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Abstract. Virus detection at the router level is rapidly gaining in importance. 
Hardware-based implementations have the advantage of speed and hence can support 
a large throughput. In this paper we describe an FPGA-based implementation of the 
Bloom filter virus detection code that is compiled from the native C to VHDL and 
mapped onto a Virtex XC2V8000 FPGA. Our results show that a single engine 
tailored for handling virus signatures of length eight bytes can achieve a throughput 
of 18.6 Gbps  while occupying only 8% of the FPGA area. 

1. Introduction 

Studies on economic impact of computer viruses have shown that global businesses 
incurred an estimated $55 billion in damages during the year of 2003 [12]. The report also 
estimates that the monetary losses due to viruses could further increase in the forthcoming 
years. Therefore, containing new virus outbreaks is one of the greatest challenges facing 
networks and organizations. One way to control virus outbreaks is to scan for viruses at the 
router/interconnection points. Packets generated from infected files contain signatures, 
which are strings that uniquely identify the presence of malicious code in an incoming 
packet. Signatures could be distributed anywhere within a packet or across packets. By 
accurately identifying signatures in incoming packets, malicious packets could be blocked 
at the router level, thereby making the networks more secure. 

Speed is the greatest concern while handling packets at the routers and hence, any 
router-level signature detection mechanism should be capable of identifying signatures 
accurately at high throughputs. This could be accomplished by a dedicated hardware (ASIC 
or FPGA) that inspects packets in parallel to detect signatures. Advances in high density 
FPGAs have provided designers with a viable commercial alternative to ASICs. Unlike 
ASICs, FPGAs do not require a prohibitively high cost of mask production. 

In this paper, we present ROCC, a C to native VHDL compiler framework. We 
demonstrate this tool by using it to generate hardware for Bloom-filter based virus 
detection. Our compiler framework can be easily adapted to accommodate new algorithms 
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for virus detection and our generated hardware achieves multi-gigabit throughputs. Our 
contributions in this paper can be summarized as follows. This paper presents the first work 
in which a Bloom-filter based virus detection system is automatically generated from C 
code. We illustrate that automatic code generation is a feasible option in terms of the 
performance and area utilization of the FPGA. Our 8-byte Bloom filter code delivers a 
throughput of 18.6 Gbps while occupying a modest chip area of 8%.  

2. Overview of the ROCCC C to VHDL Compiler  

ROCCC [15] is built on the SUIF2 [13] and Machine-SUIF [14] platforms. Figure 1 
shows ROCCC’s system overview. It compiles code written in C/C++ or Fortran to VHDL 
code for mapping onto the FPGA fabric of a CSoC device. In the execution model 
underlying ROCCC, sequential computations are carried out on the microprocessor in the 
CSoC, while the compute intensive code segments are mapped onto the FPGA. These 
typically consist of loop nests, most often parallel loops, operating on large arrays or 
streams of data. Therefore, most loop level analysis and optimizations are done at this 
level. Most of the information needed to design high-level components, such as controllers 
and address generators, is extracted from this level’s IRs.  

The front-end of ROCCC performs a very extensive set of loop analysis and 
transformations aiming at maximizing parallelism and minimizing the area. The 
transformations include loop unrolling and strip-mining, loop fusion and common sub-
expression elimination across multiple loop iterations. . The work reported in [7] shows 
that in less than one millisecond and within 5% accuracy compile time area estimation can 
be achieved. Information to generate high-level units, such as controllers and buffers, is 
also extracted from SUIF IRs. The restrictions on the C code that can be accepted by the 
ROCCC compiler, for mapping on an FPGA fabric, include no recursion, no usage of 
pointers that cannot be statically un-aliased. Function calls will either be in-lined or 
whenever feasible made into a lookup table. In the following section, we explain the 
operation of a Bloom filter for virus detection. 
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Figure 1 - ROCCC compiler framework 
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3.  Bloom Filters 

A Bloom filter [3] s a space-efficient data structure used to test the set membership of an 
element. An empty Bloom filter is described by an array of m bits, initially all set to 0. A 
Bloom filter uses K independent hash functions h1….hk with range {0… m-1}. Each of 
these hash functions map an incoming item to a number in the range of {0 …m-1}.During 
insertion, hash functions h1….hk are applied to the input item. Each return value from the 
hash function is used as an index to the Bloom filter (array of m bits) and the appropriate 
bit position is set to 1. A location can be set to 1 multiple times, but only the first change 
has an effect.  

During a search operation, the locations returned by the hash functions are checked to 
see if they are already set to ‘1’. If bit values in all the return locations are set, then the 
Bloom filter is said to contain the pattern else it is a miss. An item x belongs to the set S 
with some probability if all hi(x) are set to 1 for 1<i<k. .If not, then x is not a member of S. 
A Bloom filter may yield a false positive when it suggests that an element x belongs to S 
even though it does not. The probability of a false positive is given by 
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Where, k,m and n denote the number of hash functions, number of bits in the bloom 
filter array and the number of elements currently inserted into the bloom filter, 
respectively. In the event of a match in the Bloom filter, a detailed string matching is 
performed using a RAM to ensure that the hit was not a false positive.  

 
Figure 2 - The Bloom filter detects 

malicious packets at the network layer. The 
output of the Signature Processing Engine 
(SPE) is fed to the False Positive Eliminator 
(FPE) 

 
Figure 3 - Bloom filter code for identifying signatures 

of width 8 bytes each in a stream of size 256 bytes. The 
packet size is assumed to be 64 bytes. The data structure 
bit array is a Bloom filter of size 256 entries 
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A functional prototype of the Bloom-filter based intrusion detection system has been 
implemented. We used a Bloom filter of length 256 bytes to detect patterns of length 8 
bytes. Figure 2 shows the block diagram for a bloom-filter based virus detection system. 
Figure 3 shows a Bloom filter code that uses four hash functions on a 256 entry Bloom 
filter array. The hash functions are implemented as a simple XOR operation. The result of 
each hash operation sets a location in the Bloom filter. The compiler unrolls the inner most 
loop to compare the 8-byte patterns in parallel. We used the rule sets contained in bleeding 
snort database [11]. Each rule consists of two parts: a header and a rule option. The header 
is mainly used for packet classification and contains information like the protocol, source 
IP, source port, destination IP and the destination port. The rule option contains the 
signatures to be used in intrusion detection.   

Figure 5 shows the frequency of the signature width of all rules in the bleeding snort 
database. As evident from the figure, most of the rules present in the bleeding snort 
database have a signature width of less than 30 bytes. In the following section, we present 
the generation of datapath and throughput evaluation for the Bloom filter code. 

4. Datapath Generation and Throughput Analysis  

Figure 4 shows the three-stage pipeline for the generated Bloom filter circuit. The XOR 
operation shown in the figure represents each byte of the input being XOR ed with one byte 
of the hashing function. The location returned by the hashing function is looked up and if 
all four hashing function lookups return a value of ‘1’, then the circuit reports the current 
input pattern as malicious.  

The compiler groups the instructions in each node into different execution levels to 
exploit instruction (operation) level parallelism. Instructions at the same level are executed 
simultaneously. Every level of the dataflow graph corresponds to the instantiation of one 

 
Figure 4 - Three-stage pipeline for the Bloom 
filter signature code. Each box in the XOR filed 
represents a byte of the input being XOR ed 
with one byte of the hashing function 
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Figure 5 - Histogram of signature width for all 

rules in the snort database. The most frequently 
occurring signatures have a width of around 32 
bytes 
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loop iteration. ROCCC automatically places latches in the data-path for pipelining. Every 
latched level corresponds to one pipeline stage, and has a delay of one cycle.  

Our Bloom filter code does not have loop-carried-dependency and the compiler fully 
pipelines the data-path. Therefore, the generated data-path can be fed with new set of input 
every clock cycle and the throughput is one iteration per cycle. We process 8 bytes each 
iteration.  When we do loop unrolling, we assume that the memory-bus width also scales 
up with unrolling.  

The clock frequency of the FPGA was found to be 73 MHz.   The system uses a total of 
4692 slices, which accounts for 8% of the total FPGA area. The BRAM on our target 
FPGA (XC2V8000) can process 256 bits (32 bytes) per cycle. Hence, the BRAM can 
support eight such hardware instances during each cycle. The total throughput of our 
hardware is given by 

Throughput = bits per cycle * clock frequency  
T= 8 *32* 73* 10 6 bits/ sec. = 18.6  Gbps. 

The throughput shown above is for a system that detects multiple signatures of a single 
width. When multiple instances for each signature width are instantiated, the overall circuit 
area would also increase proportionately.  Synthesis tools tend to produce slower circuits 
when the design size increases.  However, with increase in area, the compiler produces 
more parallel iterations and hence, the performance loss due to decrease in clock speed is 
overcome by the increase in parallelism.  In order to provide a better insight into our 
estimated throughput values, we examine the throughput achieved by previously published 
works.  

5. Related work 

Hashmem [9] combines memory and hashing effectively to achieve exact matching of 
intrusion signatures at throughputs of up to 3.7Gbps while using nearly 0.15 logic cells per 
character. Baker and Prasanna [2] use automatic compilation to synthesize FPGA 
architectures that perform deep packet inspection at 10Gbps. Clark et al.[5] use NFAs with 
predecoded inputs to achieve excellent area and throughput performance. Lockwood et. 
al.[8] used the Field Programmable Port extender (FPX) platform for expression matching. 
Their synthesized circuit achieved clock speeds of 37MHz on a Virtex XCV2000E FPGA.  

Gokhale et.al [6] used CAM to implement snort rules on a Virtex XCV1000E FPGA. 
Their hardware delivered a throughput of 2.2Gbps. Cho et. al [4] generated structural 
VHDL for deep packet filtering on an FPGA. Their design runs at 90MHz on an Altera 
EP20K device and achieves a throughput of 2.88Gbps. Attig et. al..[1] have implemented a 
Bloom filter circuit on a Virtex E2000 FPGA. Their circuit operates at 62.8MHz and 
provides a throughput of 502Mbps. This paper presents the first reported work that 
automatically generates native VHDL for Bloom filter based intrusion detection code 
written in C.  
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6. Conclusion 

In this paper, we have described using ROCC, a C to VHDL compiler, to generate 
Bloom-filter based virus detection system on FPGAs. Ours is the first work that 
automatically generates VHDL for Bloom filter code written in C. We evaluate the 
performance and area of the synthesized hardware and prove that automatic compilation to 
hardware is a feasible design option. Our synthesized hardware runs at 73 MHz and 
delivers a throughput of 18.6 Gbps while occupying a modest FPGA real estate of 8%. 
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