
Towards In-Situ Data Storage

in Sensor Databases

D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos,
A. Mitra, A. Banerjee, W. Najjar

Department of Computer Science & Engineering
University of California - Riverside,

Riverside CA 92521, USA
{csyiazti, vana, dg, amitra, anirban, najjar}@cs.ucr.edu

Abstract. The advances in wireless communications along with the ex-
ponential growth of transistors per integrated circuit lead to a rapid
evolution of Wireless Sensor Devices (WSDs), that can be used for mon-
itoring environmental conditions at a high fidelity. Following the current
trends, WSDs are soon expected to automatically and continuously col-
lect vast amounts of temporal data. Organizing such information in cen-
tralized repositories at all times will be both impractical and expensive.
In this paper we discuss the challenges from storing sensor readings In-
situ (at the generating sensor). This creates a network of tiny databases
as opposed to the prevalent model of a centralized database that collects
readings from many sensors. We also discuss some of the inherent prob-
lems of such a setting, including the lack of efficient distributed query
processing algorithms for handling temporal data and the lack of efficient
access methods to locally store and retrieve large amounts of sensor data.
The presented solutions are in the context of the RISE (Riverside Sen-
sor) hardware platform, which is a wireless sensor platform we developed
for applications that require storing in-situ many MBs of sensor readings.

1 Introduction

The improvements in hardware design along with the wide availability of eco-
nomically viable embedded sensor systems enable researchers nowadays to sense
environmental conditions at extremely high resolutions. Traditional approaches
to monitor the physical world include passive sensing devices which transmit
their readings to more powerful processing units for storage and analysis. Wire-
less Sensor Devices (WSDs) on the other hand, are tiny computers on a chip
that is often as small as a coin or a credit card. These devices feature a low fre-
quency processor (≈4-58MHz) which significantly reduces power consumption,
a small on-chip flash card (≈32KB-512KB) which can be used as a small local
storage medium, a wireless radio for communication, on-chip sensors, and an
energy source such as a set of AA batteries or solar panels [9]. This multitude
of features constitute WSDs powerful devices which can be used for in-network
processing, filtering and aggregation [8, 7, 11]. Large-scale deployments of sensor
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Fig. 1. a) Soil-Organism Monitoring Application: Each sensor stores locally on external
flash memory the CO2 levels in a sliding window fashion. The user might then ask:
”Find the time instance on which we had the highest average CO2 levels in the last
month?”. b) Our platform: The RISE (Riverside Sensor), which is the first sensor
device that features a large external storage medium (an SDMedia flash card) .

network devices have already emerged in environmental and habitant monitor-
ing[17, 9], seismic and structural monitoring [12], factory and process automation
and a large array of other applications [18, 7, 8, 11].

Conventional approaches to monitoring have focused on dense deployed net-
works that either transfer the data to a central sink node or perform in-network
computation and generate alerts when certain events arise. An important at-
tribute of these applications is that the time interval between consecutive query
re-evaluations (epoch) is small because the applications require the ability to
quickly react to various alerts. For example, a query might continuously manip-
ulate the temperature at some region in order to identify fires or other extreme
situations (e.g. ”Find which sensors record a temperature>95F?”). Therefore the
querying node (sink) must continuously maintain an updated view of the values
recorded at the sensors [11, 7]. In such short-epoch applications, the frequency
of updates and the timely delivery of information from the sensors play a vital
role in the overall success of the system.

On the other hand, a class of applications that was not addressed to this
date are long-epoch applications. In these applications the user needs an answer
to his query more sparsely (e.g. weekly or monthly), although the sensor still
acquires data from its surrounding environment frequently (e.g. every second).
The user might then ask: ”Find the time instance on which we had the highest
average temperature in the last month?”. In order to evaluate this query using
current techniques would require each sensor to report all its values for the last
month. This happens because the data is fragmented across the different nodes
and an answer to the query can only be obtained after accessing all distributed
relations in their entirety. We call this type of in-situ data fragmentation vertical
partition, because each sensor’s timeseries is one dimension in the n-dimensional
space of sensor readings. This makes it a challenging task to answer user queries
efficiently.
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Our Contribution: In this paper we study the deployment of sensor devices
characterized by large external memories. This will allow each sensor node to
accumulate measurements over a large window of time, avoiding the multi-hop
burden of transferring everything to the sink. This creates a network of tiny
databases as opposed to the prevalent model of a centralized database that
collects readings from many sensors. We also address some of the inherent prob-
lems of such a distributed database setting. Specifically we propose efficient
distributed query processing algorithms for efficiently answering top-k queries in
a distributed environment. These queries have been extensively studied by the
database community and their task is to retrieve the k highest ranked answers
to a given query. An example of a top-k query might be ”Find the three moments
on which we had the highest average temperature in the last month?”.

Temporal and top-k queries are useful in a number of contexts. Our work
is motivated by the requirements of the Bio-Complexity and the James Reserve
Projects at the Center of Conservation Biology (CCB) at UC Riverside.1 CCB
is working towards the conservation and restoration of species and ecosystems
by collecting, evaluating scientific information (Figure 1a). The bio-complexity
project is designed to develop the kinds of instruments that can monitor the soil
environment directly, rather than in laboratory recreations.

We have developed the RISE platform, in which sensors feature a large exter-
nal memory (SD flash memory). RISE sensors are able to store measurements of
Carbon-dioxide levels in the soil as well as ambient sound from the surrounding
environment over a large period of time. This will allow scientists to monitor the
long-term behavior of certain soil micro-organisms and bird species.

We also address the efficient evaluation of top-k queries in our platform by
sketching an algorithm that estimates some threshold below which tuples do
not need to be fetched from the sensor nodes. Key ideas of our algorithm are
to transmit only the necessary information towards the querying node and to
perform the query execution in the network rather than in a centralized way.

2 The RISE Platform

The RISE (RIverside SEnsor) platform (see figure 1b) employs a System-on-
Chip interfaced with a large external storage memory, an off-the-shelf SD (Se-
cure Digital) media card, to develop a new paradigm of ”sense and store” as
opposed to the prevalent ”sense and send”. The RISE platform was conceived
by observing the twin trends of falling flash memory prices and the need of larger
memories on sensor devices for more efficient querying, processing and communi-
cation. Also, higher levels of device integration at low cost and size now provide
us with single chip solutions for most of the sensor and communication needs,
reducing complexity and improving performance. The RISE wireless platform is
built around the Chipcon CC1010 System on Chip (SoC), which together with
just a few external passive components and the required sensors constitutes a

1 http://www.ccb.ucr.edu/
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powerful, robust and versatile wireless embedded sensor system. The following
is a description of the important components of the RISE platform :

1. The MicroController Unit (MCU): The Chipcon CC1010 SoC is a true
single-chip RF transceiver with an integrated high performance 8051 micro-
controller and high end features which include a 32KB flash memory, an SPI
(Serial Peripheral Interface) bus, DES encryption, 26 general I/O pins and
many other components constituting it appropriate for a multitude of sensor
and computation needs.

2. The SD-Card interface: An SD-Card (Secure Digital Card) has been in-
terfaced to the main chip using the SPI bus equipping the RISE platform
with a large external storage memory (up to a 4 GB!). Data can be buffered
on the 32KB flash memory for efficiently reading and writing on the SD-Card.
Data is transferred to the SDCard in blocks of 512 bytes at a maximum rate
of 82KBps (although the SPI interface supports up to 3MBps). We have
developed tiny access method structures which are deployed directly on the
sensor. These provide efficient sorted and random access to local data in the
event of some query.

3. The OS & Compilation: To facilitate ease and modularity of program-
ming, we have ported the most prevalent design environment, the TinyOS
(version 1.1) and nesC (version 1.2alpha1), facilitating easier and modu-
lar programming, interfacing of an SD-CARD and developing the reactive
methodology of query based response on large datasets stored locally on the
nodes.

4. Deployed Sensors: The platform has a temperature sensor and is also be-
ing interfaced with a CO2 sensor and a microphone.

Note that the energy cost of writing to flash memory is much cheaper than
the RF transmission cost even in the case of a single hop. We have measured
the performance of transmitting one byte over the RF radio and found that it
requires 164 µJ while storing the same byte on the flash card requires 1.5 µJ.
Although writing to the external flash card can only be performed on a page-to-
page basis (i.e. 512 bytes), the 32KB on-chip flash memory allows us to buffer
a page before it is written out. This in combination of the fact that the energy
required for the transmission of one byte is roughly equivalent to executing 1120
CPU instructions, makes local storage and processing highly desirable.

3 The Query Processing Framework

In this section we expand on the class of queries we consider in the RISE plat-
form. This class represents queries that are interesting and important in our
framework that is characterized by long-epochs and large storage capacities at



5

individual sensors. We also describe and contrast alternative frameworks that
have been proposed for data acquisition in sensor networks.

3.1 Temporal and top-k queries in RISE

We use a query dissemination mechanism similar to the one described in [8, 7],
which creates a ”virtual” Query Spanning Tree (QST) interconnecting all nodes
in the network. This provides each node with the next hop towards the sink (See
Figure 1). Alternatively each node could maintain multiple parents in order to
achieve fault tolerance [1].

Let G(V, E) denote the undirected and connected network graph that in-
terconnects n sensors in V using the edge set E. The edges in E, represent
the virtual connections (i.e. nodes are within communication radius) between
the sensors in V . Also assume that each sensor has enough storage to record a
window of m measurements. Each measurement has the form (ts, val), where ts

denotes the timestamp on which the measurement was taken and val the record-
ing at that particular time moment.2 Essentially each sensor vi has locally the
following timeseries list(vi) = {oi1, oi2, . . . , oim}, where oij denotes the record-
ing of the ith sensor node at the jth time moment. Each time moment could
logically be viewed as a collection of n values. A node can maintain several lists
(e.g. temperature, humidity, others); for simplicity we assume that only one such
time-series is being maintained. We look at two main classes of queries.
Temporal Queries: The queries we consider allow the user to find the state of
the sensor network at different time intervals, but also to identify intervals that
certain conditions hold. Examples of such queries are: “Find the time intervals
such that the sensor values satisfy a given condition,” and “Given a sequence of
values, identify time intervals that show similar sequences in the values recorded
by the sensor.”
Top-k Queries: An example of a top-k query is “Find the k time instances
with the highest average reading across all sensors.” More formally, consider
Q = (q1, q2, . . . , qn), a top-k query with n attributes. Each attribute of Q refers
to the corresponding attribute of an object and the query attempts to find the
k objects which have the maximum value in the following scoring function:

Score(oi) =
n∑

j=1

wj ∗ simj(q, oi), where simj(q, oi) is some similarity function

which evaluates the jth attribute (sensor) of the query q against the jth attribute
of an object oi and returns a value in the domain [0,1] (1 denotes the highest
similarity). Since each sensor might have a different factor of importance, we also
use a weight factor wj (wj > 0), which adjusts the significance of each attribute
according to the user preferences. Note that, similarly to [4], we require the score
function to be monotone. A function is monotone if the following property holds:
if simj(q, o1)>simj(q, o2) (∀j∈m) then Score(o1)>Score(o2). This is true when
wj > 0.

2 Sensors are time synchronized through a lower layer mechanism (e.g. The Operating
System).
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4 Query Evaluation Techniques

From the sink’s point of view, denoted as v′, the data in this scenario is vertically
fragmented across the network. Therefore answering such a query would require
v′ to gather the whole space of n ∗ m values. In this section we sketch the TJA
algorithm which alleviates the burden of transferring everything to the sink.

4.1 A Taxonomy of Data Gathering Techniques

Below we provide a taxonomy of data gathering techniques as a function of the
available storage available at each node:

1. Sense and Send (SS): In this naive case each sensor node propagates its
generated value towards its parent every time such value becomes available.
This is, according to the terminology of [1], the LIST approach.

2. Sense, Merge and Send (SMS): In this scheme, each node aggregates
the values coming from its children before forwarding its values to its parent.
This is essentially the TAG approach [8]. In this scheme, all aggregates can
not be treated in the same way. For example Distributive Aggregates (e.g.
Sum, Max, Min, Count) can locally be aggregated into one value. Holistic
Aggregates (e.g. Median) on the other hand, can not be treated in the same
way as aggregation into one value could produce a wrong result.

3. Sense, Store, Merge and Send (SSMS): This is the scheme deployed in
our platform, RISE. Each sensor node maintains locally in the flash memory
a window of m measurements. This sliding window evolves with time, and
therefore, once the limit of the available storage is reached, at each new time
moment the oldest measurement is deleted. We note however that given the
capacities of flash cards m can be very large. Registered queries can perform
some local aggregation, if the correctness of the query outcome is not vio-
lated, before values are propagated towards the parent. Note that this is not
possible in current systems such as TinyDB [7].

The three gathering techniques outlined above basically represent the scale
of available memory at the sensor nodes (i.e. SSMS ⊃ SMS ⊃ SS). We believe
that although the SMS approach offers in practice the most efficient way to
cope with short-epoch applications, the SSMS approach is more practical for
long-epoch applications.

We note that under the SS model evaluating the kinds of queries we propose
requires sending all information to the sink. Under the SMS model we can de-
sign algorithms that perform aggregation or more sophisticated computation in
the network, there are however significant limitations. Due to the short-epoch
emphasis of this model when information gets older than the window of interest,
we have to discard this information or we have to transmit it for permanent
storage to the sink (or other specially designated nodes in the network).
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4.2 Providing Local Access Methods

Efficiently evaluating the queries described above requires efficient access to the
data that is stored on the ”external” flash memory. However, flash memory fea-
tures some distinct characteristics that differentiate it from other storage media.
Specifically, deleting data stored on flash memory can only be performed at a
block granularity (typically 8KB-64KB) and writing can only be performed at
a page granularity (typically 256B-512B), after the respective block has been
deleted. Finally, each flash page has a limited life-time (10K-100K writes), after
which the page wears out and can no longer be used. The problem of indexing
over magnetic disks and RAM memory is well studied in the database com-
munity, however indexing on flash memory in conjunction with the low energy
budget of sensor nodes introduce many new challenges. We have designed and
implemented efficient access methods that provide random and sorted access
to records stored on the flash medium. Our access methods serve as primitive
functions for the efficient execution of a wide spectrum of queries. Pages on the
flash card are organized as a heap file, which is naturally ordered by time. Note
that a flash card can only hold up to m pages (oi0..oim) and hence the available
memory is organized as a circular array, in which the newest oij pair replaces
the oldest oij pair if the memory becomes full.

i) Random Access By Value: An example of such operation is to locally
load the records that have a temperature of 95F. In order to fetch records by
their value we have implemented a static hash index with a swap directory that
gracefully keeps in memory the directory buckets with the highest hit ratio. We
use a static index as opposed to a dynamic hashing index, such as extendible
or linear, because the latter structures are considerably more power demanding
(i.e. due to page splits during insertions).

ii) Sorted Access By Value: An example of such operation is to locally load
the records that have a temperature between 94F-96F. An important observation
is that sensor readings are numeric readings in a discrete range (for example the
temperature is between -40F and 250F). In order to enable such range queries,
we currently use an extension of our random-access index in which we query
every discrete value in the requested range. However, we are also developing a
simple B+ tree index, which is a minimalistic version of its counterpart found
in a real database system. It consists of a small number of non-leaf index pages
which provide pointers to the leaf pages. In our current design, we keep a small
number of highly used non-leaf index pages (such as the root) in main memory.

4.3 Efficient Top-k Query Evaluation in RISE

We now sketch a Threshold Join Algorithm which is an efficient top-k query
processing algorithm for sensor networks. In the naive case, such queries could
be answered by transferring all sensor values to the sink and then find the correct
result. In our algorithm, we use an additional probing and filtering phase in order
to eliminate this expensive step. More specifically, we use the following phases:
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Fig. 2. The QST for two phases of the TJA Algorithm (the third phase is omitted as
it does not contribute to the final result). The table on the right shows the objects
qualifying in each phase.

1) the Lower Bound phase, in which the sink collects the union of the top-k
results from all nodes in the network (denoted as Lsink={l1, l2, . . . , lo}, o ≥ k),
2) the Hierarchical Joining phase, in which each node uses Lsink for eliminating
anything that has a value below the least ranked item in Lsink,
3) the Clean-Up phase, in which the actual top-k results are identified.

In figure 2, we can see the execution for the two initial phases of the algo-
rithm. In the illustration, each node [v1..v5] is assumed to have a local rank of
five objects [o1..o5] and the nodes are interconnected in a tree topology. The il-
lustration shows that the sink requires only to fetch the objects above the lower
line, which represents the execution of the second phase of our algorithm.

5 Experimental Evaluation

We have tested our top-k algorithm in a Peer-to-Peer network using a real dataset
of temperature measurements collected at 32 sites in Washington and Oregon.3

Each site (node) maintained the average temperature on an hourly basis for
208 days between June 2003 and June 2004 (i.e. 4990 time moments), and our
query was to find the 10 moments at which the average temperature was the
highest. Our algorithm uses our local access methods to execute efficiently. In
Figure 3a we compare our approach with the SS approach (sending all data over
the network), and our results indicate that SS consumes an order of magnitude
more network bytes than the SSMS approach. We also compare our approach
with a simpler approach that computes the scores of all tuples in the network,
combining partial results as data is transmitted to the sink. This approach does
not use any index methods, and can be implemented in the SMS framework.
Our preliminary results show that our approach significantly outperforms this
technique.

We have also calculated the energy gains that can be achieved by using the
sense and store methodology by measuring the energy consumption of storing

3 http://www-k12.atmos.washington.edu/k12/grayskies/ .
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data locally on flash card as opposed to blindly sending it over the wireless net-
work. Specifically, we used the RISE mote to measure the cost of transmitting
packages of various sizes over a 9.6Kbps radio (at 60mA) and storing the re-
spective data locally on flash (see figure 3b). In the case of 512B (one page),
we found that it takes on average 416ms or 82,368µJ . Comparing this with the
763.12µJ required for writing the same amount of data to local flash, along with
the fact that transmission of one byte is roughly equivalent to executing 1120
CPU instructions, makes local storage and processing highly desirable.

6 Related Work

There has been a lot of work in the area of query processing, in-network aggre-
gation and data-centric storage in sensor networks. To our knowledge, our work
is the first that addresses issues related to in-situ data storage in sensor devices
with large memories.

Systems such as TinyDB[7] and Cougar[11] achieve energy reduction by push-
ing aggregation and selections in the network rather than processing everything
at the sink. Both approaches propose a declarative approach for querying sensor
networks. These systems are optimized for sensor nodes with limited storage
and relatively short-epochs, while our techniques are designated for sensors with
larger external flash memories and longer epochs. Note that in TinyDB users are
allowed to define fixed size materialization points through the STORAGE POINT

clause. This allows each sensor to gather locally in a buffer some readings, which
cannot be utilized until the materialization point is created in its entirety. There-
fore even if there was enough storage to store MBs of data, the absence of efficient
access methods makes the retrieval of the desired values quite expensive.

A large number of flash-based file systems have been proposed in the last
few years, including the Linux compatible Journaling Flash File System (JFFS
and JFFS2)[15], the Yet Another Flash File System (YAFFS)[16] specifically
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designed for NAND flash with it being portable under Linux, uClinux, and Win-
dows CE. The first file system for sensor nodes was Matchbox and this is pro-
vided as an integral part of the TinyOS [5] distribution. Recently the Efficient
Log Structured Flash File System (ELF)[2] shows that it offers several advan-
tages over Matchbox including higher read throughput and random access by
timestamp. However the main job of a file system is to organize the sectors of
the storage media into files and directories and to determine whether these are
being used or not. Filenames are then accessible by their unique identifier (such
as an inode). Therefore a filesystem does not support retrieving records by their
value as we do in our approach.

An R-tree and B-Tree index structure for flash memory on portable devices,
such as PDA’s and cell phones, has been proposed in [13] and [14] respectively.
These structures use an in-memory address translation table, which hides the
details of the flash wear-leveling mechanism. However, such a structure has a
very large footprint (3-4MB) which constitutes it inapplicable in our context.

In Data Centric Routing (DCR), such as directed diffusion [6], low-latency
paths are established between the sink and the sensors. Such an approach is
supplementary to our framework. In Data Centric Storage (DCS) [10] data with
the same name (e.g. humidity readings) is stored at the same node in the net-
work, offering therefore efficient location and retrieval. However the overhead of
relocating the data in the network will become huge if the network generates
many MBs of GBs of data. Finally, local compression techniques, such as the
one proposed in [3], would improve the efficiency of our framework and their
investigation will be a topic of future research.

7 Conclusions

In this paper we discussed many of the data management issues that arise in
the context of the RISE sensor network platform. In RISE, sensors feature a
large memory which creates a new paradigm for power conservation in long
epoch applications. We believe that many applications can benefit from a large
local storage, as such storage can be used for local aggregation or compression
before transmitting the results towards the sink. We expect that this in addition
with the provisioning of efficient access methods will also provide a powerful new
framework to cope with new types of queries, such as temporal or top-k, that have
not been addressed adequately to this date. In the future we plan to investigate
the effectiveness of our framework in field experiments which will be conducted
in conjunction with the Center of Conservation Biology at UC-Riverside.
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