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Abstract 
Caches contribute to much of a microprocessor system's power and 
energy consumption. We have developed a new cache architecture, 
called a way-halting cache, that reduces energy while imposing no 
performance overhead. Our way-halting cache is a four-way 
set-associative cache that stores the four lowest-order bits of all 
ways’ tags into a fully associative memory, which we call the halt 
tag array. The lookup in the halt tag array is done in parallel with, 
and is no slower than, the set-index decoding. The halt tag array 
pre-determines which tags cannot match due to their low-order four 
bits mismatching. Further accesses to ways with known 
mismatching tags are then halted, thus saving power.  Our halt tag 
array has an additional feature of using static logic only, rather 
than dynamic logic used in highly associative caches. We provide 
data from experiments on 17 benchmarks drawn from MediaBench 
and Spec 2000, based on our layouts in 0.18 micron CMOS 
technology. On average, 55% savings of memory-access related 
energy were obtained over a conventional four-way set-associative 
cache. We show that energy savings are greater than previous 
methods, and nearly twice that of highly-associative caches, while 
imposing no performance overhead and only 2% cache area 
overhead. 
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1. Introduction 
Caches may consume nearly 50% of a microprocessor’s power 
[12][16]. Cache designers, for both high-end and embedded 
processors, must compromise between performance, cost, size, and 
power/energy dissipation. A fundamental cache design tradeoff is 
between a direct-mapped cache and set-associative cache. A 
conventional direct-mapped cache accesses only one tag array and 
one data array per cache access, whereas a conventional four-way 
set-associative cache accesses four tags arrays and four data arrays 
per cache access. Thus, a conventional direct-mapped cache 
consumes much less dynamic power per access than a 

set-associative cache. However, a direct-mapped cache may have a 
higher miss rate than a set-associative cache, depending on the 
access pattern of the executing application, with a higher miss rate 
meaning more power consumed in off-chip accesses and stalled 
processor cycles. Therefore, a direct-mapped cache may or may not 
result in less overall power and/or energy consumption for a 
particular application.  

Generally, we can view the low-dynamic-power cache design 
goal as that of minimizing the internal activity during a cache 
access. That activity comes from reading and comparing tags in tag 
arrays, and from reading/writing data in data arrays. Ideally, on a 
hit, we would have only read and compared one tag entry and 
accessed one data entry – we cannot do much better than that. 
Furthermore, on a miss, we would have only read and compared 
one tag entry, and accessed no data entries. In fact, on a miss, we do 
not even have to access a complete tag entry – seeing even one 
mismatched tag bit is enough to determine a miss. This last point 
provides the motivation for our way-halting cache. 

In this paper, we introduce a new cache design, which we call a 
way-halting cache, that reduces the cache’s internal activity to 
nearly the ideal minimums described above, without any 
performance overhead – neither in the critical path, nor in the hit 
rate.  

Our cache is four-way set-associative, though the method can be 
applied to any number of ways. We divide each of the four tag 
arrays into two sub-arrays: the first sub-array (the halt tag array) 
holds only the low-order four bits of each tag (we’ll explain later 
why we chose to use four bits), and the other sub-array (the main 
tag array) holds the remaining bits of each tag. A way-halting cache 
checks all the (four-bit) tags in the halt tag array in parallel with set 
index decoding, in contrast to other approaches that only check the 
tags in the cache set specified by the set index. The decoded index 
activates only the main tag array and data arrays of ways that have 
not been predetermined by the halt tag array check to be a mismatch 
– predetermined mismatches effectively halt the access to a way’s 
main tag array and data array. Note that way-halting does not 
impact the hit rate, as the hit rate is identical to that of a four-way 
cache – we’ve merely caused early termination of accesses to ways 
that are pre-determined to be misses. Furthermore, through careful 
design, we can create the halt tag array access and comparisons so 
they do not extend the cache’s critical path. We will show that a 
way-halting cache comes very close to halting three ways on a hit 
(and hence accessing only one way), and to halting all ways on a 
miss (and hence accessing no data) – both approaching the ideal 
minimums of cache access described earlier.  

A way-halting cache makes use of a fully associative memory for 
the four-bit-wide halt tag array. A key question is whether the 
power consumed by the fully-associative comparison in the halt tag 
array outweighs the power savings in the rest of the cache. Our 
experiments clearly show that the power savings are far greater. We 
also took special care to design that memory using static circuits, in 
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contrast to the dynamic circuits used in the content-addressable 
memories (CAMs) found in some modern highly associative cache 
architectures of embedded processors. Thus, our cache does not 
need special tools or libraries, and is therefore more widely usable 
by designers.  

The rest of this paper is organized as follows. In Section 2, we 
briefly review related work. We introduce our way-halting cache 
architecture in Section 3. The design of the halt tag array is 
discussed in Section 4. Energy savings of way halting cache are 
presented in Section 5. We compare way halting with other low 
power caches in Section 6. We summarize the paper in Section 7. 

2. Previous Energy-Efficient Cache Designs 
Numerous attempts to reduce cache dynamic power have been 
proposed in recent years. Most of them create designs that are a 
compromise between set-associative and direct-mapped caches.  A 
phased-lookup set-associative cache [5] accesses the tag arrays in 
the first phase, and then accesses only the one data array 
corresponding to the matching tag (if any) in a second phase. Power 
is saved by accessing at most only one data array, but at the cost of 
performance overhead due to two-phases and hence longer cache 
access time. A way-predicting set-associative cache [14] first 
accesses only the tag array and data array of one way that is 
predicted to be a hit. If a miss-prediction occurred, the rest of the 
ways are accessed in the following cycle. The prediction accuracy 
for instruction and data caches are reported to be 90% and 80%, 
respectively [14]. However, the miss-predictions result in 
performance overhead. A pseudo-set-associative cache [7] is a 
set-associative cache having one tag array and one data array like a 
direct-mapped cache. On a miss, an index bit is flipped and a 
second cache entry is checked for a hit – the first and second 
locations thus form a pseudo-set. Again, dynamic power is reduced 
at the expense of performance.  

Highly associative caches using CAM (content-addressable 
memory) tags have been utilized in low-energy embedded 
processors [18]. The high associativity in such caches is not for 
performance – beyond four or eight ways, the hit rate does not 
increase much with higher associativity for most applications – but 
rather due to the use of CAMs for tag comparisons. Our way-halting 
cache can save on average 20% more energy than the highly 
associative cache.  

Each approach reduces power in exchange for some cost. Note 
that any method that reduces power per cache access but increases 
time per access and/or increases the miss rate may actually result in 
higher overall energy, since energy is power times time. This fact 
makes the total memory-access related energy, not just the power 
per access, an extremely important metric when evaluating cache 
designs, and thus the metric we will utilize. 

Partial address matching [11][9] has been proposed to reduce the 
access time of set associative caches. Liu [11] investigated the 
possibility of improving the access time of a set associative cache to 
an approximation of a direct mapped cache with faster matches of 
five tag bits. Using the same observation, Juan [8] used one tag bit 
to distinguish the two ways of a two-way set associative cache to 
achieve an access time close to or equal to that of a direct mapped 
cache. To reduce energy dissipation, an adaptive serial-parallel 
highly-associative cache [4] reduces power by first checking only 
the least four significant tag bits of each tag, and only checking the 
remaining bits if the first four match, thus reducing tag comparison 
power only, at the expense of performance (25% slowdown is 
reported in [4]). Our way halting cache targets the conventional four 
ways set associative cache and the power consumed by both the tag 
and data ways are reduced without any performance overhead.  

3. Way-Halting Cache Architecture 
3.1 Baseline architecture  
Our way-halting cache architecture is shown in Figure 1. We utilize 
a four-way set-associative cache as our baseline architecture, since 
four ways yields a sufficiently good hit rate for most applications. 
We use an 8 Kbyte total cache size and a 32-byte line size, though 
our approach can be applied straightforwardly to caches with other 
numbers of ways, total size and line size. Our baseline cache thus 
has 64 sets. The architecture includes a 6x64 decoder, word line 
drivers, 4 tag arrays, 4 data arrays, sense amplifiers (SA), 
comparators, 1 multiplexor, and output drivers. The architecture 
also includes precharging circuits and write circuits that are not 
shown in the figure.  For such a cache, a memory address will be 
divided into a 6-bit index to determine the set, a 21-bit tag to 
determine a match, and a 5-bit offset to extract the appropriate bytes 
from a line. The index bits from a desired address are fed into the 
decoder. One decoder output will become high and is strengthened 
by a word line driver consisting of a pair of cascaded inverters (not 
shown in the Figure), activating four cache lines of the one set of 
the cache. Four tags and data arrays are thus read out 
simultaneously through the sense amplifiers. Four comparators 
compare the desired address tag with the tags read from the tag 
array to see which way (if any) is a hit. The data of the hit way is 
sent to microprocessor through the mux and output driver. 

3.2 Main idea – early detection of misses 
Given a four-way set-associative cache, four tags are checked for 
each cache access. At most, one of those tags may match, with the 
other three being mismatches. Usually, the mismatches occur in the 
low order bits. The intuition behind this phenomenon is the spatial 
locality of memory accesses with identical high-order address bits 
and hence identical high-order tag bits.  

Therefore, if we can somehow check the low-order bits of a tag 
early, we can detect most misses early, and so we can terminate the 
access to the full 21 bits of tag as well as to the data arrays before 
they consume power. We will show the impact of the number of 
low-order bits on the early miss detection shortly. 

3.3 Basic architecture 
To enable early detection of misses, we store the low-order four bits 
of each tag in a separate n-bit-wide memory. We call this memory 
the halt tag array in Figure 1. We call the remaining 
(21-n)-bit-wide tag array the main tag array, shown as tag’ in the 
figure. In a conventional cache, the desired address’ index is 
decoded, and the resulting decoder output line activates the read of 
the appropriate tag from the tag array, which is then compared with 
the desired tag. Decoding takes some time, during which we have 
the opportunity to check the halt tag array without increasing delay. 
Since the index has not been decoded yet, we do not know which 

 

 

 

 

 

 

 
 

Figure 1: Way-halting four-way set-associative cache architecture. 
Four bits of each tag is stored in a separate halt tag array for each 
way. The first inverter of the word line driver is replaced by a 
NAND gate. (SA= Sense Amplifier; tag’= main tag array). 
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tag in the halt tag array to read and compare – we therefore compare 
all the halt tags with the lower n bits of the desired address’ tag. We 
accomplish this by implementing the halt tag array as a fully 
associative memory, which we point out is only n bits wide (and 64 
rows long) where n is small, making such a memory feasible in 
terms of size and power. We will study the value range of n in 
Section 4.1. 

In a conventional cache, the address decoder would assert a 
single output line high, and that line would be strengthened by a 
pair of cascaded inverters to enable reading the appropriate row 
from the tag and data arrays. In our way-halting cache, that output 
line should be ANDed by the results of the halt tag array 
comparison for that row. In other words, only if the low-order four 
bits match should the cache continue to access the main tag array 
and the data array; if the halt tag was a mismatch, the output line 
should not go high. 

Adding an AND gate after the double inverters would lengthen 
the critical path. Instead, we can achieve the same logic by 
replacing the first inverter by a NAND gate as shown in Figure 1; 
the second inverter makes the total logic an AND. A NAND gate 
would normally be slower than an inverter. However, the first 
inverter of the cascaded inverters is typically small – the second 
inverter is instead appropriately sized larger to drive the signal. 
Thus, when replacing the first inverter by a NAND gate, we can 
increase the size of the NAND gate (actually, of its transistors) so 
that the gate’s switching speed is the same as the original inverter.  

3.4 Issues on virtually/physically addressed/tagged 
caches 
Our scheme requires that the tags are available no later than the set 
index. If the tag, but not the set index, needs to be first translated by 
a translation lookaside buffer (TLB), we have a problem since the 
halt tag array lookup cannot proceed. Such situations happen in a 
virtually-indexed and physically-tagged (V/P) cache as in the AMD 
K6 0, etc. Here, we briefly summarize four combinations of tag and 
data array addressing using either the virtual address or the physical 
address: virtually-indexed, virtually-tagged (V/V); 
virtually-indexed, physically tagged (V/P); physically indexed, 
virtually tagged (P/V), and physically-indexed, physically-tagged 
(P/P) cache. 

Apart from V/P, all other three cases, namely, the V/V, P/V, and 
P/P caches, meet our requirement that the tags are available before 
or at the same time with the index. For V/P caches, the physical tag 
will not be available until the address translation is finished through 
the translation lookaside buffer. This will influence the access time 

of our way halting cache. To solve this problem, we use a technique 
called page alignment or page coloring [17].  

The main idea of page alignment is that we require the least four 
bits of the virtual tags from the processor to be equal to the least 
four bits of the physical tags stored in the cache tags with the help 
of operating systems. For example, the version of UNIX from Sun 
Microsystems guarantees the virtual address and physical address 
are identical in the last 18 address bits [6]. With such an 
implementation, the halt tag array lookup can proceed before the 
physical tag is obtained from the TLB, avoiding delays in the 
original design. Therefore, the way halting cache can be used in all 
four types of caches. The main drawback of page coloring is that 
the cache cannot be larger than a page (for each way), but this is not 
a limitation for embedded systems.  

4. Designing the Halt Tag Array  
The most important component in a way-halting cache is the halt 
tag array, which must be designed not only to be faster than the 
index decoder does, but also to consume low enough energy so that 
we obtain overall energy savings. The two most important 
considerations in the design of the halt tag array are: (1) the bit 
width of the array, and (2) the implementation of the fully 
associative comparison circuitry.  

4.1 Bit width of the halt tag array 
We examined the impact of the halt tag array’s bit width on the 
number of ways that can be halted. Our goal was to find the 
minimum number of bits that halts nearly three of the four ways per 
hit, or conversely stated, activates only one of the four ways per hit. 
Theoretically, there are at least two bits across the four tags that can 
be used to differentiate any one from the others. However, to 
determine which such two bits to use is not an easy job since they 
vary from set to set. Dynamically determining the two bits is even 
more expensive in both delay and energy. Thus, a better solution is 
to use more bits in fixed positions to accommodate all the cache 
sets.  

The spatial locality of memory accesses results in the address 
sequences sent to the cache tending to be in the “near 
neighborhood.” In other words, only the low-order bits of addresses 
toggle most of the time. Thus, it is reasonable to use the low-order 
tag bits in the halt tag array. Subsequently, the number of low-order 
tag bits, i.e., the halt tag array bit width needs to be determined. The 
wider the array is, the more accurate the way filtering is, yet the 
higher the energy and time. We varied the bit width from 2 to 4 and 
measured the average number of ways that are activated. We 
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Figure 2: Average number of ways of instruction cache opened when 2-bit, 3-bit, and 4-bit are compared in parallel with address decoder. 
Ave_md and Ave_sp stand for average of Mediabench, and Spec 2000 respectively. 
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Figure 3: Average number of ways of data cache opened when 2-bit, 3-bit, and 4-bit are compared in parallel with address decoder. Ave_ps, 
Ave_md and Ave_sp stand for average of Powerstone, Mediabench, and Spec 2000 respectively. 
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simulated a variety of benchmarks for an 8 Kbyte, 32-byte line size 
cache using SimpleScalar [2]. The benchmarks included programs 
from Motorola’s Powerstone suite [12] (pjpeg, padpcm, auto2, bcnt, 
bilv, binary, blit, brev, crc, ucbqsort, fir, g3fax, and v42), 
MediaBench [10] (g721, jpeg, mpeg2, adpcm, epic, and pegwit) and 
eleven programs from Spec2000 [8] (gcc, art, mcf, parser, vpr, bzip, 
gzip, mesa, equake, ammp, and votex). We used the reference input 
vectors with each benchmark as program stimuli. We include data 
for every benchmark that we ran; we did not run all benchmarks 
from the various suites simply due to time constraints. 

The results are shown in Figure 2 and Figure 3 for instruction and 
data caches, respectively, with averages for each benchmark suite 
circled. Taking the Spec2000 result of an instruction cache (Figure 
2) as an example, the ideal average number of ways that should be 
opened is 0.97 (1 for hits and 0 for misses). Using 2, 3, and 4 bits in 
our halt tag array, the result is 1.55, 1.23, and 1.06 respectively. The 
reading for other benchmarks and Figure 3 is similar. We see that a 
bit width of 4 comes very close to the ideal situation of only 
accessing one way per hit and zero way per miss.  

 We also did the experiments using cache sizes of 16 Kbyte and 
32 Kbyte for four way set associativity, obtaining similar results. 
We did not do experiments for caches with associativity more than 
four, because when associativity is higher than four, the benefits of 
hit rate tend to diminish but with a longer cache access time that 
impacts microprocessor’s performance.  

4.2 Halt tag array fully-associative memory design 
Each halt tag array is a 64x4 fully associative memory. If we do not 
design that array properly, it may consume too much energy and 
hence mitigate savings obtained from halting ways.  

We first designed the halt tag array using traditional 10-transistor 
CAM cells utilizing dynamic circuit techniques, as found in 
highly-associative CAM-tag based caches. We laid out the halt tag 
array, as well as the rest of the cache including the main tag array 
and the data array SRAM, in a TSMC 0.18 micron CMOS 
technology obtained through MOSIS [13].  

However, we found that designing the halt tag array as a fully 
associative memory built using static circuit (SRAM-based) 
techniques resulted in a lower energy per access. This is because the 
switching activity in the halt tag array is not very high. Static 
circuits only consume power (dynamic power, that is) when the 
circuit’s inputs change, while dynamic circuits consume power even 
when there is no switching activity. We measured the percentage of 
the tag changes from the address streams sent to the instruction and 

data caches respectively. The results are shown in Figure 4. We 
observed that the data cache tag changes more frequently due to less 
spatial locality than the instruction cache, but changes are still not 
high on average. Furthermore, even when there is a change in tag 
bits, only a few comparator output bits change in the halt tag array, 
keeping the dynamic power low for our static circuit. Using a static 
circuit approach also has the advantage of adopting standard SRAM 
and logic tools off-the-shelf. 

The design of our halt tag array is shown in Figure 5. Here only 
one word of the array is depicted, which consists of four standard 
SRAM cells (two are shown). We also show a static comparator on 
the right hand side. The static comparator component must execute 
as fast as the address decoder component to avoid lengthening the 
critical path. We employed the same decoder architecture as in 
CACTI [15]. Both components have two levels of gates. We 
designed our XOR and NOR gates of the comparator to be as fast as 
the address decoder, through laying out our cache using Cadence in 
technology of 0.18um. We extracted the cache layout, obtained the 
net lists, and did the time simulation of the cache using Spectra, a 
tool from Cadence. The size of one static comparator is 3 µm x 
16µm. The total area overhead is less than 2% of the total cache 
area. 

5. Way-Halting Cache Energy Savings Results 
5.1 Energy modeling 
In order to evaluate the difference of energy dissipation between a 
way-halting and conventional set-associative cache, we consider 
only the energy dissipation per cache access in this section. In a 
later section, we will consider energy dissipation related to cache 
misses such as off chip memory and microprocessor stall energy. 

We computed energy as follows.  We use Edec, Etag, Edata, Epre, 
Ecom, Emux, ESA, and ECMP to represent the energy dissipation of the 
address decoder, one tag array, one data array, one way’s 
precharging circuit, one way’s comparator circuit, the mux and 
output driver, one way’s sense amplifier circuit, and a comparator, 
respectively. We use Econ and Ewh to represent the energy 
dissipation of a conventional four-way set-associative cache and of 
our way-halting cache, respectively. Thus, the energy of a 
way-halting and conventional four-way set-associative cache can be 
computed as follows: 

  Equation 1: 
Econ= Edec+Emux+4*(Etag +Edata +Epre +Ecom +ESA) 
Ewh=Edec +Emux+ n*(Etag +Edata +Epre +Ecom +ESA)+4* Etha 
 

n is the average number of ways that are activated of way-halting 
cache. It is easy to see that way halting and conventional four-way 
set-associative caches share the common decoder and mux. The 
difference is that a way-halting cache may access less than four 
ways of data and tag arrays. In addition, in our way halting cache, 
we have to consider the energy overhead of halt tag array, which is 
Etha. We laid out the cache using Cadence at technology of 0.18um. 

5.2 Energy savings  
Figure 6 provides energy savings, compared to a conventional 
four-way set-associative cache (whose energy is represented as 
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Figure 4:Tag address change frequency of data and instruction cache. 
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Figure 5: Design of a fully associative memory for the halt tag 
array, based on a static circuit only.  The sixteen input static 
comparator is composed of four XOR gates and one NOR gate. 
Eight inputs come from the SRAM cells that store the halt tag, 
while the other eight inputs come from the desired address’ least 
four-tag bits. 
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100%), of our way halting cache using a four-bit wide halt tag 
array. We show data for both the static and dynamic circuit 
implementations of the halt tag array. We see that a way-halting 
instruction cache using a static halt tag array (I$-static) consumes 
only about 30% of the energy of a conventional cache, meaning a 
70% savings. Likewise, the data cache (D$-static) results in a 65% 
savings. In contrast, the designs using dynamic halt tag arrays yield 
only about 45% savings for instruction and data caches. Energy 
savings were lower for all caches when we used 3 or 2 bit wide halt 
tag arrays – ranging from 2% to 18% lower. 

6. Comparison with Other Low Power Cache 
Architectures 
In this section, we compare the performance and energy 
consumption of the way-halting cache with previously proposed 
low-power cache architectures, including CAM-based highly 
associative, direct-mapped, way predicting, phased, and 
pseudo-set-associative caches, in terms of performance and energy. 

6.1 Performance 
Zhang et al. [18] argues that a CAM-based tag array in a 
highly-associative cache has comparable access latency with an 
SRAM-based tag array. In order to improve the speed of the CAM 
tag comparison, they split the match line and employ single-ended 
sense amplifiers on both segments of the split match lines. Their 
CAM timing process was not described in detail though a special 
timing pulse may be employed in their scheme.  

From the above discussion, we can conclude that a conventional 
cache, and hence our way-halting cache, has better, or at least as 
good, performance compared with a highly associative cache.  

Way-prediction does not prolong the access latency, but incurs 
extra cycles when there is a miss prediction. On average, the correct 
way is predicted for instruction and data accesses 90% and 80% of 
the time respectively [14]. The performance overhead of way 
prediction is around 3% due to miss prediction. A direct mapped 
cache has a faster access time than a four-way set-associative cache. 
In fact, it can be as high as 20% faster than a same size four-way 
set-associative cache [15]. A phased cache will not prolong the 
access time but needs two cycles instead of one cycle in a four-way 
set-associative cache. A pseudo-set-associative cache requires two 
extra cycles when there is a miss prediction. Figure 7 compares the 
normalized number of cycles needed to execute each benchmark we 
simulated. A CAM-based highly associative cache needs the lowest 
number of cycles, 97.9% of the conventional four-way 
set-associative cache. A way-halting cache needs the same number 
of cycles as the conventional four-way cache. Way prediction is the 
next best performing, followed by pseudo-set-associative and then 
phased caches. 

6.2 Energy 
Section 5.2 only considers energy per cache hit. In this section, we 
compute the overall energy consumption taking into account the 
off-chip memory and the processor core. The energy model is given 
in the following equations: 

1. overall_energy = no_of_hits * hit_energy + no_of_misses * 
miss_energy 

2. miss_energy = offchip_access_energy   + uP_stall_energy 
+ cache_block_fill_energy 

In the first equation, the no_of_hits and no_of_misses are 
obtained by running SimpleScalar with different cache 
configurations. The hit_energy is computed through simulation of 
circuits extracted from our layout of SRAM cache using Cadence 
[3]. 

Determining the miss_energy in the second equation is more 
involved. The offchip_access_energy value is the energy for 
accessing off-chip memory and the uP_stall_energy is the energy 
for the microprocessor when it is stalled due to cache misses. The 
cache_block_fill_energy is the energy to fill the cache with a new 
block. The first two terms are highly dependent on the memory 
model and microprocessor model used in a system. Results from 
one real system may be entirely different from another. Therefore, 
we choose instead to create a “realistic” system, and then to vary 
the configurations to see the impacts on energy distribution. We 
examined all three terms in equation 2 for typical commercial 
memories and microprocessors. We found that miss_energy is 50 to 
200 times the hit_energy. Thus, we remodeled the miss_energy 
using the following equation: 

3. miss_energy =  k_miss_energy * hit_energy 
We will consider the situations where k_miss_energy is equal to 

50 and 200 respectively.  
To make a fair comparison with highly-associative caches, we 

use the same number of sub-banks in our way halting and four-way 
set-associative cache so that the two caches have mostly the same 
features, such as data array access time, interconnection areas and 
length, etc. A highly-associative CAM tag based cache has larger 
area than an SRAM cache. Thus, our four-way way-halting cache 
will have shorter interconnections, and hence faster access time. 
However, we still assume both of them have the same access 
latency when comparing the energy dissipation and performance 
(thus, we are giving highly-associative caches an advantage). Figure 
8 show the energy dissipation of the way-halting, CAM-based 
highly-associative, direct mapped, way predicting, phased, and 
pseudo-set-associative caches, using k_miss_energy = 50. The 
energy is normalized with respect to a conventional four-way 
set-associative cache equaling 100%. We see that a way-halting 
cache is most energy efficient. Although the energy difference 
compared with some of the other cache designs may seem small, 
bear in mind that these savings come with no performance penalty 
compared to a four-way cache – refer back to Figure 7 to see the 
performance penalties of all the other approaches. 

We also generated the data for k_miss_energy = 200. 
Way-halting still dissipated the least energy on average, although 
highly-associative was more competitive – a high energy penalty 
(200) for off-chip access means that the slightly lower miss rate due 
to high-associativity saves more energy than the case of just a high 
penalty of 50. 
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Figure 6: Normalized energy dissipation when static and dynamic CAM comparators are used in parallel with decoder.  
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7. Conclusion  
A way-halting cache is able to save, across three different 
benchmark suites, an average of 45% to 60% of the energy of a 
conventional four-way set-associative cache, with only 2% area 
overhead, and no performance penalty – neither additional cycles 
nor longer critical path. That energy savings is better than previous 
approaches using regular associativity. Although the energy savings 
are only slightly better than some of those approaches, all those 
other approaches introduce performance overhead. Way-halting 
also saves energy over a highly associative approach (which has a 
slight performance advantage on average), while also using static 
circuits (SRAM) only and hence using standard memory compilers 
and tools.  We designed the way-halting cache using a 
combination of architectural and layout methods. A key feature of 
our design is the use of a small fully associative memory for the halt 
tag array based on a static circuit rather than a dynamic one, with 
the static circuit saving more power because of the tendency of 
address tags to stay the same.  
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Figure 7: Total cycles for various cache designs, for MediaBench and Spec2000 benchmarks, normalized to a conventional 4-way cache.  
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Figure 8: Energy dissipation for various cache designs, for MediaBench and Spec2000 benchmarks, normalized to a conventional 4-way cache. 
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