
Automatic compilation framework for Bloom filter based
intrusion detection

Dinesh C Suresh, Zhi Guo*, Betul Buyukkurt and Walid A. Najjar

Department of Computer Science and Engineering
*Department of Electrical Engineering

University of California, Riverside, CA 92521.
 Email : {dinesh, zguo, najjar, betul}@cs.ucr.edu

Abstract. Virus detection at the router level is rapidly gaining in importance.
Hardware-based implementations have the advantage of speed and hence can support
a large throughput. In this paper we describe an FPGA-based implementation of the
Bloom filter virus detection code that is compiled from the native C to VHDL and
mapped onto a Virtex XC2V8000 FPGA. Our results show that a single engine
tailored for handling virus signatures of length eight bytes can achieve a throughput
of 18.6 Gbps while occupying only 8% of the FPGA area.

1. Introduction

Studies on economic impact of computer viruses have shown that global businesses
incurred an estimated $55 billion in damages during the year of 2003 [12]. The report also
estimates that the monetary losses due to viruses could further increase in the forthcoming
years. Therefore, containing new virus outbreaks is one of the greatest challenges facing
networks and organizations. One way to control virus outbreaks is to scan for viruses at the
router/interconnection points. Packets generated from infected files contain signatures,
which are strings that uniquely identify the presence of malicious code in an incoming
packet. Signatures could be distributed anywhere within a packet or across packets. By
accurately identifying signatures in incoming packets, malicious packets could be blocked
at the router level, thereby making the networks more secure.

Speed is the greatest concern while handling packets at the routers and hence, any
router-level signature detection mechanism should be capable of identifying signatures
accurately at high throughputs. This could be accomplished by a dedicated hardware (ASIC
or FPGA) that inspects packets in parallel to detect signatures. Advances in high density
FPGAs have provided designers with a viable commercial alternative to ASICs. Unlike
ASICs, FPGAs do not require a prohibitively high cost of mask production.

In this paper, we present ROCC, a C to native VHDL compiler framework. We
demonstrate this tool by using it to generate hardware for Bloom-filter based virus
detection. Our compiler framework can be easily adapted to accommodate new algorithms

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

for virus detection and our generated hardware achieves multi-gigabit throughputs. Our
contributions in this paper can be summarized as follows. This paper presents the first work
in which a Bloom-filter based virus detection system is automatically generated from C
code. We illustrate that automatic code generation is a feasible option in terms of the
performance and area utilization of the FPGA. Our 8-byte Bloom filter code delivers a
throughput of 18.6 Gbps while occupying a modest chip area of 8%.

2. Overview of the ROCCC C to VHDL Compiler

ROCCC [15] is built on the SUIF2 [13] and Machine-SUIF [14] platforms. Figure 1
shows ROCCC’s system overview. It compiles code written in C/C++ or Fortran to VHDL
code for mapping onto the FPGA fabric of a CSoC device. In the execution model
underlying ROCCC, sequential computations are carried out on the microprocessor in the
CSoC, while the compute intensive code segments are mapped onto the FPGA. These
typically consist of loop nests, most often parallel loops, operating on large arrays or
streams of data. Therefore, most loop level analysis and optimizations are done at this
level. Most of the information needed to design high-level components, such as controllers
and address generators, is extracted from this level’s IRs.

The front-end of ROCCC performs a very extensive set of loop analysis and
transformations aiming at maximizing parallelism and minimizing the area. The
transformations include loop unrolling and strip-mining, loop fusion and common sub-
expression elimination across multiple loop iterations. . The work reported in [7] shows
that in less than one millisecond and within 5% accuracy compile time area estimation can
be achieved. Information to generate high-level units, such as controllers and buffers, is
also extracted from SUIF IRs. The restrictions on the C code that can be accepted by the
ROCCC compiler, for mapping on an FPGA fabric, include no recursion, no usage of
pointers that cannot be statically un-aliased. Function calls will either be in-lined or
whenever feasible made into a lookup table. In the following section, we explain the
operation of a Bloom filter for virus detection.

Loop-level analyses,

transformations and

optimizations

User-input C

Operation-level analyses,

transformations and

optimizations

Intermediate C

Front-end

Synthesizable

VHDL

Back-end

Hardware

 IR

Conventional

IR

Figure 1 - ROCCC compiler framework

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

3. Bloom Filters

A Bloom filter [3] s a space-efficient data structure used to test the set membership of an
element. An empty Bloom filter is described by an array of m bits, initially all set to 0. A
Bloom filter uses K independent hash functions h1….hk with range {0… m-1}. Each of
these hash functions map an incoming item to a number in the range of {0 …m-1}.During
insertion, hash functions h1….hk are applied to the input item. Each return value from the
hash function is used as an index to the Bloom filter (array of m bits) and the appropriate
bit position is set to 1. A location can be set to 1 multiple times, but only the first change
has an effect.

During a search operation, the locations returned by the hash functions are checked to
see if they are already set to ‘1’. If bit values in all the return locations are set, then the
Bloom filter is said to contain the pattern else it is a miss. An item x belongs to the set S
with some probability if all hi(x) are set to 1 for 1<i<k. .If not, then x is not a member of S.
A Bloom filter may yield a false positive when it suggests that an element x belongs to S
even though it does not. The probability of a false positive is given by

k

e

k
kn

m

m
kn

!
"
#$

%
& '(

!
!

"

#

$
$

%

&
!
"

#
$
%

&
''

'

1
1

11

Where, k,m and n denote the number of hash functions, number of bits in the bloom
filter array and the number of elements currently inserted into the bloom filter,
respectively. In the event of a match in the Bloom filter, a detailed string matching is
performed using a RAM to ensure that the hit was not a false positive.

Figure 2 - The Bloom filter detects

malicious packets at the network layer. The
output of the Signature Processing Engine
(SPE) is fed to the False Positive Eliminator
(FPE)

Figure 3 - Bloom filter code for identifying signatures

of width 8 bytes each in a stream of size 256 bytes. The
packet size is assumed to be 64 bytes. The data structure
bit array is a Bloom filter of size 256 entries

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

A functional prototype of the Bloom-filter based intrusion detection system has been
implemented. We used a Bloom filter of length 256 bytes to detect patterns of length 8
bytes. Figure 2 shows the block diagram for a bloom-filter based virus detection system.
Figure 3 shows a Bloom filter code that uses four hash functions on a 256 entry Bloom
filter array. The hash functions are implemented as a simple XOR operation. The result of
each hash operation sets a location in the Bloom filter. The compiler unrolls the inner most
loop to compare the 8-byte patterns in parallel. We used the rule sets contained in bleeding
snort database [11]. Each rule consists of two parts: a header and a rule option. The header
is mainly used for packet classification and contains information like the protocol, source
IP, source port, destination IP and the destination port. The rule option contains the
signatures to be used in intrusion detection.

Figure 5 shows the frequency of the signature width of all rules in the bleeding snort
database. As evident from the figure, most of the rules present in the bleeding snort
database have a signature width of less than 30 bytes. In the following section, we present
the generation of datapath and throughput evaluation for the Bloom filter code.

4. Datapath Generation and Throughput Analysis

Figure 4 shows the three-stage pipeline for the generated Bloom filter circuit. The XOR
operation shown in the figure represents each byte of the input being XOR ed with one byte
of the hashing function. The location returned by the hashing function is looked up and if
all four hashing function lookups return a value of ‘1’, then the circuit reports the current
input pattern as malicious.

The compiler groups the instructions in each node into different execution levels to
exploit instruction (operation) level parallelism. Instructions at the same level are executed
simultaneously. Every level of the dataflow graph corresponds to the instantiation of one

Figure 4 - Three-stage pipeline for the Bloom
filter signature code. Each box in the XOR filed
represents a byte of the input being XOR ed
with one byte of the hashing function

0

100

200

300

400

500

600

700

0-30 31-60 61-

100

101-

150

151-

200

201-

300

301-

400

Width of all signatures

N
u

m
b

e
r

o
f

s
ig

n
a

tu
re

s

Figure 5 - Histogram of signature width for all

rules in the snort database. The most frequently
occurring signatures have a width of around 32
bytes

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

loop iteration. ROCCC automatically places latches in the data-path for pipelining. Every
latched level corresponds to one pipeline stage, and has a delay of one cycle.

Our Bloom filter code does not have loop-carried-dependency and the compiler fully
pipelines the data-path. Therefore, the generated data-path can be fed with new set of input
every clock cycle and the throughput is one iteration per cycle. We process 8 bytes each
iteration. When we do loop unrolling, we assume that the memory-bus width also scales
up with unrolling.

The clock frequency of the FPGA was found to be 73 MHz. The system uses a total of
4692 slices, which accounts for 8% of the total FPGA area. The BRAM on our target
FPGA (XC2V8000) can process 256 bits (32 bytes) per cycle. Hence, the BRAM can
support eight such hardware instances during each cycle. The total throughput of our
hardware is given by

Throughput = bits per cycle * clock frequency
T= 8 *32* 73* 10 6 bits/ sec. = 18.6 Gbps.

The throughput shown above is for a system that detects multiple signatures of a single
width. When multiple instances for each signature width are instantiated, the overall circuit
area would also increase proportionately. Synthesis tools tend to produce slower circuits
when the design size increases. However, with increase in area, the compiler produces
more parallel iterations and hence, the performance loss due to decrease in clock speed is
overcome by the increase in parallelism. In order to provide a better insight into our
estimated throughput values, we examine the throughput achieved by previously published
works.

5. Related work

Hashmem [9] combines memory and hashing effectively to achieve exact matching of
intrusion signatures at throughputs of up to 3.7Gbps while using nearly 0.15 logic cells per
character. Baker and Prasanna [2] use automatic compilation to synthesize FPGA
architectures that perform deep packet inspection at 10Gbps. Clark et al.[5] use NFAs with
predecoded inputs to achieve excellent area and throughput performance. Lockwood et.
al.[8] used the Field Programmable Port extender (FPX) platform for expression matching.
Their synthesized circuit achieved clock speeds of 37MHz on a Virtex XCV2000E FPGA.

Gokhale et.al [6] used CAM to implement snort rules on a Virtex XCV1000E FPGA.
Their hardware delivered a throughput of 2.2Gbps. Cho et. al [4] generated structural
VHDL for deep packet filtering on an FPGA. Their design runs at 90MHz on an Altera
EP20K device and achieves a throughput of 2.88Gbps. Attig et. al..[1] have implemented a
Bloom filter circuit on a Virtex E2000 FPGA. Their circuit operates at 62.8MHz and
provides a throughput of 502Mbps. This paper presents the first reported work that
automatically generates native VHDL for Bloom filter based intrusion detection code
written in C.

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

6. Conclusion

In this paper, we have described using ROCC, a C to VHDL compiler, to generate
Bloom-filter based virus detection system on FPGAs. Ours is the first work that
automatically generates VHDL for Bloom filter code written in C. We evaluate the
performance and area of the synthesized hardware and prove that automatic compilation to
hardware is a feasible design option. Our synthesized hardware runs at 73 MHz and
delivers a throughput of 18.6 Gbps while occupying a modest FPGA real estate of 8%.

References
[1]. M. Attig, S. Dharmapurikar, J. Lockwood. "Implementation Results of Bloom Filters for String

Matching,", In proceedings of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'04), pages. 322-323, 2004

[2]. Z. Baker and V.K. Prasanna, “High Throughput Linked-Pattern Matching for Intrusion
Detection Systems, In Proceedings of Symposium on Architectures for Networking and
Communication Systems (ANCS’ 05) , Princeton, New Jersey, October 2005.

[3]. B.H. Bloom. “Space/time tradeoffs in hash coding with allowable errors”, Communications of
the ACM, 13(7): pages 422-426, July 1976.

[4]. Y. H. Cho, W. M. Smith, “Specialized Hardware for deep packet filtering”, In Proceedings of
the 12th International Conference on Field Programmable Logic and Applications (2002),
France.

[5]. C. R. Clark and D. E. Schimmel, “Scalable Parallel Pattern-Matching on High-Speed
Networks,” in IEEE Symposium on Field-Programmable Custom Computing Machines, Napa,
California, April 2004.

[6]. M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett. “Granidt:
Towards gigabit rate network intrusion detection technology”, . In Proceedings of
International Conference on Field Programmable Logic and Applications, pages 404–
413, 2002.

[7]. D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, Fast Area Estimation to Support Compiler
Optimizations in FPGA-based Reconfigurable Systems, IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), Napa, CA, April 2002.

[8]. J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a content-
scanning module for an internet firewall”,. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 2003.

[9]. G. Papadopoulos and D. Pnevmatikatos, “Hashing + Memory = Low Cost, Exact Pattern
Matching,” in Proceedings of 15th International Conference on Field Programmable Logic and
Applications, Tampere, Finlad, August 2005

[10]. I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for a 10Gbps FPGA-
based network intrustion detection system”,. In Proceedings of International Conference
on Field Programmable Logic and Applications, 2003.

[11]. http://www.bleedingsnort.com
[12]. http://news.designtechnica.com/article2401.html.
[13]. SUIF Compiler System. http://suif.stanford.edu.
[14]. Machine-SUIF. http://www.eecs.harvard.edu/hube/research/machsuif.html .

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

[15]. Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. “Optimized Generation of Data-Path from
C Codes”. In ACM/IEEE Design Automation and Test Europe (DATE), Munich, Germany,
March 2005.

Int. Workshop On Applied Reconfigurable Computing (ARC 2006)• Delft, The Netherlands, March 1-3, 2006.

