
Power Efficient Encoding Techniques for Off-chip Data
Buses

Dinesh C Suresh Banit Agrawal Jun Yang Walid Najjar Laxmi Bhuyan
Computer Science and Engineering

University of California, Riverside, CA 92521
{dinesh, bagrawal, junyang, najjar, bhuyan}@cs.ucr.edu

ABSTRACT
Reducing the power consumption of computing devices has
gained a lot of attention recently. Many research works have
focused on reducing power consumption in the off-chip buses as
they consume a significant amount of total power. Since the bus
power consumption is proportional to the switching activity,
reducing the bus switching is an effective way to reduce bus
power. While numerous techniques exist for reducing bus power
in address buses, only a handful of techniques have been
proposed for data-bus power reduction, where Frequent Value
Encoding (FVE) is the best existing scheme to reduce the
transition activity on the data buses.
In this paper, we propose improved frequent value data-bus
encoding techniques aimed at reducing more switching activity
and hence, more power consumption. We propose three new
schemes and five new variations to exploit bit-wise temporal and
spatial locality in the data bus values. Our technique does not use
additional external control signal and captures bit-wise locality
to efficiently encode data values. For all the embedded and SPEC
applications we tested, the overall average switching reduction is
53% over unencoded data and 11% more than the conventional
FVE scheme.

Categories and Subject Descriptors
C.4 [performance of systems]: Design studies – data bus
encoding, low power design.

General Terms
Algorithms,Measurement, Performance, Design, Experimentation.

Keywords
Low power, bus encoding, data bus, FV, FV-MSB-LSB

1 INTRODUCTION
Power consumption is becoming an increasingly critical design
criterion for embedded systems and especially more so, for
mobile computing devices [12]. This is because those devices
draw their current from batteries that place a limited amount of
energy at the system’s disposal. Consequently, reduced power and
energy consumption of embedded devices translates to longer

battery lives and reduced cooling requirements.

Off-chip and On-chip bus lines in VLSI circuits are associated
with very large capacitances and they have been shown to be a
major contributor to a system’s total power consumption [13].
The power consumption in the bus drivers is in direct proportion
to the product of the average number of signal transitions and the
line capacitance. It has been shown that the capacitive load of off-
chip buses is orders of magnitude larger than that of internal
switching nodes [6][7][15], and this trend is likely to continue
[12]. Hence, at the expense of a small internal energy cost, if one
can encode data prior to transmission, significant bus power can
be saved during off-chip-transmission.

Both off-chip address buses and data buses are potential targets
for bus encoding. Most of the previous research [1][8][3] have
focused on address bus encoding to exploit the sequential and
stride behavior of instruction and data addresses. However,
encoding data values on off-chip data-buses is not that easy since
the data streams are less regular than address streams. Data bus
encoding schemes like bus-invert coding[14], adaptive coding[3]
and frequent value encoding [1][16] do not assume any prior
knowledge of the application. This is highly desirable because in
many application- domains knowing the data in advance might
prove to be a very stringent requirement.

Bus-invert coding transfers a data value either in its original form
or in its complement form depending on whose hamming distance
with the previous bus transmission is smaller. It is a simple
method that assumes values are uniformly distributed across the
entire representable space. The adaptive encoding scheme, taking
the next step further, is capable of on-line adaptation to the value
streams by learning the statistics on the fly. As collecting the
accurate statistics for the value streams can be very expensive, the
proposed adaptive encoding operates bit-wise rather than word-
wise. Thus, it looses the correlation among the bits within a single
value.

The frequent value-encoding (FVE) scheme is by far the most
effective way of reducing the transition rate for data buses. It is
based on the observation that a sizeable amount of data values
occurs frequently within a certain time window (or, temporal
locality) [17]. Thus, reoccurring frequent values can be
transmitted using minimum number of bus switches, namely 1.
This technique has been shown to work very well for off-chip
data buses. Lv et.al. [10] proposed an adaptive dictionary based
scheme (ADES) for data buses that exploits the correlation
between adjacent bits of a word sent on the data bus.

The original FVE scheme is limited by the number of FV’s
captured in the encoder and the decoder [16]. In this paper, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES ’03, Oct 30 – Nov 2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010…$5.00.

walid najjar
Int. Conf. on Compilers, Architectures and Synthesis for Embedded Systems (CASES), October 2003, San Jose, CA.

first propose a new data bus encoding technique that exceeds this
limit to encode far more number of FV’s. To do so, we multiplex
the data bus with encoding results from multiple encoders that
serve different purposes. The most important difficulty we solved
here is not to increase the number of control signals outside the
data bus. Secondly, the original FVE scheme exploits temporal
locality in full-width data value streams but it has overlooked the
abundant temporal locality available in partial-width data value
streams. We therefore propose a few more innovative schemes to
exploit temporal locality in partial-width data values.

Our schemes make no prior assumptions regarding the data and
are truly dynamic in nature. Besides encoding entire data values,
we encode the MSB and LSB portion of the data values whenever
possible. Our encoding schemes are also capable of maintaining a
larger history of data values than the maximum possible history
length in the FVE scheme and hence, our schemes have a higher
probability of encoding incoming data values.

In the next section, a brief overview of general bus encoding
scheme and frequent value bus encoding scheme are provided. In
section 3, we provide the intuition behind our schemes. Then in
section 4, we describe all the proposed schemes in detail. We
describe our experimental setup in section 5. Power and delay
analysis are discussed in Section 6. Section 7 concludes.

2 BACKGROUND
Figure 1 shows a symmetric pair of coders that are usually used
for bus encoding. An encoder/decoder (codec) is placed at the
memory side and the processor side of the off-chip data bus. The
codec decides whether the data value should be encoded or not,

before placing the value on the data bus. When the codec encodes
data values, it asserts a control signal to let the destination know
that the current value is encoded and hence, it should not be
interpreted “as-is”. The codec design is symmetrical in nature to
handle both read and write operations by the CPU. In case of a
CPU read, the processor side codec works as a decoder; while the
memory side codec encodes the value to minimize bus switching.
In case of a CPU write, the processor side works as an encoder
and the memory side codec works as a decoder.
FVE is a symmetric table-based scheme that operates in a manner
similar to the scheme described above. The FV codec has a k-bit,
k-entry table to store previously seen data values. Here, k is the
width of the data bus. Before placing a data value on the data bus,
the encoder compares the data value with the values stored in the
table. A hit in the table implies that the current data value had
been encountered in the recent past. In case of a hit, the codec
generates a code corresponding to the hit index in the table. The
code has the form of “one-hot” code meaning that there is only a
single “1” and its position corresponds to the hit index in the
table. In the event of a miss in the table, the data value is stored at
the encoder and it is then sent over the bus “as-is”. The decoder
checks to see if the data bus value is a one-hot code. If yes, the
decoder reads the data value from the table by using the one-hot
code as an index to the table. If the data bus value is not encoded,
the decoder stores the value in the table and sends the value “as-
is”. Data values are maintained in the table using the LRU
replacement policy.
As used in other encoding techniques, a pair of correlator and
decorrelator is added at the two ends of buses. They are inverse
functions of each other and their purpose is to reduce the

Figure 1. A symmetric codec for data bus

Normalized Average Hits for MSB, LSB and MSB-LSB

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
No of MSB bits

N
or

m
al

iz
ed

 h
it

va
lu

e

MSB

LSB

MSB-
LSB

Figure 2. Average hit rates for varying bit lengths for all benchmarks

correlations between successive values. For example, transmitting
“01" after “10" normally introduces two transitions. With
decorrelator on the sending side, only one transition is introduced
to the bus. This is simply achieved by using an XOR gate on each
bus wire.

3 MOTIVATION
Through our experiments, we found that off-chip data traces
exhibit abundant temporal locality on partial width data value
streams. i.e., the high order bits (MSBs) and the low order bits
(LSBs) of a data value occur a lot more frequently than the entire
data value. We propose that, besides storing the values seen in the
recent past, one should also store the high-order and low-order
bits of the values in separate tables. The intuition behind doing so
is that, for every repeating data value, there might be many non-
repeating data values that contain the same high-order or low-
order bits. For example, if the value 80485678 occurs 10,000
times, then, one can safely assume that 8048 occurs at least
10,000 times in the high order bits and the value 5678 occurs at
least 10,000 times in the low-order bits of data values. In other
words, partial data value locality must be at least as abundant as
data value locality. For the rest of this paper, we will refer to
repeating values as frequent values (FV) and non-repeating values
as non-frequent values.

We analyzed a wide range of benchmarks from the NetBench
[11], MediaBench [9] and the SPEC2000 application suites and
we plotted the hits in the MSB and LSB portion of data values.
Figure 2 shows the average normalized hits for the MSB, LSB
and the MSB-LSB for a set of benchmarks. As shown in the
graph, if we encode both MSBs and LSBs, then we can send
encoded values over the buses most of the time, hence we can
exploit the large hit rate of MSB-LSB. On observing the hit

pattern, we devised a scheme that would capture the locality in
the entire data, MSB and the LSB portions of the data value. We
call this scheme as FV-MSB-LSB scheme.

4 OUR ENCODING SCHEMES
In this section, we propose a few innovative low-power bus-
encoding techniques for efficient processor to memory
communication. We will first describe the high-level design
methodologies including how to implement a larger value history
table size and how to incorporate MSB and LSB values. We then
elaborate each technique and its variations in detail.

4.1 Design Methodologies
4.1.1 Increasing the table size
The FVE scheme sends a one-hot code for a data value, if it is
contained in the frequent value table. However, the size of the
frequent value table has the following limitation: For a k-bit wide
data bus, the number of entries stored in the frequent value table,
cannot exceed k. Consequently, a value can be encoded only if it
contained in the k stored entries. By storing more than k entries,
one has a higher probability of encoding an incoming data value.
However, if we try to encode more values within the framework
provided by the FVE scheme, we would require additional
external control signals.
Control signals require the availability of a free pin on the chip
and are hence very expensive to provide. So, we propose a
framework that does not increase the number of control signals
required by the original FVE (which is one) when we increase the
table size. However, increasing the table size does require more
number of control signals. The trick is to utilize portion of data
bus wires as control signals. We will call them internal control
signals. If the enlarged table size is a multiple of the base table
size, the internal control signals can serve as the index to the

Figure 3. Codec structure for FV-i Encoding Scheme

Figure 4. Codec Structure for the FV-MSB-LSB scheme

different portion in the table. For example, a double sized table
needs only one internal control signal to indicate whether the code
is generated from the first half or the second half of the table.
Note that the effective base encoding table size is also reduced by
one due to the internal control signal.
The next question is what portion of the data bus should be
selected as internal control signals. Through our experiments, we
found that the transition activity in the lower order bits of the data
bus is often slightly higher than the activity in the high order bits.
Hence, while sending encoded values, we choose to make the
least significant bits as control signals. By doing so, they will not
contribute much to the total switching. In summary, our proposed
method for increasing the table size can be put formally as
follows:
Let us consider a k-bit wide data bus. In order to keep a history of
more than k, k-bit values, the number of entries stored in the table
is of the form (k – m)*2m, where m represents the number of
internal control signals. Using the first k –m lines, we send a one
hot code corresponding to i mod (k-m) where i is the hit index in
the enlarged frequent table. The last m lines along with the index
transmitted on the bus are used to specify the position of the data
within the table. For this scheme, the maximum number of

transitions while sending any encoded value is m+1

4.1.2 Bit-width of stored values
As stated earlier, besides storing entire data values, we also store
the MSB and LSB portions of the data value in separate tables. In
order to determine the optimal width of the MSB and LSB entries,
we varied the bit-width of the entries from 2 to 29 bits in steps of
1 and observe the switching reduction for each case. The results
would be presented in section 6. Since we encode table hits using
one-hot code, the number of table entries should be equal to the
bit-width of the stored entries. However, using the framework
provided in section 4.1.1, the size of the MSB, LSB and frequent
tables can be increased similarly.

4.2 FV-i Encoding
FV-i scheme overcomes the limitations of FVE by maintaining
larger sized tables and can hence, encode more data values. FV-i
maintains larger tables using the method described in section
4.1.1. When i=0, FV-i scheme becomes the FVE scheme. We
evaluate the performance of FV-i scheme for three values of i: 0,1
and 2. For a 32-bit wide data bus, the number of table entries for

1: for each data value do
2: if data value not in FV TABLE nor MSB TABLE nor LSB TABLE then
3: encode signal = 0 /* value not in any of the tables. */
4: send data unencoded
5: else
6: encode signal = 1
7: if hit in FV TABLE then /* it is a frequent value */
8: send one-hot code
9: else
10: if both MSB and LSB TABLE hit then
11: encode high-ordered bits (one-hot code)
12: encode low-ordered bits (one-hot code)
13: else /* Check for an MSB hit and encode if necessary */
14: if only MSB TABLE hit
15: if no of ones in LSB >=2
16: encode high-ordered bits (one-hot code)
17: send low-ordered bits unencoded
18: end if
19: end if /*Check for LSB hit */
20: if only LSB TABLE hit
21: if no of ones in MSB >=2
22: encode low-ordered bits (one-hot code)
23: send high-ordered bits unencoded
24: end if
25: end if
26: end if
27: end if
28: end if
29: end for

Figure 5. Algorithm for FV-MSB-LSB scheme

FV-1 and FV-2 are 62 ((32-1)*2) and 120 ((32-2)*4) respectively.

4.2.1 FV-1 encoding:
FV-1 encoding uses a 62-entry FV table to store 62, 32-bit values.
The last line (0th bit) of the data bus is used as a control signal. As
stated earlier, we picked the 0th bit because, for many
applications, the 0th bit changes very frequently in the data, so it
will not add much to the control switching. The 0th LSB of the
data bus acts as a regular data bus line while sending unencoded
data. When the encode signal is high, the destination interprets the
0th line as control signal and searches the table accordingly.

4.2.2 FV-2 encoding:
FV-2 encoding scheme uses a 120-entry FV table to store 120, 32-
bit values. The last two lines (0th and first LSB) of the data bus
are used as control signals. When the encode signal is high, the
destination interprets the 0th and 1st lines as the portion index and
searches the table accordingly. Figure 3 shows the codec structure
for the FV-i scheme. The following paragraphs illustrate the

encoder and decoder operation for the FV-i codec.

4.2.3 FV-i encoder
The encoder receives the data value from the processor/memory
and it decides whether the data should be encoded before it gets
placed on the off-chip data bus. For every incoming data value,
the encoder looks up the FV table to check for past occurrences of
the data value. The selection logic sees the output of the tables
and decides whether the data should be encoded or not. If the
selection logic decides to encode the data, it asserts the encode
signal and declares the encoded data as the current data bus value,
else it lowers the encode signal and sends the data value “as-is”.
The data bus value passes through the correlator before it finally
gets placed on the data bus.

4.2.4 FV-i decoder
The decoder can receive encoded or unencoded data from the data
bus. The data bus value passes through the decorrelator and then
reaches the selection logic. The selection logic checks the encode

Figure 6. FV–i-MSB-j Codec structure

1: for each data value do
2: if data value not in FV nor U-MSB TABLE nor L-MSB TABLE then
3: encode signal = 0
4: send data unencoded
5: else
6: encode signal = 1
7: if hit in FV TABLE then /* Frequent value */
8: send one-hot code
9: else
10: if U-MSB TABLE hit then /* MSB hit in the first r-1 entries */
11: encode high-ordered bits (one-hot code)
12: Rth bit of data bus = 1
13: send low-ordered bits unencoded
14: end if
15: if L-MSB TABLE hit then /* MSB hit in the next r-1 entries */
16: encode high-ordered bits (one-hot code)
17: Rth bit of data bus = 0
18: send low-ordered bits unencoded
19: end if
20: end if
21: end if
22: end for

Figure 7. Algorithm for FV-1-MSB-2 scheme

signal to see if the data is encoded. If the data is unencoded, it is
forwarded as-is to the processor/memory. Otherwise, using the
one-hot code contained in the encoded portion plus the internal
control signals, the selection logic picks up the data value from
the FV table to construct the decoded value. The decoded value is
then forwarded to the processor/memory.

4.3 FV-MSB-LSB encoding
Figure 5 shows the algorithm for the FV-MSB-LSB scheme. The
FV-MSB-LSB scheme aggressively encodes incoming data values
by sending one-hot codes for the entire data value, the MSB
portion and the LSB portion whenever possible. To accomplish
this, FV-MSB-LSB uses three tables: a FV table, MSB table and
an LSB table. Figure 4 shows the codec structure for this scheme.
The following paragraphs illustrate the codec’s functionality as an
encoder and a decoder.

4.3.1 Encoder operation
For every incoming data value, the encoder looks up the FV,
MSB and LSB tables to check for past occurrences of the entire
data value, MSB portion and the LSB portion respectively. In the
event of a hit in multiple tables, the FV hit takes precedence. If
the selection logic is informed to encode the data, it asserts the
encode signal and declares the encoded data as the current data
bus value, else it lowers the encode signal and sends data value
“as-is”. The data bus value passes through the correlator before it

finally gets placed on the data bus.

4.3.2 Decoder operation
The decoder can receive encoded or unencoded data from the data
bus. On an incoming data bus value, the selection logic checks the
encode signal to see if the data is encoded. If the data is
unencoded, it is forwarded as-is to the processor/memory.
Otherwise, using the one-hot code contained in the encoded
portion, the selection logic picks up the data value from one or
more of the stored tables to accurately reconstruct the decoded
value. For example, if the selection logic finds that there is a hit
in the MSB table only, and then it picks up the MSB portion from
the table and uses the LSB portion of the data “as-is” to get back
the data value. The decoded value is then forwarded to the
processor/memory.

4.4 FV-i-MSB-j encoding:
In this scheme, we have two tables: FV table and an MSB table.
The FV table stores the entire data value while the MSB table
stores the “r most significant bits” of an incoming data value.
Here, “r” is a number that is fixed by the designer and is subject
to the constraint that “r < k,” where k is the data bus width. We
evaluate the performance of two instances of this scheme: FV-1-
MSB-2 and FV-2-MSB-2. i and j refers to the factors by which
the appropriate tables are increased. For example, If we store k-bit
wide and r-bit wide entries in the FV and MSB tables

1: for each data value do
2: if data value not in FV TABLE nor U-MSB TABLE nor L-MSB TABLE then
3: encode signal = 0 /* value not in any of the tables */
4: send data unencoded
5: else
6: encode signal = 1
7: if hit in U-FV TABLE then /* FV-hit is in the first k-1 entries */
8: send one-hot code
9: 0th bit of data bus = 1
10: else
11: if hit in L-FV TABLE then /* FV-hit is in the next k-1 entries */
12: send one-hot code
13: 0th bit of data bus = 0
14: else
15: if U-MSB TABLE hit then /* MSB hit is in first r-1 entries */
16: encode high-ordered bits (one-hot code)
17: Rth bit of data bus = 1
18: send low-ordered bits unencoded
19: end if
20: if L-MSB TABLE hit then /* MSB hit is in the next r-1 entries */
21: encode high-ordered bits (one-hot code)
22: Rth bit of data bus = 0
23: send low-ordered bits unencoded
24: end if
25: end if
26: end if
27: end if
28: end for

Figure 8. Algorithm for FV-2-MSB-2 scheme

respectively, then FV-1-MSB-2 scheme would have k-entries in
the FV table and 2r-2 entries in the MSB table while FV-2-MSB-
2 scheme would have 2k-2 entries in the FV table and 2r-2 entries
in the MSB table. Figure 6 illustrates the operation of the FV-i-
MSB-j codec. The following paragraphs illustrate the codec’s
operation as an encoder and a decoder.

4.4.1 FV-i-MSB-j Encoder
For every incoming data value, the encoder looks up the FV and
MSB tables to check for past occurrences of the entire data value
and the MSB portion respectively. In the event of a hit in both
tables, the FV hit takes precedence. The selection logic sees the
output of the tables and decides whether the data should be
encoded or not. If the selection logic decides to encode the data, it
asserts the encode signal and declares the encoded data as the
current data bus value, else it lowers the encode signal and sends
the data value “as-is”. The data bus value passes through the

correlator before it finally gets placed on the data bus.

4.4.2 FV-i-MSB-j Decoder
The selection logic checks the control signal to see if the data is
encoded. If the data is unencoded, it is forwarded as-is to the
processor/memory. Otherwise, using the one-hot code contained
in the encoded portion, the selection logic picks up the data value
from one or more of the stored tables to accurately reconstruct the
decoded value. For example, if the selection logic finds that there
is hit in the MSB table only, then it picks up the MSB portion
from the table and uses the LSB portion of the data “as-is” to get
back the data value. The decoded value is then forwarded to the
processor/memory.
Figure 7 and Figure 8 show the algorithms for FV-1-MSB-2 and
the FV-2-MSB-2 schemes respectively. In these figures, U-MSB
table refers to the upper r-1 entries of the MSB table while L-
MSB table refers to the lower r-1 entries of the MSB table. In
Figure 8, U-FV table refers to the upper k-1 entries of the frequent

Variation with change in MSB bits

40

45

50

55

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
MSB Size

%
 A

ve
ra

ge

R
ed

uc
tio

n

FV-MSB FV-MSB-LSB FV-2-MSB-2 FV-1-MSB-2

Figure 9. Average Reduction in switching activity for varying MSB lengths

Table 1. Average Percentage Reduction in switching activity

Benchmark FV-32 FV-62 FV-120 FV-1-MSB-2 FV-2-MSB-2 FV-MSB-LSB

Jpegencode 20.85 33.84 38.20 33.20 42.25 36.42
Jpegdecode 33.46 38.22 39.16 41.18 43.77 40.63
G721decode 45.48 46.80 46.77 49.27 50.27 54.93
G721encode 46.83 48.29 48.53 51.10 51.92 56.27
Unepic 39.53 41.14 41.66 45.78 46.77 47.12
ADPCM 65.42 67.68 68.31 67.64 67.94 67.78
Mpegdecode 66.85 68.04 68.67 70.33 69.68 69.72
Route 44.46 47.28 47.89 55.25 57.14 59.09
TL 44.84 47.82 48.53 50.51 53.41 56.46
URL 52.48 55.50 55.62 57.08 58.33 61.21
DRR 44.35 47.59 48.06 50.13 53.36 56.36
MD5 50.40 58.19 59.32 57.88 62.83 61.24
Parser 44.39 48.69 48.79 61.21 62.62 65.86
Vortex 17.18 20.01 20.67 28.53 32.81 31.48
Art 34.07 40.13 41.88 41.40 45.60 40.29
Equake 27.09 28.98 29.56 36.12 37.40 36.91
Gcc 48.93 51.91 51.81 51.54 53.01 60.94
Mcf 28.71 29.63 30.30 47.54 48.19 51.72
Average 41.96 45.54 46.32 49.77 52.07 53.02

value table while L-FV table refers to the lower k-1 entries of the
frequent value table.

5 EXPERIMENTAL SETUP
We modified the sim-outorder simulator in the Simplescalar
toolset [5] in order to get the data value traces. We applied our
bus encoding techniques on the data traces of the SPEC2000
benchmark suite with train data set and embedded applications
provided in the MediaBench and NetBench benchmark suites .
For MSB/LSB based schemes, we varied the number of bits
captured from 2 to 29 bits in steps of 1. Based on the average
reduction in switching activity for different benchmarks, finally
we fixed the number of bits to be captured for each scheme
Figure 9 shows the percentages of average reduction in switching
activity for varying bit lengths. Based on the figure shown, we
fixed the number of MSB bits for FV-MSB-LSB, FV-2-MSB-2
and FV-1-MSB-2 to be 20, 19 and 20 bits respectively.

6 ANALYSIS
Table 1 shows the percentage reduction in switching activity
obtained for our encoding schemes. For parser application, FV-
MSB-LSB gives 21% improvement over FVE scheme. For MCF
benchmark, we get nearly 18% improvement over FVE scheme.
For Route and jpegencode, FV-MSB-LSB provides an additional

15% switching reduction on top of FVE-32. For parser and MCF,
the MSB-based schemes yield a switching reduction of nearly
20% on top of FVE. These applications (parser and MCF) are
very pointer intensive and are hence very conducive to MSB-
based encoding schemes. On an average, FV-MSB-LSB yields
11% improvement over FVE-32 scheme. Figure 10 shows the
percentage reduction in switching activity for all benchmarks. Let
us analyze the Energy consumption due to our encoding schemes
and the impact of our encoding schemes on the overall
performance of the system.

6.1 Energy Consumption
We modeled the functionality of various components in our
encoding scheme by doing an accurate layout-level description
using TSMC 0.18µ technology. We derive our energy
calculations based on the results shown in Table 2. For our

Percentage reduction in Switching activity

0
10
20
30
40
50
60
70
80

Jp
eg

en
co

de

Jp
eg

de
co

de

G72
1d

ec
od

e

G72
1e

nc
od

e

un
ep

ic

ADPCM

Mpe
gd

ec
od

e
Rou

te TL
URL

DRR
MD5

pa
rse

r

vo
rte

x art

eq
ua

ke gc
c

mcf

Ave
rag

e

Benchmark

%
 R

ed
uc

tio
n

in

sw
itc

hi
ng

 a
ct

iv
ity

FV-0 FV-1 FV-2 FV-1-MSB-2 FV-2-MSB-2 FV-MSB-LSB

Figure 10. Average Percentage Reduction in switching activity

Table 2. Energy measurements for different components

Component Energy Delay
Selection logic 3.04pJ 0.2ns
XOR gates 0.095pJ/Transition pair 0.1ns
Timestamps 0.07pJ 0.5ns
32-bit, 32-entry table 13.6pJ 0.2ns

Percentage Energy reduction

0
10
20
30
40
50
60
70
80

Jp
eg

en
co

de

Jp
eg

de
co

de

G72
1d

ec
od

e

G72
1e

nc
od

e

un
ep

ic

ADPCM

Mpe
gd

ec
od

e
Rou

te TL
URL

DRR
MD5

pa
rse

r

vo
rte

x art

eq
ua

ke gc
c

mcf

Ave
rag

e

Benchmark

%
 E

ne
rg

y
R

ed
uc

tio
n

FV-0 FV-1 FV-2 FV-1-MSB-2 FV-2-MSB-2 FV-MSB-LSB

Figure 11. Average Percentage Energy Reduction

encoding schemes, the total energy consumption due to the
internal capacitances is the sum of the energy consumed in the FV
tables, MSB/LSB tables, timestamps, correlator/decorrelator
(XOR gates) and the selection logic:

 Energy Energy
 Energy Energy Energy

logicselection_

timestampstablestotal

+
++=

Correlator

Using the above formula, we calculated the value of Energytotal
for FV-0, FV-1, FV-2, FV-1-MSB-2, FV-2-MSB-2 and FV-MSB-
LSB to be 17.38pJ, 34.65 pJ, 52.42pJ, 36.65, 42.65 and 37.88
respectively. The off-chip bus energy per wire (E) is given by the
formula:

ACVE 2 α

Where C is the off-chip bus capacitance, V is the supply voltage
and A is the number of bus transitions on the wire. The total
energy consumed is the sum total of the energy consumed during
bus transitions and the energy consumed by the encoder and the
decoder. Figure 11 shows the energy savings for our encoding
schemes. On an average, FV-MSB-LSB scheme provides a 10%
energy improvement on top of the FVE scheme.

6.2 Effect on Performance
In the absence of a prefetching scheme, the off-chip bus traffic is
mainly due to cache misses. Through our experiments, we found
that our table based encoding scheme introduces an additional
cycle delay at the encoder and decoder ends. Since requests
to/from memory is carried out at the granularity of cache blocks,
extra latency in encoding/decoding consecutive intra-block entries
can be eliminated through pipelining.
Hence, the latency in the off-chip bus traffic can be assumed to be
independent of the number of entries in a block. We would
encounter an additional 2-cycle penalty on every block that gets
requested due to a cache miss. Assuming the value of off-chip
latency to be 100 cycles, we measured the performance penalty
while executing all applications. On an average, our scheme
incurred a penalty of 0.23% in terms of the total number of
execution cycles.

7 CONCLUSION
We proposed and evaluated a few table-based data-bus-encoding
schemes. Our scheme makes no prior assumptions regarding the
input data and is truly dynamic in nature. We tested our scheme
on a subset of applications from the MediaBench, NetBench,
SPECINT2000 and SPECfp2000 benchmark suites. Our best
scheme provides nearly 53% switching reduction over unencoded
data and nearly 11% improvement over the FVE scheme.
Capturing variable lengths MSBs would yield higher benefits.
The capacity of the tables in FV-MSB-LSB can also be increased
using the same methods described in FV-i and FV-i-MSB-j
schemes.

8 ACKNOWLEDGMENTS
This work was supported in part by NSF award ITR 0083080

9 REFERENCES
[1] K. Basu, A. Choudhary, J. Pisharath, M. Kandemir , “Power

Protocol: Reducing Power Dissipation on Off-Chip Data

Buses” , 35th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-35), Istanbul, Turkey,
November 2002

[2] L. Benini, A. Macci, E. Macii, M. Poncino, and R. Scarsi,
“Architectures and synthesis algorithms for power-efficient
bus interfaces,” IEEE Transactions on Computer Aided
Design of Circuits and Systems, vol.19, no.9, September
2000.

[3] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C.
Silvano, “Asymptotic zero-transition activity encoding for
address buses in low-power microprocessor-based systems,”
Great Lakes VLSI Symposium, pp. 77-82 Urbana IL, March
13-15, 1997

[4] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Synthesis of Low-Overhead Interfaces for Power-Efficient
Communication Over Wide Buses,” ACM/IEEE Design
Automation Conference, pages 128–133, 1999.

[5] D. Burger and T. M. Austin. “The SimpleScalar Tool Set,
Version 2.0. Technical report”, University of Wisconsin-
Madison Computer Science Department, 1997

[6] J.H. Chern, J. Jurang, L. Arledge, P. Li and P. Yang,
“Multilevel Metal Capacitance Models for CAD Design
Synthesis Systems”, IEEE Electron Device Letters, Vol13,
pp.32-34, January 1992.

[7] T. Givargis, F. Vahid “Interface Exploration for Reduced
Power in Core-Based Systems”, International Symposium on
System Synthesis, December 1998

[8] T. Givargis, D. Eppstein, “Reference Caching Using Unit
Distance Redundant Codes for Activity Redcution on
Address Buses”, International Workshop on Embedded
System Hardware/Software Codesign (ESCODES), San Jose,
September 2002

[9] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems”, In International
Symposium on Microarchitecture, pages 330-335, 1997

[10] T. Lv, J. Henkel, H. Lekatsas, W. Wolf, “An Adaptive
Dictionary Encoding Scheme for SOC Data Buses”,
DATE02, Paris France, Mar 2002.

[11] G. Memik, W. H. Mangione Smith, and W. Hu, “NetBench:
A Benchmarking suite for Netwokr Processors”, In
International Conference on Computer Aided Design
(ICCAD), pp 39-42, Nov2001, San Jose, CA.

[12] “National Technology Roadmap for Semiconductors”.
Semiconductor Industry Association, 2001

[13] A. Raghunathan, N.K. Jha, S.Dey, “High-level Power
Analysis and Optimization”, Kluwer Academic Publishers,
Norwell, MA, 1998

[14] M. R. Stan. and Burleson,W. P., “Bus-invert coding for low-
power I/O,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, pages 49–58, Vol. 3, 1995.

[15] N.H.E. Weste, K. Eshraghian. “Principles of CMOS VLSI
Design”. Addison Wesley, 1998.

[16] J. Yang, R. Gupta, “FV Encoding for Low-Power Data I/O,”
ACM/IEEE International Symposium on Low Power
Electronic Design, pages 84–87, 2001.

[17] Y. Zhang, J. Yang, R. Gupta, “Frequent Value Locality and
Value-Centric Data Cache Design,” ACM The Ninth
International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 150-
159, 2000.

