
A Compiler Framework for Mapping Applications to a
Coarse-grained Reconfigurable Computer Architecture
Girish Venkataramani

Walid Najjar
University of California

Riverside
{girish, najjar}@cs.ucr.edu

Fadi Kurdahi
Nader Bagherzadeh
University of California

Irvine
{kurdahi, nader}@ece.uci.edu

Wim Bohm
Colorado State University

Fort Collins
bohm@cs.colostate.edu

bohm@cs.colostate.edu

ABSTRACT
The rapid growth of silicon densities has made it feasible to deploy
reconfigurable hardware as a highly parallel computing platform.
However, in most cases, the application needs to be programmed
in hardware description or assembly languages, whereas most
application programmers are familiar with the algorithmic
programming paradigm. SA-C has been proposed as an
expression-oriented language designed to implicitly express data
parallel operations. Morphosys is a reconfigurable computer
architecture that supports a data-parallel, SIMD computational
model. This paper describes a compiler framework to analyze SA-
C programs, perform optimizations, and map the application onto
the Morphosys architecture. The mapping process involves
operation scheduling, resource allocation and binding and register
allocation in the context of the Morphosys architecture. The
execution times of certain compiled image-processing kernels is
comparable to the hand-coded assembly version, and the speed-ups
compared to Pentium III range from 3x to 42x.

1. INTRODUCTION
Dehon [1] shows that computational density is a strong argument
for FPGA-based reconfigurable computing systems over
processor-based alternatives for data-parallel applications.
However, for applications where the data path is coarse-grained (8
bits or more), the performance and power consumption on FPGAs
are handled inefficiently. Also, the compilation time (kernel’s
synthesis, placement and routing) for and reconfiguration time on
FPGAs are typically long. Coarser grained reconfigurable
architectures [2], [15], [16], [17], [18] have been proposed as an
alternative between FPGA-based systems and fixed logic CPUs.

The Morphosys architecture [2], [3], [4], [5], [7] is an example of a
coarse-grained reconfigurable architecture. It is an integrated
system-on-chip targeted at data-parallel applications with high
throughput requirements. The reconfigurable element of
Morphosys is an 8x8 array of processing elements that support a
SIMD computational model. SA-C [9], [12], [13] is a highly
expressive, algorithmic language that has been designed, primarily,
to bridge the gap between algorithms and hardware circuits on
FPGAs.

This paper describes a compiler framework for mapping
applications written in SA-C for execution on the Morphosys
architecture. The compiler’s focus is on mapping SA-C loops,
which expose data parallelism, onto the reconfigurable element.
During analysis, the compiler performs loop optimizations and
structural transformations in the context of the target architecture.

Algorithms that perform operation scheduling, resource allocation
and binding, and register allocation in the context of the
Morphosys computational model are applied to the source program
to produce a complete execution schedule.

2. RELATED WORK
Compiling applications written in a high-level language to coarse-
grained reconfigurable platforms has been an active field of
research in the recent past.

In Garp [17], the reconfigurable hardware is an array of computing
elements. The compiler draws heavily from techniques used in
compilers for VLIW architectures to identify Instruction Level
Parallelism (ILP) in the source program, and then schedule code
partitions for execution on the array of computing elements.

In CHIMAERA [19], the reconfigurable hardware is a collection of
programmable logic blocks organized as interconnected rows. The
focus of the compiler is to identify frequently executed instruction
sequences and map them into a Reconfigurable Functional Unit
Operation (RFUOP) that will execute on the reconfigurable
hardware.

PipeRench [18] is an interconnection network of configurable logic
and storage elements. The approach is to analyze the application’s
virtual pipeline, which is mapped onto physical pipe stages to
maximize execution throughput. The compiler uses a greedy place-
and-route algorithm to map these pipe stages onto the
reconfigurable fabric.

The RAW micro-architecture [16] is a set of inter-connected tiles,
each of which contains its own program and data memories, ALUs,
registers, configurable logic and a programmable switch that can
support both static and dynamic routing. The compiler partitions
the program into multiple, coarse-grained parallel threads, each of
which is then mapped onto a set of tiles.

The RaPiD architecture [15] is a field-programmable architecture
that allows pipelined computational structures to be created from a
linear array of ALUs, registers and memories. These are
interconnected and controlled using a combination of static and
dynamic control.

Some research efforts [8], [20] have focused on generic issues and
problems in compilation like optimal code partitioning, and
optimal scheduling of computation kernels for maximum
throughput. While [20] proposes dynamic programming to
generate an optimal kernel schedule, [8] proposes an exploration
algorithm to produce the optimal linear schedule of kernels in

walid najjar
in Int. Conf. on Compiler, Architecture and Synthesis for Embedded Systems (CASES 2001), Atlanta, GA, November 2001.

order to minimize reconfiguration overhead and maximize data
reuse.

Our work concentrates on producing an instruction schedule that
identifies and exploits parallelism at a fine- and coarse-grained
level. The focus of the compiler is to build a framework to map a
single kernel onto the reconfigurable hardware for efficient
execution. This objective is orthogonal to those addressed in [8],
[20], where the focus is on optimal inter-kernel scheduling. Also,
the techniques proposed in [15], [18] can be used to optimally
pipeline the schedule generated by our compiler.

3. THE SA-C LANGUAGE

SA-C [9], [10], [11], [12], [13] is an expression-oriented, single
assignment language. The data types in SA-C support variable bit-
width precision for integer and fixed point numbers. The language
does not support recursion or pointers.
SA-C supports true multi-dimensional arrays. Thus, the language
allows the programmer to access sub-arrays like elements, rows,
columns, windows, slices, and planes. In addition, a number of
common image processing operations like histogram and median
are built into the language.
Every loop in SA-C has three components to it – the loop
generator, the loop body and the loop collector. A loop generator
specifies what values are generated in each iteration, and how

many iterations the loop will perform. The loop collector generates
a return value for the loop expression, by combining, in various
ways, values that are produced within the loop.
There are 2 main types of loop generators – array-element and
window generators. An element generator produces a scalar value
from the source array per iteration. A loop with a window
generator allows a window to “slide” over the source array
producing sub-arrays of the same rank (dimensions) as the source
array. Figure 1(a) shows an example of a SA-C loop, and Figure
1(b) shows the equivalent C code. The code computes the resultant
array, R, as a function of the input array, A, as follows:

R[x][y] = ∑ ∑
+

=

+

=

2 2
]][[

x

xa

y

yb
baA

The SA-C program has 2 loops. The outer loop contains a window
generator that produces 3x3 windows from the source array, A.
Figure 1(c) shows snapshots of A, and the shaded areas represent
the windows that are generated. The inner loop contains an
element generator, producing scalar values from the generated
window. Essentially, the inner loop computes the sum total of each
generated window. The outer loop creates an array whose elements
are the summation values produced by the inner loop.

Figure 1: SA-C Loop Example that performs the following function:

R[x][y] = ∑ ∑
+

=

+

=

2 2
]][[

x

xa

y

yb
baA

(a) The SA-C source code
(b) equivalent C code
(c) The source array, A, and the windows (shaded areas) produced in different iterations.

(c)

Int8[8,8] f(int8[8,8] A) {
 Int8[8,8] R =
 For window w[3,3] in A {
 Int8 x = For e in w
 return (sum(e));
 } return (array(x));
} return R;

For (I=0; I<M; I++) {
 For (J=0; J<N; J++) {
 For (X=I; X<(I+3); X++) {
 For (Y=J; Y<(J+3); Y++) {
 R[I][J] += A[X][Y];
 }
 }
 }
}

(a)

(b)

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

Hierarchical Data flow graphs (HDFG) are used as intermediate
representation in the compiler. An HDFG is an acyclic, directed,
data flow graph, where some nodes can have sub-graphs within
them. These graph representations are similar in structure to the
data dependence control flow (DDCF) graphs [2]. While the
DDCF graphs are geared toward translation to VHDL, the HDFG

is more suited for Morphosys related optimizations and analysis.
Figure 2 shows the equivalent HDFG representation of the
example in Figure 1.

4. THE MORPHOSYS ARCHITECTURE
Morphosys [7-11, 22, 24] is a reconfigurable, integrated system-
on-chip targeted at applications with inherent data parallelism,
high regularity and high throughput requirements.
Figure 3 shows the organization of the Morphosys architecture. It
consists of five main components:

• Tiny RISC processor: is a MIPS-like core with a 4-stage
pipeline. It has 16 32-bit registers and three functional
units – a 32-bit ALU, a 32-bit shift unit and a memory
unit. The Tiny RISC processor handles general-purpose
operations and controls the execution of the RC Array
through special instructions in its ISA [7].

• Reconfigurable Cell Array (RC Array): is the
reconfigurable computing element of the architecture. It
consists of an 8x8 matrix of processing elements called
the reconfigurable cells. Each RC cell consists of an
ALU-Multiplier, a shift unit, input multiplexers, and the
context register. The context register provides control
signals for the RC components. All RC cells in the same
row/column share the same configuration word (perform
the same operation), while different rows/columns may
receive different context words.

• Context memory: stores the configuration program (the
contexts) for the RC Array. It is logically organized into
two blocks, each of which is further subdivided into
eight sets.

• Frame buffer: is a streaming buffer that contains two sets
with two banks in each set. It enables streamlined data
transfers between the RC Array and main memory, by
overlapping computation with data load and store,
alternating using the two sets.

DMA controller: The DMA controller performs data transfers
between the Frame Buffer and the main memory. The Tiny RISC
core processor uses DMA instructions to specify the necessary
data/context transfer parameters for the DMA controller.

5. COMPILER FRAMEWORK
Code partitioning determines which segments of the program will
execute on the RC Array and which will execute on the Tiny RISC
processor. A typical kernel of an image-processing application
(Figure 4(a)) consists of set of computation intensive operations
that are performed in a loop. These kernels1 (loops) are data
parallel operations and are executed on the RC Array, while the
sequential code (outside loops), and the necessary synchronization
and control code are mapped onto the Tiny RISC (Figure 4(b)).

1 The terms kernel and loop are used interchangeably throughout

this document.

FunctionNode

ForAllNode

ForAllNode
ElementGenerator

ConstructArrayCollector

A

R

SumReductionCollector

WindowGenerator

Figure 2: HDFG Representation

Tiny RISC core

processor

Frame Buffer
(2K x 128)

DMA Controller

RC Array
(8 x 8)

Context
Memory

(512 x 8 x
32)

Main
Memory

Figure 3: The Morphosys Architecture

The main objective of the compiler is to translate each kernel into
an instruction schedule for execution on the RC Array. The
process of generating this schedule is referred to as “loop
synthesis” throughout this document and is described in the next
section. The compiler, first, performs a number of tasks that
prepare the program graph for loop synthesis.
Figure 5 shows the flow of compilation. The right-side branch of
compilation after code partitioning (Figure 5) represents the
compilation of code that is not within loops. This phase of code
generation is, essentially, similar to that of traditional compilers.

Code segments embedded within loops go through a series of
transformations before they are synthesized2. In the
Transformation to Context Codes phase, the compiler annotates
every node in the HDFG with the equivalent sequence of RC Array
context codes that performs the function of the node. Next, some
conventional optimizations like constant folding, constant
propagation, copy propagation, and operation strength reduction
are performed on the program graph.

2 Synthesizing a loop implies generating an execution schedule in

terms of context codes and Tiny RISC control codes. This will
specify the temporal ordering of and the resources used by all
operations.

6. HIERARCHICAL LOOP SYNTHESIS
Loops are synthesized individually based on their relative position
in the loop hierarchy. The innermost loop is defined to be at the
bottom of the loop hierarchy. The compiler’s approach is to
synthesize the inner most loop, and then recursively move up the
hierarchy until the outermost loop is synthesized. The compiler
framework defines different execution models based on the loop’s
generator.

(a)

Input Image

Kernel

Computations

Result Image

Synch. &
 control

Figure 4: Mapping kernels onto Morphosys
(a) A typical image processing kernel
(b) Implementation on Morphosys

(b)

Frame Buffer

RC
Array Tiny RISC

Frame Buffer

Control
code

Hierarchical Loop
Synthesis

1. SA-C source code

Code Partitioning

Loops
Code
outside
loops

Conventional compiler
optimizations

Register Allocation

TinyRISC code
generation

TinyRISC
assembly code

Function Inlining

Transformation to
Context Codes

Conventional compiler
optimizations

Operation Scheduling

Register Allocation

Resource Allocation and
Binding

Loop Body Optimizations

Code Generation

RC Array Context
Configurations

Figure 5: Flow of Compilation

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A15’s window

A16’s window

A14’s window

A12’s window

A13’s window

A11’s window

R11 R12 R13 R14

R21 R22 R23 R24

Inner loop

Operations

Source Image Result Image

Figure 6: Snapshot of windowing loop

(c) (d)

(a) (b)

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

Figure 7: Runtime snapshot of Windowing Loop;
(a), (b), (c), (d) are windowing computations that are
executed one after the other.

6.1 Element-Generating Loops
An element-generating loop’s body is a function of a particular
element of the source array. For such a loop that is not nested
within another, there are no data dependencies and no common
computations between iterations. The loop is unrolled in both
dimensions so as to process 64 loop iterations concurrently.
Execution of every loop iteration is performed on a single RC
Array cell. Hence, the resource-binding problem is trivial and is
obviated.

The operation-scheduling problem reduces to scheduling a data
flow graph onto a single, sequential processor. The scheduling
algorithm first identifies the ready operations (whose data
dependencies have been satisfied), and randomly picks a ready
operation and schedules it in the next available processor cycle.
The same schedule is executed on every RC cell, but on different
data items.

The register allocation strategy keeps track of free registers and
live operations, and allocates registers to intermediate results, as
and when required. Register spills are handled by writing the
values to the frame buffer.

6.2 Window-Generating Loops
Figure 6 shows a snapshot of the windowing loop example from
Figure 2. The loop generates a 3x3 window in each iteration of the
loop. The figure shows the iteration windows in the first row of the
image. Each iteration window is transformed into a single pixel of
the resultant image.

In spite of the SIMD computational model of the RC Array, all the
iteration windows present in the RC Array cannot be computed
concurrently. This is because some of the elements are part of
multiple iteration windows. For example, element A13 is a member
of 3 iteration windows – A11, A12 and A13. However, execution of
non-overlapping iteration windows like A11 and A14 can be
performed concurrently.

The framework for executing windowing loops is shown in Figure
7. It shows a snapshot of the elements of the source array that are
placed on the RC Array. Each shaded region in the figure
corresponds to a separate iteration window in the source image.
Each sub-figure (Figures 7 (a), (b), (c) and (d)) represents an
execution snapshot showing the iteration windows that are
executed concurrently. However, the execution of the iteration
windows in one sub-figure is never executed concurrently with the
iteration windows of another sub-figure. Hence, the loop’s
execution schedule is a sequential ordering comprised of the
execution schedules of the sub-figures. There are a total of 36
iteration windows in the RC Array, and sets of 4 iterations can be
executed concurrently.

This framework can be generalized for any loop generating
windows of size MxN. The RC Array processes (8-M+1) iterations
in the horizontal dimension and (8-N+1) iterations in the vertical
dimension, for a total of [(8-N+1) x (8-M+1)] iterations between
successive data fetches. The following sections describe how this
strip-mined version of the loop is synthesized. In the current
implementation of the compiler, all windows are assumed to be
smaller than or equal to an 8x8 window in size. Since most
standard image-processing applications work within this
constraint, this is a reasonable assumption to make.

6.2.1 Windowing Loop Optimizations
Figure 8 shows a program that computes the resultant array, R, for
any two input arrays, A and B. The program can be summarized by
the following function:

R[x][y] = ∑∑
+

=

+

=

2 2

])][[*]][[(
x

xa

y

yb
baBbaA

The windows generated in separate iterations of this loop have
some common sub-expressions. Figure 9 shows the pictorial view
of two iterations of this loop. For example, the computations “A12
* B12” and “A13 * B13” are performed in both iterations.

In general, whenever a particular element of the source array
appears in multiple iteration windows, there could potentially be
common sub-expressions. For compiler analysis, the windowing
loop must be unrolled so as to expose them. The number of
iterations of the windowing loop that need to be unrolled is equal
to the number of overlapping iterations. For a loop generating
MxN window with steps of sh and sv in the horizontal and vertical
dimensions respectively, the number of overlapping iterations, NI,
is given by:

NI = ceil(N/sh) * ceil(M/sv)
 where ceil(n) returns the largest integer lesser than or equal to n.

However, for window sizes greater than 4 in either direction, it is
not possible to fetch all the NI windows into the RC Array.
Consider a window size of 5x5. The first window in each row
begins on column 1, and the last window begins on column 5 and
ends on column 9. Hence, this requires a total of 9x9 elements,
whereas the RC Array is a matrix of 8x8 RC cells. For such
windows, there will be a total of (8-N+1) iterations that need to be
analyzed. However, if the source array is smaller than the RC
Array itself, then the number of windows is equivalent to (w-N+1),

Int8[:,:] R =
 For window wa[3,3] in A

dot window wb[3,3] in B {
 Int8 asum =
 For a in wa dot b in wb
 return (sum(a * b));
 } return (array(asum));

Figure 8: Windowing Loop example
(a) SA-C code
(b) C code

For (I=0; I<M; I++) {
 For (J=0; J<N; J++) {
 R[I][J] = 0;
 For (X=I; J<(I+3); X++) {
 For (Y=J; Y<(J+3); Y++) {
 R[I][J] += A[X][Y] * B[X][Y];
 }
 }
 }
}

(a)

(b)

where w is the width of the source array. Hence, the number of
iterations, NI, is modified as follows:

X = MIN(M, 8)
Y = MIN(N, 8)
H = ceil[{MIN(N, Y – N + 1)}/sh]
V = ceil[{MIN(M, X – M + 1)}/sv]
NI = H * V

The compiler analyzes these NI iteration windows and eliminates
all redundant sub-expressions. This gives rise to dead code, which
is eliminated as well. At the end of this optimization pass, there
will be NI distinct data flow graphs corresponding to each
iteration. However, there may be some cross-edges between these
data flow graphs that represent the re-use of computation. These
edges are synthesized into registers during the register allocation
phase.

6.2.2 Loop Synthesis
To synthesize a windowing loop, the synthesis techniques
discussed in the following sections will be applied to each of the
NI iteration graphs. The final schedule is a linear ordering of each
iteration’s schedule.

In the context of the RC Array, a resource is defined to be a single
row. Before synthesis, resource requirement numbers are assigned
to all loop nodes. The top-most loop in the loop hierarchy is
always assigned a resource requirement of 8 in order to maximize
RC Cell utilization. The resource requirement for inner loops is
defined to be “the vertical dimension of the window generated by
its parent loop”. Figure 10 shows an example program (a), and its
HDFG representation (b). Each loop in the HDFG is annotated
with its resource-requirement (RR) assignment.

6.2.2.1 Operation Scheduling
The operation-scheduling problem for a windowing loop is defined
as finding a schedule that executes in minimum time under two
constraints - the availability of resources and the RC Array
execution mode. There are two modes of execution on the RC
Array – row mode and column mode. In any given clock cycle,
only one mode of operation can be active. Concurrent operations

must all execute in the same modes throughout each operation’s
lifetimes.

The operation scheduling algorithm itself is known to be NP-
complete. One popular heuristic is the List Scheduling algorithm.
The compiler uses an extension of this algorithm that takes into
accounts the constraints of the RC Array.

The schedules thus generated (for each of the NI iterations) are
then linearly ordered to complete the execution of all the iterations
that are present in the RC Array. Then, the next set of data is
fetched into the RC Array and the same execution schedules are
repeated. For a windowing loop generating MxN windows, the
total execution time, T, of the loop over an image of size, [h, w], is
given by:

Let S = Size of the source image in any dimension
Let Dt = Distance between first element of two successive data

fetches
= NW * st

where
 NW = Number of windows in that dimension

st = Window step in that dimension

The number of data fetches in that dimension = S/Dt
Number of windows in any dimension,

NW = ceil[(X – W + 1)/st]
where

X = MIN(Wp, 8)
 W = window size in that dimension
 Wp = source image size in that dimension

(= 8 if outermost loop)

Hence, total Data fetches, D = Dh * Dv
where

Dh = Number of data fetches in horizontal dimension
Dv= Number of data fetches in vertical dimension

Execution time of window loop, T = D * ∑
=

NI

i
ki

1

where ki = Latency of the ith iteration’s schedule

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

* * * * * *

SUM_REDUCTION SUM_REDUCTION
Common Sub-

expressions

Two distinct loop
iterations

Figure 9: Snapshot of loop iterations

6.2.2.2 Resource Allocation and Binding
The RC Array is divided into four quadrants each of size 4x4. A
given RC cell can directly access only the cells in the same row
and column as itself. Further, these cells need to be in the same
quadrant as itself. In Figure 11, for example, cell R22 can directly
access (in the same clock cycle) cells R12, R32, and R42 in the
vertical dimension, and cells R21, R23, and R24 in the horizontal
dimension. Accessing any other cell would incur a communication
penalty.

The objective of resource allocation is to minimize these
communication latencies. To solve this problem, a graph is created,
where the nodes are operations and edges between nodes indicate
“affinity to sharing a resource” between the two nodes. These
edges, called shareable edges, are added as follows:

• Concurrently executing nodes don’t share any edge
• Starting from a base node, all other nodes are assigned

an edge between them

• Two nodes that have a direct data-dependence (i.e. an
edge in the data flow graph) are assigned a higher weight
(say k) than all other nodes (default weight is 1). This is
because the result of one operation is the input operand
of the other. There will be no communication penalty if
the two operations share the same resource. Hence, a
weight on an edge gives more importance to it.

Another type of edges, called closeness edges, is also added to the
graph. These edges reflect the condition when two nodes are
assigned to different resources; however, these resources must be
as close to each other as possible. Consider an operation, op, which
needs two operands that are produced as results of operations, op1
and op2. Then, op1 and op2 must be scheduled as close to each
other as possible in order to avoid the communication penalty.
These edges are added as follows:

• If the operands of a node are produced by two different
operations, then these two operations will share a
closeness edge between them

• The weight on this closeness edge is accumulated if
more closeness edges are generated between the same
two nodes.

The graph thus generated is subject to
CLIQUE_PARTITIONING3. There are two different objectives
that need to be satisfied during resource allocation – resource
sharing (based on the shareable edges) and assignment of
resources close to each other (closeness edges). To satisfy these
seemingly orthogonal objectives, the compiler performs two levels
of clique partitioning:

• Perform CLIQUE_PARTITIONING based on the
shareable edges.

• Create a new graph by collapsing each clique into a
single, unique node.

• Perform CLIQUE_PARTITIONING on this new graph
based on the closeness edges.

One of the components of the CLIQUE_PARTITIONING problem
is to find the maximal clique in the graph (MAX_CLIQUE). This
problem is known to be NP-complete. The compiler uses a

3 CLIQUE_PARTITIONING is a popular graph-partitioning

algorithm. A clique is defined as a fully connected sub-graph.

R

Int8[:,:] R =
 For window win[5, 5] in Image {
 Int8 res =
 For window w[3, 3] in win {
 Int8 x =
 For elem in w
 Return (sum(elem));
 } return (sum(x));
 } return (array(res));

ForAllNode RR: 8

ForAllNode RR: 5

ForAllNode RR: 3

ElementGenerator

SumReductionCollector

Image

SumReductionCollector

WindowGenerator (5x5)

WindowGenerator (3x3)

ConstructArrayCollector

(a)

(b)

Figure 10: Resource Allocation: for Loop Hierarchies is based
on the vertical dimension of the window generated by the
parent loop (is 8 for outer-most loops. Example of: (a) SA-C
program, and (b) its equivalent HDFG representation

R11 R12 R13 R14 R15 R16 R17 R18

R21 R22 R23 R24 R25 R26 R27 R28

R31 R32 R33 R34 R35 R36 R37 R38

R41 R42 R43 R44 R45 R46 R47 R48

R51 R52 R53 R54 R55 R56 R57 R58

R61 R62 R63 R64 R65 R66 R67 R68

R71 R72 R73 R74 R75 R76 R77 R78

R81 R82 R83 R84 R85 R86 R87 R88

R11 R12 R13 R14 R15 R16 R17 R18

R21 R22 R23 R24 R25 R26 R27 R28

R31 R32 R33 R34 R35 R36 R37 R38

R41 R42 R43 R44 R45 R46 R47 R48

R51 R52 R53 R54 R55 R56 R57 R58

R61 R62 R63 R64 R65 R66 R67 R68

R71 R72 R73 R74 R75 R76 R77 R78

R81 R82 R83 R84 R85 R86 R87 R88

Figure 11: RC Array Connectivity

heuristic to solve it – the clique containing the node with the
maximum number of edges is assumed to be the best candidate for
the maximal clique.

In the end, the graph is a set of “super-cliques”, where each node
in the super-clique represents a clique from the first level of clique
partitioning. When every clique in the super-clique has been
assigned a resource, all the operations within that clique will share
this resource. The compiler uses a heuristic is used in assigning
resources to the cliques within a super-clique. It tries to keep the
node with largest “closeness requirements” (equal to the sum total
of all weights on its closeness edges) as close as possible to every
other node.

6.2.2.3 Register Allocation
Register Allocation strategy for windowing loops use the same
strategies as used by element-generating loops. However, after
performing common sub-expression elimination, values
(represented by cross-edges) may be forwarded to other iterations.
Register allocation is performed in two phases. First, the cross-
edges are allocated to registers. These registers will be required
throughout the entire loop execution between data fetches. Then,
registers are allocated to each (of the NI) iteration. However, these
registers are alive only during the particular iteration’s execution.

7. PERFORMANCE MEASUREMENTS
To measure the efficiency of the compiler, certain sample image-
processing kernels (Table 1) are compiled and their execution
times over a sample data set are measured. These kernels are also
written separately in native C code, which are compiled using the
VC++ 6.0 compiler with the highest level of optimizations turned
on and are executed under Windows 2000 on an 800 MHz Pentium
III platform. The speed-ups achieved over Pentium III range from
3x for Convolution to 42x for Motion Estimation.

Table 1: Test Applications

Application
Kernel

Description

Wavelet Common program used for multi-scale
analysis in computer vision, and image
compression. This particular implementation
works on 5x5 windows of the source image

Prewitt An edge detection algorithm that uses 3x3
horizontal and vertical masks

2D Convolution Linear convolution of every 3x3 window in
the source image

Motion
Estimation

A kernel used in MPEG-4 compression;
identifies redundancies between frames in an
MPEG video stream

In this work, we have focused on efficient mapping of image
processing kernels in the application for execution on the RC
Array. We have not addressed issues regarding optimized
management of data movement and data caching (in the frame
buffer). In the best case, all data movement between main memory
and frame buffer can be overlapped with computation. In the worst
case, there are no concurrent data movements. Figure 12 shows the
amount of overhead that could be incurred in each of the test
benches. In our experience, in almost all applications, at least 50%
of data movement can be overlapped with computation. Figure 13
compares the performance of the compiled kernels (assuming 50%

data overlapping) with the execution of equivalent codes on
Pentium III.

Figure 12: Effect of Data Overlap

0

0.005

0.01

0.015

0.02

0.025

Wavelet Prewitt Convolution Motion
Estimation

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Complete Data Overlap No Data Overlap

Figure 13: Performance Comparison

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

Wavelet Prewitt Convolution Motion Estimation

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Pentium Morphosys

We have also compared our results with the execution of hand-
coded versions of the same kernels. The hand-coded Motion
Estimation kernel executes in 1 millisecond. The compiled version
executes in 0.3 milliseconds with 100% data overlapping, and in
1.6 milliseconds with 50% data overlapping.

Figure 14: Compiler Optimizations

0

0.005

0.01

0.015

0.02

0.025

Wavelet Prew itt Convolution

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Optimized Unoptimized

The effect of compiler optimizations is measured by comparing the
execution times of optimized schedules with the un-optimized
versions (Figure 14). In the Motion Estimation kernel, there are
opportunities for optimizations. However, all other kernels
experience significant benefits from compiler optimizations.

8. CONCLUSIONS
This paper presents a framework for efficient compilation of
applications written in a high-level language to a reconfigurable
computing architecture. In particular, the compiler aims at
extracting the data parallelism at coarse- and fine-grained levels in
a given application, and then produces an execution schedule that
explicitly reflects a SIMD execution model.

It describes the synthesis approach of mapping loops, which
performs operation scheduling, resource binding and register
allocation, in order to produce a precise execution schedule. Also,
different compiler optimizations are proposed that could
potentially improve the execution time of applications on the target
platform.

9. REFERENCES
[1] A. DeHon, "The Density Advantage of Configurable

Computing". IEEE Computer, vol. 33, pp. 41-49, April 2000.
[2] H. Singh, et. al., “Morphosys: An Integrated Reconfigurable

Architecture,". NATO Symposium on Systems Concepts and
Integration, Monterey, CA, 1998.

[3] H. Singh, et. al., "Morphosys: Case study of a reconfigurable
computing system trageting multimedia applications,". 37th
Design Automation Conference, Los Angeles, CA, 2000.

[4] H. Singh, et. al., "Morphosys: A Parallel Reconfigurable
System,". Euro-Par, Toulouse, France, 1999.

[5] H. Singh, et. al., "Morphosys: A Reconfigurable Architecture
for Multimedia Applications,". Workshop on Reconfigurable
Computing at PACT, Paris, France, 1998.

[6] E. M. C. Filho, "The TinyRISC Instruction Set Architecture,
Version 2," University of California, Irvine, Irvine, CA
November 1998.
http://www.eng.uci.edu/morphosys/docs/isa.pdf.

[7] M. Lee, et. al., "Design and Implementation of the Morphosys
Reconfigurable Computing Processor,". Journal of VLSI and
Signal Processing-Systems for Signal, Image and Video
Technology, 2000.

[8] R. Maestre, et. al., "Kernel Scheduling in Reconfigurable
Computing,". DATE, Munich, Germany, 1999.

[9] R. Rinker et. al., "An Automated Process for Compiling
Dataflow Graphs into Hardware,". IEEE Transactions on
VLSI Systems, vol. 9, 2001.

[10] R. Rinker, et. al., "Compiling Image Processing Applications
to Reconfigurable Hardware," IEEE International Conference
on Application-specific Systems, Architectures and
Processors, Boston, MA, 2000.

[11] J. Hammes, et. al., "Cameron: High Level Language
Compilation for Reconfigurable Systems," International
Conference on Parallel Architectures and Compilation
Techniques (PACT), Newport Beach, CA, 1999.

[12] J. Hammes, et. al., "Compiling a High-level Language to
Reconfigurable Systems," Compiler and Architecture Support
for Embedded Systems (CASES), Washington, DC, 1999.

[13] W. Bohm, "The SA-C Language - Version 1.0," Colorado
State University, Fort Collins, CO, Technical Report June
2001.
http://www.cs.colostate.edu/cameron/Documents/sassy.pdf.

[14] W. Bohm, "The SA-C Compiler Data-Dependence-Control-
Flow (DDCF)," Colorado State University, Fort Collins, CO,
Technical June 2001.
http://www.cs.colostate.edu/cameron/Documents/ddcf.pdf.

[15] C. Ebeling, et. al., "Mapping Applications to the RaPiD
Configurable Architecture," IEEE Symposium on FPGAs for
Custom Computing Machines, Napa Valley, CA, 1997.

[16] Elliot Waingold, et. al., "Baring it all to software: RAW
machines," IEEE Computer, vol. 30, pp. 86-93, 1997.

[17] J. Wawrzynek and T.J. Callahan, "Instruction-level
Parallelism for Reconfigurable Computing," 8th International
Workshop on Field-Programmable Logic and Applications,
Berlin, 1998.

[18] S.C. Goldstein, et. al., "PipeRench: A Reconfigurable
Architecture and Compiler," IEEE Computer, vol. 33, pp. 70-
77, 2000.

[19] A. Ye, et. al., "CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable
Functional Unit," 27th Annual International Symposium on
Computer Architecture (ISCA), Vancouver, British Columbia,
2000.

[20] V. K. Prasanna et. al., "Mapping Applications onto
Reconfigurable Architectures using Dynamic Programming,"
Military and Aerospace Applications of Programmable
Devices and Technologies, Laurel, Maryland, 1999.

