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R E S E A R C H  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

High-Level Language
Abstraction for
Reconfigurable
Computing

O ne consequence of increasing VLSI system
speed and circuit density is the growing
viability of field programmable gate
arrays as platforms for reconfigurable
computing systems. RC systems typically

consist of an array of configurable computing ele-
ments. The computational granularity of these ele-
ments ranges from simple gates—as abstracted by
FPGA lookup tables—to complete arithmetic-logic
units with or without registers. A rich program-
mable interconnect completes the array.

The pros and cons of fine- versus coarse-grained
reconfiguration have been widely discussed.1

Although several projects have investigated and suc-
cessfully built systems in which the reconfiguration
is done within a processor or among processors, we
restrict our focus to the more common FPGA-based
systems.

FPGA ADVANTAGES
Computing with FPGAs offers many advantages

over traditional von Neumann processors. If the
computation supports it, FPGA circuits can be mas-
sively parallel and customized to the task, whether
this requires task, data, or pipeline parallelism, or
a mixture thereof. FPGA circuits also can be spe-
cialized in terms of bit resolution: If a program
needs to add a 9-bit value to a 12-bit value, it can
construct a specialized adder for this task, rather

than wasting circuitry with a standard 32-bit adder. 
Implementing the program as a circuit with data

streaming through it eliminates all the logic associ-
ated with instruction and address decoding. As a
result, FPGAs can achieve speedups several orders
of magnitude greater than that of traditional von
Neumann processors,1,2 as well as a significant
reduction in energy consumed—an important con-
sideration for mobile devices.3 As VLSI technology
increases in both density and speed, more interest in
and opportunities for this technology will arise.

PROGRAMMING LIMITATIONS
Programmability provides the most daunting

challenge developers face when using RC systems.
In a typical design flow, the developer manually par-
titions an application into two segments: a hard-
ware component that will execute as a circuit on
the FPGA and a software component that will exe-
cute as a program on the host. The developer
expresses the hardware component in a hardware
description language such as VHDL or Verilog. The
software component works as a driver, feeding
input data to the FPGA and collecting output data.

This time-consuming approach to circuit design is
a tedious process because complex algorithms must
be expressed in terms of bits, registers, and clock sig-
nals. Moreover, because they typically lack circuit-
design skills and knowledge of hardware description
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to an FPGA-based reconfigurable computing system.
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languages, application programmers tend to find
hardware design paradigms inaccessible.

SINGLE-ASSIGNMENT C
To overcome these problems, we developed a

complete, automated compilation path from an
algorithmic programming language to an FPGA-
based reconfigurable computing system. The high-
level language, a variant of C called Single-
Assignment C, expresses image processing applica-
tions at a high level. 

SA-C is amenable to efficient compilation into
fine-grained parallel hardware systems because it
hides the details and intricacies of low-level hard-
ware design. At the same time, the SA-C compiler
leverages extensive optimizations and code trans-
formations to increase the speed and reduce the size
of the resulting circuit.

Design challenges
Initially, we hesitated to design a new program-

ming language. Most application developers,
already trained to use C and C++, are under- 
standably reluctant to learn a new language.
Unfortunately, C is inextricably linked to the von
Neumann processor model, in which variables cor-
respond to memory locations and function invo-
cations reside on stacks. For example, C lets users
manipulate pointers to memory and to functions,
which does not make sense in an FPGA circuit
model. Thus any attempt to compile C to FPGA
configurations would encounter problems that
derive purely from the C language, not from the
image-processing application.

At the same time, simply compiling a subset of
C to FPGAs might not always be efficient because
the disallowed operators would almost certainly be
present in any existing C program.4 This would
then require rewriting existing programs for that
C subset. For example, it would be difficult to write
efficient code for processing images or other mul-
tidimensional arrays in C without pointer manip-
ulation. Thus, developers would need to add new
facilities to C to compensate for any disallowed
operators. When developers work with both
restricted and extended C, they essentially create a
new programming language, or at least a signifi-
cantly different dialect of C.

SA-C restrictions
As the name suggests, SA-C’s most important

restriction in comparison to C is that the value of any
variable can be set only once, when the variable is
declared. Many functional programming languages
use this single-assignment restriction, which breaks
the von Neumann equivalence between variables and
memory locations. Since variables can be set only
once, they correspond to values, not addresses, and
can be assigned directly to wires. SA-C also removes
the C dereferencing and address operators, thus elim-
inating pointers, and forbids recursion.

To compensate for these restrictions, SA-C intro-
duces true multidimensional arrays, including
arrays whose size is unknown at compile time.
More significantly, it also introduces new versions
of the for loop that exploit multidimensional
arrays, allowing users to apply a loop body for
every element, window, or dimension of an array.
A reduction clause at the bottom of the loop body
either collects values into a new array or applies a
reduction operator to values it produces. Most of
the code translated into FPGA configurations takes
the form of these extended loops.

To take advantage of an FPGA’s ability to create
arbitrarily sized circuits, SA-C adds variable-bit-
precision integers and variable-bit-precision fixed-
point numbers to C. It also allows any function,
loop, or conditional expression to return multiple
values—a significant feature given the single-assign-
ment restriction. 

Compiler optimizations
The SA-C compiler supports a wide range of opti-

mizations aimed at producing a more efficient hard-
ware execution. Most of these optimizations seek to
reduce the circuit’s size, propagation delay, or I/O
requirements. SA-C optimizations5-7 include tradi-
tional methods such as constant folding, operator-
strength reduction, function in-lining, dead-code
elimination, invariant-code motion, and common
subexpression elimination. 

Other optimizations are specific to SA-C or
adapted from vector and parallel compilers or syn-
thesis tools. These include bit-width narrowing, loop
unrolling, loop fusion, strip mining, and temporal
common subexpression elimination.

Figure 1 shows an example of the SA-C code for
a convolution with a window of size [r,c] of a fixed-
array kernel over the array image. Both the kernel
and image arrays would have been declared earlier
in the program. The value conv is declared to be an
unsigned eight-bit integer, which means that, irre-
spective of the kernel and image arrays’ element size,
the result of each convolution will be cast to a
uint8 size.

//convolution inner loop
result[:,:] = 
       for window win[r,c] in Image
            {uint8 conv = 
                 for elem1 in win dot elem2 in Kernel 
                 return(sum(elem1*elem2)); 
            } 
       return(array(conv)); 

Figure 1. Convolu-
tion example in SA-
C. Irrespective of
the kernel’s and
image arrays’
element size, the
result of each con-
volution will be cast
to a uint8 size.
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Other languages
SA-C differs significantly from other efforts to

map higher-level languages to hardware. Handel-
C (www.celoxica.com) programs more closely
resemble hardware than SA-C programs: The user
must explicitly specify both timing and parallelism.
The Ocapi (www.imec.be/ocapi) and SystemC
(www.systemc.org) C++ extensions work with class
libraries to create an application at a high level,
then gradually migrate certain parts of the code
toward a more explicit hardware description.

Perhaps the closest language to SA-C is Streams-
C,8 but while SA-C emphasizes loops and arrays,
Streams-C emphasizes streams and processes. SA-
C has also built on the experience of previous sin-
gle-assignment languages such as Sisal (http://sisal.
sourceforge.net).

SA-C advantages
SA-C was not conceived to be a stand-alone lan-

guage. Rather, we assume that developers would
rewrite selected loops and functions of existing C
programs in SA-C and incorporate them in the orig-
inal program. The SA-C compiler would then map
these segments to hardware. Actually, SA-C does not
support any file I/O operations because we assumed
that such operations will be carried out in C.

SA-C also allows importing VHDL codes: The
programmer can use a pragma to specify a func-
tion to be a VHDL code. The compiler will then
insert this code and connect it properly to the rest
of the circuit during the dataflow graph-to-VHDL
translation phase. This feature lets the program-
mer use existing highly optimized VHDL codes
with SA-C. 

COMPILING SA-C TO HARDWARE
Figure 2 shows the overall SA-C design flow. SA-

C programs compile to FPGA configurations and
an accompanying C program that manages the
FPGA’s download of the configuration and data,
triggering, and uploading of results. Thus, from an
application developer’s viewpoint, SA-C programs
resemble any program running on a more tradi-
tional processor. 

The compiler maps SA-C programs to executa-
bles, which the system invokes like any other pro-
gram on the host. The program’s execution speed
provides the only clue that part of the program was
actually mapped to a circuit and executed on a
reconfigurable coprocessor. 

As Figure 2 shows, the SA-C compiler generates
two executables: a host code that executes on the
host PC and drives the execution on the FPGAs,
and an FPGA configuration file. 

First, the compiler analyzes the SA-C source code
to find parallel loops it can execute on an FPGA. It
then translates all sequential code to C and includes
it in the host program. Code targeted to the recon-
figurable hardware then undergoes a series of rep-
resentational transformations that bridge the gap
between high-level source code and FPGA config-
urations. 

Hierarchical dataflow graphs
The compiler then translates the SA-C loops into

a data-dependence and control-flow graph. This
hierarchical dataflow representation reflects the
source program’s structure in terms of function calls
and nested loops. Once the compiler translates the
program into a DDCF graph, it begins a series of
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Figure 2. SA-C
design flow. The SA-
C compiler
generates two exe-
cutables: a host
code that executes
on the host PC and
drives the execution
on the FPGAs, and
an FPGA configura-
tion file.
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transformations aimed at optimizing these execu-
tions by increasing parallelism as well as decreas-
ing the circuit size. 

This process flattens the DDCF graph structure,
eventually producing a nonhierarchical dataflow
graph. DFGs are token-driven structures whose
nodes correspond to operations and whose edges
correspond to wires. As such, DFGs provide
abstract circuit descriptions, without timing infor-
mation or resource contention. 

Loop fusion, one possible optimization in the
DDCF-to-DFG translation, fuses two or more
loops into a single loop body. When loops cannot
be fused, a single DDCF graph will produce mul-
tiple DFGs, each of which leads to an independent
FPGA configuration. 

Architecture graphs
Once it has optimized the DFGs, the compiler

translates them into abstract hardware architecture
graphs, which differ from DFGs in that they
include timing information. An AHA graph con-
sists of several sections that resemble pipeline
stages. Arbitrators in the AHA execution model
control access to shared resources such as local
memories.

After a final round of low-level machine-depen-
dent optimizations, the compiler translates AHA
graphs into VHDL. We use commercial tools—
such as the Synplify synthesis tool from Synplicity
(www.synplicity.com) and the Xilinx M1 place and
route tool (www.xilinx.com)—to synthesize, place,
and route the VHDL program. 

A simple program that produces the absolute
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Figure 3. Dataflow
and abstract hard-
ware architecture
graphs. &A and &B
are the A and B
arrays’ starting
addresses, n is 
the array size.

uint1[:,:] main(uint8 Image[:,:]) 
{
   // the horizontal and vertical masks
   int16 H[3,3] = {{-1, -1, -1}, {0, 0, 0}, {1, 1, 1}};
   int16 V[3,3] = {{-1,  0,  1}, {-1, 0, 1}, {-1, 0, 1}};

   //Prewitt edge detection code
   int16 R[:,:] = for window W[3,3] in Image {
      int16 iph, int16 ipv = for h in H  dot  w in W  dot v in V
                                       return(sum(h*w), sum(v*w));
      int16 SqrtSumSquare = sqrt(iph*iph + ipv*ipv);
   } return( array(SqrtSumSquare) );

   //Threshold code
   uint1 T[:,:] = for pix in R{ uint8 t = pix>127 ? 1 : 0;}
                       return(array(t));
} return(T);
(a)

uint8 T[:,:] = for window W[4,3] in Image step(2,1) {
//compute the left [3,3] window 
int8 iph1 =  (W[0,2]+W[1,2]+W[2,2]) - (W[0,0]+W[1,0]+W[2,0]);
int8 ipv1 =  (W[2,0]+W[2,1]+W[2,2]) - (W[0,0]+W[0,1]+W[0,2])
uint8 mag1 = sqrt(iph1*iph1 + ipv1*ipv1);
uint8 t1 = mag1 >127 ? 255 : 0;

//compute the right [3,3] window
int8 iph2 =  (W[1,2]+W[2,2]+W[3,2]) - (W[1,0]+W[2,0]+W[3,0]);
int8 ipv2 =  (W[3,0]+W[3,1]+W[3,2]) - (W[1,0]+W[1,1]+W[1,2]);
uint8 mag2 = sqrt(iph2*iph2 + ipv2*ipv2);
uint8 t2 = mag2 >127 ? 255 : 0;
uint8 t[2,1] = {{t1},{t2}};

//return the result of both window computations as a [2,1] tile
                      } return(tile(t) );
(b)

Figure 4. Prewitt edge detection followed by a threshold operator. (a) The origi-
nal code, before optimization; (b) the same code, expressed as a fragment of SA-
C code, after loop-unrolling, index propagation, loop fusion, and strip mining
optimizations.
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value of every element in an array illustrates these
transformations:

B[:,:] = for a in A
return(array(abs(a))

The program uses SA-C specialized for loop to 
iterate over all the elements in the array and collect
absolute values in a new array. Figure 3 shows the
DFG graph of the loop with the inlined abs func-
tion and the AHA graph of the same code. The
DFG inputs represent the starting address of the
input array A, the input array size, and the start
address of the result array, respectively. Inputs to
the AHA graph are the same as for the DFG.

COMPILER OPTIMIZATION EFFECTS
Figure 4 shows the effects of compiler optimiza-

tions expressed at the source-code level on a simple
program with the Prewitt edge-detection operator,
followed by a threshold. Figure 4a shows the orig-
inal code, while Figure 4b shows the same code
after optimization.

The Prewitt edge detector computes the convo-
lution of every 3 × 3 window in an image with ver-
tical and horizontal masks. Next, it computes the
square root of the sum of the two results, squared.
A threshold operator then creates a binary image,
depending on whether the edge magnitude at every
pixel is above or below a given value—in this case,
127.

The optimizing compiler unrolls the convolu-
tion’s inner loop with the vertical and horizontal
masks, folds the masks’ constant values into the
unrolled inner loop, propagates the constant
indices, and fuses the Prewitt and threshold loops
into a single loop. That loop is then strip-mined
into two concurrent loop bodies. 

Strip mining is a pragma-directed optimization
in SA-C that reduces I/O. Without strip mining, the
system reads every row of the image three times,
except fringe rows, whereas in the strip-mined case

the system reads every row only twice. Depending
on the FPGA’s capacity, strip mining can be in-
creased, thereby further reducing I/O traffic. Strip
mining also increases parallelism, because it com-
putes two or more output values at the same time,
thus creating additional opportunities for common
subexpression elimination. 

Figure 5 shows the results of these execution-time
optimizations on a Xilinx Virtex 1000 FPGA. Table
1 shows the effect on chip area utilized and circuit
frequency. The fused loops occupy a smaller area
on the FPGA than the two separate loops. The
clock speed is within the same range.

Most compiler optimizations have an impact on
the area the resulting FPGA circuit uses. Because the
FPGA does not have infinite resources, the compiler
must be aware of these optimizations’ area costs. 

We have developed a compile-time area-estima-
tion tool that generates an estimate of the circuit
area in less than one millisecond.9 The tool’s aver-
age accuracy on a large number of codes is plus or
minus 5 percent. 

PERFORMANCE EXAMPLES 
The implementation and performance of three

code examples from linear algebra, image process-
ing, and image compression provide examples of
how SA-C works. 

We ran the SA-C versions of these codes on the
Annapolis Micro Systems’ WildStar board (www.
annapmicro.com). This board consists of three
Virtex E 2000 FPGAs and 24 Mbytes of onboard
SRAM memory. All the codes ran on a single FPGA.
The C versions of these codes ran on an 800-MHz
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Table 1. Experimental results with image-processing programs.

FPGA clock SA-C execution PC execution 
Code (MHz)  time (ms) time (ms) Speedup Comments
Wavelet 35.1 2.1 77.0 36.6 C++ code on PC  
Canny 32.2 6.0 850.0 142.0 C code on PC  
Canny MMX 32.2 6.0 135.0 22.5 MMX code on PC  
Prewitt 42.1 1.9 158.0 83.0 MMX code on PC  
AddS 51.7 0.67 5.95 8.8 MMX library call  
Probing 41.1 80.00 65,000.00 800.0 C code on PC  
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Pentium III. Whenever feasible, the C implementa-
tion used the MMX extensions, in particular the
Intel Image Processing Library (www.intel.com).

Wavelet image encoding
This program provides an implementation of the

Cohen-Daubechies-Feauveau wavelet image-com-
pression code.10 It generates four images—each a
quarter the size of the original—consisting of the
original image as well as the image intensity dif-
ferentials:

We implemented the wavelet image-compression
code in C on an Intel Pentium.

Canny edge detection
A commonly used edge-detection code, the

Canny benchmarks is based on an algorithm11 that
consists of four steps: 

1. Image smoothing. Convolution with a Gaussian
mask smoothes the image.

2. Edge magnitude and direction computation. To
compute edge magnitudes and edge directions,
the algorithm uses two 5 × 1 edge masks. The
masks give estimates of intensity surface dx and
dy. The edge magnitude is the square root of
(dx*dx + dy*dy). The edge direction ±p is
coarsely quantized into four buckets of width
p/4, based on the ratio of dx to dy. 

3. Directional edge suppression. To avoid thick
edges from long, slow gradients, the algorithm
does nonmaximal suppression in the gradient’s
direction only. After suppression, the algorithm
compares edges against two thresholds and clas-
sifies them as nonedge, low-edge, or high-edge.

4. Connected-components algorithm. A pixel is
said to be an edge if, after nonmaximal sup-
pression, it lies above the high threshold or above
the low threshold and next to another edge pixel.

We implement the algorithm’s first three steps, but
not the fourth. We then compare the Canny code’s
runtime performance to two implementations on
an Intel Pentium:

• a C++ version that, when feasible, uses the Intel
Image Processing Library; and

• another Intel implementation in x86 assembly
code. 
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Prewitt edge detection
The Prewitt edge-detection algorithm convolves

every 3 × 3 window in an image with a horizontal
and a vertical mask, as shown in Figure 4. The algo-
rithm computes the edge magnitude by obtaining
the square root of the sum of the squares of the
convolution response. The SA-C implementation
is compared to a C code that uses the Intel MMX
library for convolution.

AddS MMX library
AddS is an MMX library that adds a scalar value

S to each pixel in an image. It is a very small piece
of code, hand-optimized for MMX execution.

Probing ATR algorithm
Probing, an automatic target-recognition algo-

rithm, matches 243 templates representing three
vehicles onto a 512 × 1,024 image of 12-bit pixels.12

The algorithm applies each template—called a probe
set—to every pixel in the image. On a PC, the pro-
gram executes more than 60 billion instructions. The
SA-C implementation executes 400 concurrent loop
iterations on three Xilinx Virtex E 2000 FPGAs.

P erformance evaluation of the high-level, algo-
rithmic language SA-C for one-step compila-
tion to host code and FPGA configuration

codes has just begun. We are porting the system to
a more complex board that contains three FPGAs.
As performance issues become clearer, the system
will be given greater ability to evaluate various met-
rics, including code space, memory use, and time
performance, and to evaluate tradeoffs between
conventional functional code and lookup tables. �
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