loading rate

from the input memory, and the output memory bandwidth is limited, the loading address

generator has to slow down its address stream to balance the I/O throughput by inserting

extra idle cycles after each iteration’s loading. All these analyses can be done at compile-

time and thereby simplify the controller.

The VHDL generics of an address generator include:

• The number of warmup_columns (the number of warmup_data for one-

dimensional address generators.).

• The number of new columns per iteration (the number of new data per iteration for

one-dimensional address generators.).

• The number of cycles to halt between iterations. This parameter might be zero.

These halt cycles are inserted to balance the I/O throughput between input

memories and output memories.

• The number of loads per outer-loop, the number of data per row, and the address

difference between two adjacent outer-loop iterations’ upper-left-most loads.

These parameters only apply to two-dimensional address generators.

With the above parameters, each input memory’s address generator is able to generate

the address stream of the current iteration’s new data, and each output memory’s address

generator can generate the corresponding storing addresses for the current iteration’s

output data. Once the generation of the current iteration’s address stream is done, all

address generators check if the loop and memory access controller has issued the next

iteration, and act accordingly. For two-dimensional-array cases, the above parameters

also ensure that the loading address generators are able to determine when a new outer-

loop iteration starts, and wait until then to flush the smart buffers. Notice that all loading

address generators have to flush the smart buffers though the loop and memory access

To appear in ACM Transactions on Architecture and Compiler Optimizations.

20

controller. The latter flushes all the smart buffers at the same cycle to maintain the

synchronicity of the data-path’s input data.

4.3.2 Smart Buffer Generation

An input array’s smart buffer accomplishes the following tasks:

• Collecting the new input data for the current iteration.

• If the new input data are needed by future iterations, storing them to buffer

registers whose contents are expired.

• Exporting the window data to the data-path when they are all ready. For multiple-

input-array loops, the multi-mode smart buffers hold the window data until the

controller signals it to release. This way all smart buffers are synchronized. A

single-input-array loop’s smart buffer pushes the window data into data-path

immediately.

A smart buffer is implemented in VHDL at compile-time. It consists of registers to

store the data and a finite state machine (FSM). The FSM traces which register is expired

and would be overwritten by new data, determines when a window of data is ready to

export, and manages the counterpart relationship between the buffer registers and the

data-path’s input variables.

We use the two-dimensional array A in Figure 10 as an example. Figure 13 shows the

status of array A’s smart buffer at different clock cycles. Each iteration of the nested loop

loads a 4x4 window. We assume the memory bus is twice the width of the pixel bit-size,

so each memory load reads in two pixels. In this example the window's row size is an

integer multiple of the bus-load (one row is two bus-loads). If this is not the case, for

example each window row has five pixels, we round the smart buffer row size to an

integer multiple of the bus-size, which makes the smart buffer row size six pixels (three

bus-loads). Each FSM state is assigned one of the three states:

• Prologue-state: The computation is in a warm-up state of the first iteration of

loops working on one-dimensional arrays or of the first inner-loop iteration of

every outer-loop iteration of loops working on two-dimensional arrays. The smart

buffers are collecting data to form the first window.

• Export-state: In this state, a window of data is ready. If the loop has only one input

array, the smart buffer’s FSM initiates the export of the window data to the data-

path and keeps going to the next state. For multi-mode smart buffers, the FSM

stays in this state until the loop controller signals it to release.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

21

• Idle-state: In this state, the smart buffer is waiting for the new data that have not

been loaded in previous iterations. Once all the new data have arrived, the smart

buffer goes to the export_state.

Generally, for a two-dimensional smart buffer, the row size of the buffer is the smallest

integer multiple of the bus-size that makes the row size larger than the sliding window’s

row size. The smart buffer’s column size is equal to the height of the sliding window. For

a one-dimensional smart buffer, the column size is always one.

As shown in Figure 13, the state machine initially starts from state Pro_0. Once it gets

export-state Exp_0, window_0 is exported to the input port of the data-path. Since array

A is one of the two input arrays in Figure 10, the FSM stays in this state until the loop

controller signals it to go to the next iteration. If at Exp_0 state the smart buffer gets

(Pro_0)

window 0 is
exported to data-

path

* *

(Pro_1)

* *

(Pro_2)

* *

* *

(Pro_4)

* *
* *

* * * *

(Pro_5)

* *
* *

* * * *

(Pro_6)

* * * *
* *

* * * *

(Exp_0)

* * * *
* * * *

 * *

(Idl_0)

 * *
 * *

* * * *

(Idl_1)

 * *
 * *

* * * *

(Idl_2)

* * * *
 * *

* * * *

(Exp_1)

* * * *
* * * *

* *

(Idl_4)

* *
* *

* * * *

(Idl_5)

* *
* *

* * * *

(Idl_6)

* * * *
* *

 * * * * * *

 * * * * * *

 * * * * * *

* *

(Pro_3)

* *
* *

* * * *

(Pro_7)

* * * *
* * * *

* * * *

(Idl_3)

* * * *
* * * *

* * * *

(Idl_7)

* * * *
* * * *

 * * * * * *

* * * * * * * *

word 0

word 1

word 2

window 1 is
exported to data-

path

To this state if got
new data from the
previous exp state

To this
state if

NOT got
new data
from the
previous
exp state

Figure 13 – FSM Status of a two-dimensional smart buffer

To appear in ACM Transactions on Architecture and Compiler Optimizations.

22

another new bus of data, which would only happen in single-input-array cases, the state

machine jumps to Idle_1. Otherwise it goes to Idle_0. Once the FSM leaves state Exp_0,

the data elements in the left-most and the second-left-most columns are killed to reclaim

the registers for new data. In state Exp_1, the smart buffer exports window_1. Notice that

the first column of this window is the third column in the buffer. The compiler is aware

of this relationship and implements it in the export states accordingly. The new data to

state Idle_7 switches the state machine back to Exp_0. In fact, the last columns of idle

states (Idle_4 through Idle_7) are identical to the last column of prologue states (Pro_4

through Pro_7).

A two-dimensional array’s smart buffer is able to be flushed and start the FSM from

the first prologue state.

The generated VHDL code, by itself, does not have the concepts of windows. The

VHDL code only describes the logical and sequential relationship between

signals/registers.

Implementing smart buffers using shift registers, while is an option, would require too

many counters inside the smart buffer. There also would have to be a great deal of logic

between the counters to control the smart buffer’s import and export actions. Besides, for

the multiple-input-array case, the synchronization requirement increases the complexity

of the logic. By using the FSM, the compiler’s analysis effort simplifies the generated

circuit, and the FSM tracks the smart buffer’s status efficiently.

4.4 Experimental Results

We use the five benchmarks listed in Table 4 in our experiments. These benchmarks are

selected for the diversity of their numbers of input arrays, dimension of arrays and

memory interface bandwidth.

Constant_FIR is a constant-coefficient finite-impulse-response (FIR) filter. Its source

code is given in Figure 3. Array A is the only input array, whose dimension is one.

Variable_FIR is a variable-coefficient FIR filter. Its coefficients are also variables stored

in Array B. This example has two one-dimensional input arrays. Each iteration of

Complex_FIR produces a complex integer. The complex integer’s real part and imaginary

part are stored in Array C alternately. Therefore every iteration loads in two new data.

The loop counter step of Complex_FIR is two. 2D_lowpass_filter is a 3x3 low-pass filter

used in image processing. For each 3x3 window in the input image, the nine pixels are

divided by the corresponding coefficients (they really are shifting operations). The output

To appear in ACM Transactions on Architecture and Compiler Optimizations.

23

pixel is the summation of the division’s nine results. We unroll the loop twice in both

horizontal and vertical directions. Therefore, each iteration computes four of these 3x3

windows, and produces a 2x2 output window. The input of 2D_lowpass_filter is a two-

dimensional array. Motion_detection is the implementation of the code in Figure 10.

Motion_detection’s input windows are 4x4 and 2x2. These two windows come from the

image array to be detected and the reference image array, respectively. There is no data

reuse to the reference image array and the smart buffer of it is used only to decouple the

data-path with memory accessing. ROCCC supports multiple output arrays, though all

these examples have only one output array. We do not show a multiple-output-array

example because writing to each array is an independent process, and the implementation

is a straightforward replication.

We use the Xilinx ISE 6.2.03i tool chain to do synthesis and place-and-route. The

generated VHDL codes are simulated using ModelSim 5.8c. The target architecture of all

synthesis is Xilinx XC2V8000-5, whose total number of slices is 46592. We set the

synthesis option ‘multiplier style’ as ‘LUT’ for all constant multiplications.

In Table 4, Area is the number of slices obtained from place-and-route reports. The

area of a buffer includes the area of the address generator associated with the buffer. # of

reg is the number of registers that the corresponding buffer uses to store the data. Each

register is 8-bit since all the data-path variables of these five examples are 8-bit. # of state

Table 4: The synthesis and simulation results of buffers in five examples. The total
number of slices is 46592 on the target FPGA chip.

con stan t

F IR

variab le

F IR

com plex

F IR

2D _low pass

filte r

m o tion

d etection

A rea (slices) 15 6 159 1 32 32 5 327

o f regs 5 5 6 16 1 6

o f states 14 1 4 8 18 1 8

B us size (b its) 8 8 16 16 1 6

A rea (slices) 159 150

o f regs 5 4

o f states 1 4 4

B us size (b its) 8 1 6

A rea (slices) 11 1 1 12 73 7 3

o f regs 1 1 2 2 2

o f states 1 1 2 2 2

B us size (b its) 8 8 8 16 1 6

A rea (slices) 43 5 m ltp l 99 14 4 164

B it s ize 8 8 8 8 8

21 0 329 2 43 54 2 714

94 6 8 85 69 4 2

26 2 10 19 2 60 5 980 59 86

0 .96 0 .2 5 0 .48 0 .16 0 .1 6T hrough pu t (ite ra tion /cycle)

E xecu tio n tim e (cycles)

C lock rate (M H z)

In pu t

b u ffer

A

Inpu t

 bu ffer

B

O utpu t

b u ffer

C

D ata-path

O verall area (slices)

To appear in ACM Transactions on Architecture and Compiler Optimizations.

24

is the number of states of the buffer’s FSM. Bus size is the number of bits of the bus

between input/output memory and the corresponding buffer. Clock rate is the clock rate

of the whole placed-and-routed circuit. The input data set size of all one-dimensional

examples is 256 and the input data set size of all two-dimensional examples is 64x64.

Execution time is the number of cycles obtained from the simulation waveforms.

Constant_FIR has only one input array, whose dimension is one. The input smart

buffer automatically feeds its window data to the data-path whenever they are ready,

without waiting for synchronization. The loop controller keeps issuing new iterations.

The total execution time is just a few cycles more than the input data set size. The area

cost on the input buffer’s address generator of constant_FIR is more significant compared

with that on the registers (only five 8-bit registers). Variable_FIR has two input arrays.

Both the input smart buffers and the loop controller have to spend extra clock cycles to

do handshaking with each other, so the execution time is longer compared with

Constant_FIR. For Complex_FIR, we intentionally set the input bus-size to be 16-bit and

the output bus-size to be 8-bit. Each memory load can read in two input data, which is

what one iteration needs since the loop counter step is two. However, the compiler

detects that the output FIFO buffer needs two cycles to store two output data of one

iteration, the real part and the imaginary part. The compiler adds one halt cycle to the

input smart buffer’s address generator for each iteration, and this extra halt cycle explains

the fact that Complex_FIR’s total execution time is almost the same as that of

Constant_FIR, though the number of iterations of Complex_FIR is only half of that of

Constant_FIR. 2D_lowpass_filter has a two-dimensional array and the compile chooses

the corresponding smart buffer and loop controller. In contrast, Motion_detection has two

input arrays. Like the case of Variable_FIR, synchronizing between smart buffers and

loop controller needs extra clock cycles. But these cycles overlap with the intrinsic delay

of two-dimensional address generators. This is the reason that Motion_detection’s

execution time is close to that of 2D_lowpass_filter.

Table 5- Smart buffer size and synthesis results of unrolled loops

Un1 Un2 Un4 Un8

 buffer

size(pixel)
slices

buffer
size(pixel)

slices
buffer

size(pixel)
slices

buffer
size(pixel)

slices

constant_FIR5 5 213 6 199 8 197 16 388

constant_FIR15 15 1657 16 938 20 817 24 806

moving_Filter9 9 623 10 431 12 421 16 453

2D_lowpass_filter 9 242 16 376

To appear in ACM Transactions on Architecture and Compiler Optimizations.

25

The window size of 2D_lowpass_filter is 4x4. Every time the sliding window reaches

the right of the image, it rewinds back to the left and starts from the second last row of

the previous outer loop, since the outer loop counter’s stride is now four. Therefore, by

using the smart buffer, we only re-read each pixel once. Without the smart buffer each

pixel would be read four times. Obviously, the more a loop is unrolled, the more memory

loads can be saved. Four loop unrolling examples are shown in Table 5. Constant_FIR15

is a 15-tap constant-coefficient finite-impulse-response filter. Moving_filter9 is a nine-

element moving average filter. We assume the data-size is 16-bit. Buffer size is the

number of the 16-bit storage units in the smart buffer. The benchmarks are unrolled 2, 4

and 8 times, with the exception of 2D_lowpass_filter, which is unrolled four times (2x2).

We also assume that the bus bandwidth scales up with unrolling. Notice that the buffer

size of constant_FIR5 on Un8 is 16, though the number of memory loads per iteration is

12. The compiler rounds the buffer size to an integer multiple of the bus-size, which is 8-

data per bus for Un8. When the loop is unrolled the buffer size increases, but it holds

fewer distinct windows and therefore the cost of control logic decreases while the storage

area increases. This explains why the total area of the smart buffer does not increase

linearly with the amount of unrolling.

The smart buffer’s control logic determines the location of the input data’s destination

buffer registers, schedules the output data export, and determines the proper connection

between the buffer registers and their corresponding data-path input ports. Notice that

this connection varies for different iterations as the window slides. For example, the Smartbuffer Area Comparison
05001000150020002500

un1 un2 un4 un8 un1 un2 un4 un8 un1 un2 un4 un8 un1x1 un2x2FIR5 FIR15 MF9 2D_lowpass_filter
Area (slices)

Original Improved

Figure 14 - Smart buffer area comparison between original and improved architectures

To appear in ACM Transactions on Architecture and Compiler Optimizations.

26

connection is different between Exp_0 and Exp_1 in Figure 13. In our original work [9],

all these control is fulfilled by combinational circuit. The compiler made less analysis

effort but generated a less efficient circuit. Compared with our previous work, the current

smart buffer’s FSM is more area efficient. The new approach requires more sophisticated

compile-time analysis to build the FSM. The bar chart in Figure 14 depicts the smart

buffer area comparison. With the exception of 2D_lowpass_filter(un1x1), the area

savings of the new smart buffers range from 13% to 93%, and are 43% on average.

5. RELATED WORK

Many projects, employing various approaches, have worked on translating high-level

languages into hardware. SystemC [27] is designed to provide roughly the same

expressive functionality of VHDL or Verilog and is suitable for designing software-

hardware synchronized systems. Handle-C [11] is a low-level hardware/software

construction language with C syntax, which supports behavioral descriptions and uses a

CSP-style (Communicating Sequential Processes) communication model. Both SystemC

and Handle-C are timed languages.

GARP [3]’s compiler is designed for the GARP reconfigurable architecture, and

generates GARP configuration file instead of standard VHDL. GARP's memory interface

consists of three configurable queues, the starting and ending addresses of which are

configurable. The queues' reading actions can be stalled.

SA-C [19], Single Assignment C, is a single-assignment high-level synthesizable

language. Because of special constructs specific to SA-C (such as window constructs)

and its functional nature, its compiler can easily exploit data reuse for window

operations. SA-C uses pre-existing parameterized VHDL library routines to perform code

generation in a way that requires a number of control signals between components, and

thereby involves extra clock cycles and delay.

Streams-C [6] relies on the CSP model for communication between processes, both

hardware and software, and can meet relatively high-density control requirements. One-

dimensional input data reuse can be manually implemented in the source code.

SPARK [26] is another C to VHDL compiler, which takes a subset of C as input and

outputs synthesizable VHDL. Its optimizations include code motion, variable renaming,

etc. The transformations implemented in SPARK reduce the number of states in the

controller FSM, and the number of cycles in the longest path.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

27

GARP, Streams-C and SPARK do not support accesses to two-dimensional arrays, so

image processing applications, including video processing, must be mapped manually.

Phoenix project [28] has implemented a compiler called CASH, which represents the

input program using Pegasus, a dataflow intermediate representation. CASH targets its

asynchronous hardware. SOMA [29] is a synthesis framework for constructing Memory

Access Network architecture, and has been integrated into CASH. SOMA features the

support to input specifications in which memory references cannot be statically

disambiguated.

DEFACTO [30] system takes C as input and generates VHDL code. In its generated

circuit, memory units are connected to the data-path through the memory channel to reuse

input data. The memory channel architecture has its FIFO queue and a memory-

scheduling controller.

One main difference between ROCCC and these research projects is that ROCCC

performs aggressive input data reuse.

6. CONCLUSION

In this paper we have presented the code generation part of ROCCC, an open framework

built on the SUIF platform that compiles C programs to VHDL for mapping

reconfigurable devices. At the front-end, the compiler performs high-level data flow

analysis as well as an extensive set of loop transformations. It transfers the analysis

information through preserved macros. At the back-end, the compiler explores low-level

parallelism, pipelines the data-path and narrows the bit sizes of the inner signals.

When compiling parallel loops, the ROCCC compiler generates a pipelined data-path

in which each pipeline stage corresponds to one iteration, so that the throughput is one

iteration per clock cycle. We present our approach to maintaining the same throughput

when there is only scalar recurrence between iterations. ROCCC supports lookup tables

through automatically instantiating pre-existing lookup table IPs or ROM IPs. The

synthesis result shows that ROCCC-generated circuits take around 2x ~ 3x the area but

run at a clock rate comparable to that of existing Xilinx IPs. In many cases the throughput

of ROCCC generated code is higher than that of the original IP. As expected, ROCCC

performs better on high computational density examples than on high control density

ones. When compiling sequential (while) loops, the compiler pipelines the data-path in a

similar way, but only one iteration is executed at a time. We created a new instruction to

To appear in ACM Transactions on Architecture and Compiler Optimizations.

28

select a while-loop body’s input variables between the feedback variables from the

bottom of the loop body and the initial variables from the loop’s predecessor node.

For parallel loops, in order to make the most of data-path’s one-iteration-per-cycle

throughput, we present a new approach to the reuse of data when compiling operations

that involve sliding windows. We describe the compiler’s analysis and optimization of

the memory accesses in the C code, and we propose a compile-time scheme that

generates a smart buffer for storing all the fetched data elements. Based on the number of

input arrays, the smart buffer is generated in either single-mode or multi-mode. Using its

internal FSM, the smart buffer keeps track of the input data stream, exports valid window

data to data-path for each iteration, and kills expired data to reclaim registers for new

ones. The smart buffer minimizes the rate of data re-fetch from external memory and also

simplifies the loop control. At compile time the compiler balances the I/O throughput by

inserting halt clock cycles in the input memory address generators. This approach

simplifies the loop controller and saves feedback handshake signals between input and

output buffers.

REFERENCES

[1] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore, B. R. Murphy, C. Sapuntzakis. An Overview
of the SUIF2 Compiler Infrastructure. Computer Systems Laboratory, Stanford University.

[2] Altera Corp. "Excalibur: System-on-a-Programmable." http://www.altera.com, 2004.
[3] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp Architecture and C Compiler. IEEE Computer,

April 2000.

[4] Berkeley Design Technology, Inc.: http://www.bdti.com/articles/info_eet0207fpga.htm#DSP-

Enhanced%20FPGAs, 2004.
[5] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the Streams-C C-to-FPGA Compiler: An

Applications Perspective. Ninth ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA), Monterey, CA, 2001.

[6] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski. Stream-oriented FPGA computing in the
Streams-C high level language. In IEEE Symp. on FPGAs for Custom Computing Machines (FCCM),

2000.

[7] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A Quantitative Analysis of the Speedup Factors of FPGAs
over Processors, Int. Symp. Field-Programmable gate Arrays (FPGA), Monterrey, CA, February 2004.

[8] Z. Guo, D. C. Suresh, W. A. Najjar. Programmability and Efficiency in Reconfigurable Computer
Systems, Workshop on Software Support for Reconfigurable Systems, held in conjunction with the Int.

Conf. Of High-Performance Computer Architecture (HPCA), Anaheim, CA, February 2003.

[9] Z. Guo, A. B. Buyukkurt and W. Najjar. Input Data Reuse In Compiling Window Operations Onto
Reconfigurable Hardware, Proc. ACM Symp. On Languages, Compilers and Tools for Embedded Systems

(LCTES 2004), Washington DC, June 2004.

[10] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized Generation of Data-path from C Codes for
FPGAs, Int. ACM/IEEE Design, Automation and Test in Europe Conference (DATE 2005). Munich,

Germany, March, 2005.

[11] Handel-C Language Overview. Celoxica, Inc. http://www.celoxica.com. 2004.
[12] G. Holloway and M. D. Smith. Machine-SUIF SUIFvm Library. Division of Engineering and Applied

Sciences, Harvard University 2002.
[13] G. Holloway and M. D. Smith. Machine SUIF Control Flow Graph Library. Division of Engineering and

Applied Sciences, Harvard University 2002.
[14] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector Data-Flow-Analysis Library. Division of

Engineering and Applied Sciences, Harvard University 2002.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

29

[15] G. Holloway. The Machine-SUIF Static Single Assignment Library. Division of Engineering and Applied

Sciences, Harvard University 2002.
[16] J. Keane, C. Bradley, Clark, C. Ebeling. A Compiled Accelerator for Biological Cell Signaling

Simulations, Int. Symp. Field-Programmable gate Arrays (FPGA), Monterrey, CA, February 2004.

[17] H. T. Kung. Why Systolic Architectures? IEEE Computer. Vol. 15, No. 1 (Jan. 1982), pp. 37-46
[18] Machine-SUIF. http://www.eecs.harvard.edu/hube/research/machsuif.html, 2005
[19] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R. Beveridge, M. Chawathe and C. Ross. From

Algorithms to Hardware - A High-Level Language Abstraction for Reconfigurable Computing. IEEE

Computer, August 2003.

[20] SUIF Compiler System. http://suif.stanford.edu, 2005
[21] M. D. Smith and G. Holloway. An introduction to machine SUIF and its portable libraries for analysis and

optimization. Division of Engineering and Applied Sciences, Harvard University.
[22] Synplicity, Inc. http://www.synplicity.com/ 2005
[23] Triscend Corporation, "Triscend A7 Configurable System on a Chip Family."

http://www.triscend.com/products/a7.htm, 2004.
[24] Xilinx Corp. "IBM and Xilinx Team." http://www.xilinx.com/prs_rls/ibmpartner.htm, 2004.
[25] W. Chen, P. Kosmas, M. Leeser, C. Rappaport. An FPGA Implementation of the Two-Dimensional

Finite-Difference Time-Domain (FDTD) Algorithm, Int. Symp. Field-Programmable gate Arrays (FPGA),

Monterrey, CA, February 2004.

[26] SPARK project. http://mesl.ucsd.edu/spark/, 2005.
[27] SystemC Consortium. http://www.systemc.org, 2005.
[28] http://www.cs.cmu.edu/~phoenix/index.html, 2005
[29] G. Venkataramani, T. Bjerregaard, T. Chelcea, S. C. Goldstein. SOMA: A Tool for Synthesizing and

Optimizing Memory Accesses in ASICs, International Conference on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), Jersey City, NJ, September 2005

[30] P. Diniz, M. Hall Park, J. Park, B. So and H. Ziegler. Bridging the Gap between Complation and Synthesis
in the DEFACTO System. Proceedings of the 14th Workshop on Languages and Compilers for Parallel

Computing Synthesis (LCPC'01), Oct. 2001.

To appear in ACM Transactions on Architecture and Compiler Optimizations.

