
Advances in the data¯ow computational model

Walid A. Najjara,*,1, Edward A. Leeb,2, Guang R. Gaoc

a Department of Computer Science, Colorado State University, FT Collins, CO 80623, USA
b Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA

c Department of Electrical Engineering, University of Delaware, USA

Abstract

The data¯ow program graph execution model, or data¯ow for short, is an alternative to the

stored-program (von Neumann) execution model. Because it relies on a graph representation

of programs, the strengths of the data¯ow model are very much the complements of those of

the stored-program one. In the last thirty or so years since it was proposed, the data¯ow model

of computation has been used and developed in very many areas of computing research: from

programming languages to processor design, and from signal processing to recon®gurable

computing. This paper is a review of the current state-of-the-art in the applications of the

data¯ow model of computation. It focuses on three areas: multithreaded computing, signal

processing and recon®gurable computing. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Computational models; Data¯ow; Multithreaded computer architecture; von Neumann

computer; Data¯ow history; Memory models

1. Introduction

Data¯ow is a sound, simple, and powerful model of parallel computation. In
data¯ow programming and architectures there is no notion of a single point or locus
of control ± nothing corresponding to the program counter of a conventional se-
quential computer. The data¯ow model describes computation in terms of locally
controlled events; each event corresponds to the ``®ring''of an actor. An actor can be

Parallel Computing 25 (1999) 1907±1929

www.elsevier.com/locate/parco

* Corresponding author.
1 Supported in part by DARPA under US AirForce Research Laboratory contract F33615-98-C-1319.
2 Supported in part by the Ptolemy project, which is supported by the DARPA, the State of California

MICRO program, and the following companies: Cadence, Hewlett Packard, Hitachi, Hughes Space and

Communications, Motorola, NEC, and Philips.

0167-8191/99/$ - see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 9) 0 0 0 7 0 - 8

a single instruction, or a sequence of instructions (per se, the data¯ow model does
not imply a limit on the size or complexity of actors). An actor ®res when all the
inputs it requires are available. In a data¯ow execution, many actors may be ready to
®re simultaneously (locally controlled by their operand availability), and thus these
actors represent many asynchronous concurrent computation events.

Work on data¯ow computer architecture emerged in the early 1970s with the use
of data¯ow program graphs to represent and exploit the parallelism in programs
[5,28,30]. In a Dennis data¯ow graph [30,31], operations are speci®ed by actors that
are enabled just when all actors that produce required data have completed their
execution. The dependence relationships between pairs of actors are de®ned by the
arcs of a graph, which maybe thought of as conveying results of an actor to successor
actors, and by the ®ring rules, which specify exactly what data are required for an
actor to ®re. Decision and control actors may be included to represent conditional
expressions and iterations. They alter the routing of tokens to e�ect data-driven
control. Data structures may be constructed and accessed by appropriate data¯ow
actors.

Also in the early 1970s, a rather di�erent style of data¯ow models emerged [70].
Called Kahn process networks, this model replaces actors with sequential pro-
cesses. These processes communicate by sending messages along channels that
conceptually consist of unbounded FIFO queues. Kahn data¯ow can be viewed as
a generalization of Dennis data¯ow [83]. While Dennis data¯ow was originally
applied to computer architecture design, Kahn data¯ow was used by concurrency
theorists for modeling concurrent software. Multithreaded architectures, with da-
ta¯ow roots, use a style of data¯ow that can be viewed as having elements of
both.

In computer architecture, data¯ow program graphs were originally used as a
machine-level program representation. Two forms of data¯ow architecture have
become known: In a static architecture, the arc connecting one instruction to another
can contain only a single result value (a token) from the source instruction. In this
scheme there can be only one instance of a data¯ow actor in execution at any time.
In a dynamic data¯ow architecture, tags are conceptually or actually associated with
tokens so that tokens associated with di�erent activations of an actor may be
distinguished. This enables arcs to simultaneously carry multiple tokens, thereby
exposing more data parallelism.

Because of the inherently parallel nature of data¯ow execution, data¯ow com-
puters provide an e�cient and elegant solution to the two fundamental problems of
von Neumann computer: the memory latency and synchronization overhead, as
described by Arvind and Iannucci [6]. The ability of the data¯ow model to tolerate
latency, by switching dynamically between ready computation threads, and to
support low overhead distributed synchronization in hardware, has made it the
candidate of choice for what has later been called ``latency tolerant''architectures.

A history of the evolution of the data¯ow computation model(s) and the variety
of architecture and computational models that have been inspired by it is beyond the
scope of this paper. The reader is referred to, among many others, the following texts
[47,63,73].

1908 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

As a computation model, the data¯ow approach has had in¯uence on many areas
of computer science and engineering research. Examples include programming lan-
guages, processor design, multithreaded architectures, parallel compilation, high-
level logic design, signal processing, distributed computing, and programming of
systolic and recon®gurable processors. This paper reviews the recent developments in
three of these areas: multithreaded execution, signal processing, and recon®gurable
computing. The ®rst two areas are relatively mature and have generated a substantial
body of research results and commercial application. The last area is relatively young
and is still in an emerging state. The ®rst two sections review the state of the art of
the data¯ow computational model in multithreaded architectures and signal pro-
cessing, respectively. The third section proposes the data¯ow model as a program-
ming model for recon®gurable computing.

2. Data¯ow and multithreaded execution

Issues and challenges for multithreaded computer architecture suitable for use in
parallel computers for general purpose computation are the subject of intensive
debate. These issues and challenges depend heavily on the choice of an appropriate
program execution model that will a�ect the programming model, the organization
of the underlying system as well as the development support of complex applications
onto the proposed architectures ± compilers, runtime systems, and tools. The choice
of program execution models may also have a profound impact on programming
methodology [36,38,39].

In this section, we introduce basic concepts, characteristics and evolution of
multithreaded computer architectures with data¯ow origin. Our focus will be the
review of issues and advances in program execution and architecture models upon
which the design of these architectures is based.

In our terminology, a program execution model de®nes a basic low-level layer of
programming abstraction of the underlying system architecture upon which the
architecture model, programming model, compilation strategy, runtime system, and
other software components are developed. It serves as an interface between the ar-
chitecture and the software. Program execution model is in a broader (or higher)
level than instruction set architecture (ISA) speci®cation. An ISA usually provides a
description of an instruction set for a particular machine that involves speci®c details
of instructions such as instruction encoding and the organization of the machine
registers set. In the context of this paper, a program execution model for multi-
threaded machines includes the following aspects: the thread model, the memory
model and the synchronization.

The rest of this section is organized as follows: In Section 2.1, we brie¯y review the
evolution of multithreaded architectures with data¯ow origin. The subsequent sec-
tions will review the issues, challenges and advances in three areas: the thread models
in Section 2.2, the memory models in Section 2.3 and the synchronization models in
Section 2.4.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1909

2.1. The evolution of the hybrid data¯ow/von Neumann model and multithreading

The data¯ow model and von Neumann serial control-¯ow model are generally
viewed as two extremes of execution models on which a spectrum of architecture
models can be based. The two models are in fact not orthogonal. Starting with the
operational model of a pure data¯ow graph, one can easily extend the model to
support von Neumann style program execution. A region of actors within a data¯ow
graph can be grouped together as a thread to be executed sequentially under its own
private program counter control, while the activation and synchronization of threads
are data-driven. The new hybrid model is ¯exible in combining data¯ow and control-
¯ow evaluation, as well as in exposing parallelism at a desired level.

Such hybrid multithreaded architecture models have been proposed by a number
of research groups with their origins in either static data¯ow or dynamic data¯ow. A
number of articles have been published on multithreaded execution and architecture
models with data¯ow origin and can found in a survey article by Dennis and Gao
[33]. Principal projects and representative work before 1995 have been discussed in
two monographs [47,63] as well as other survey articles [71]. Below we brie¯y
mention a few research projects on each model.

Inspired by the static data¯ow model, the McGill data¯ow architecture model
[43,45] has been proposed based on the argument-fetching principle [32]. The ar-
chitecture departs from a direct implementation of data¯ow graphs by having in-
structions fetch data from memory or registers instead of having instructions deposit
operands (tokens) in ``operand receivers'' of successor instructions. The completion
of an instruction will post an event (called a signal) to inform instructions that de-
pend on the results of the instruction. This implements a modi®ed model of data¯ow
computation called data¯ow signal graphs. The architecture includes features to
support e�cient loop execution through data¯ow software pipelining [42], and the
support of threaded function activations. A good summary of the McGill data¯ow
architecture model (MDAM) and its extensions has been presented in Hum's Ph.D.
thesis [59].

Based on his experience with the MIT dynamic (tagged-token) data¯ow archi-
tecture [4], Iannucci combined data¯ow ideas with sequential thread execution to
de®ne a hybrid computation model described in his Ph.D. thesis [62]. The ideas later
evolved into a multithreaded architecture project at IBM Yorktown Research Center
as described elsewhere [63]. The architecture includes features such as a cache
memory with synchronization controls, prioritized processor ready queues and
features for e�cient process migration to facilitate load balancing.

The P-RISC [99] is an interesting hybrid model exploring the possibilities of
constructing a multithreaded architecture around an RISC processor. The Star-T
project ± a successor of the Monsoon project ± has de®ned a multiprocessor ar-
chitecture using an extension of an o�-the-shelf processor architecture to support
®ne-grain communication and scheduling of user microthreads [10]. The architec-
ture is intended to retain the latency-hiding feature of the Monsoon split-phase
global memory operations. Later development of the Start-T project can be found
in [3,25].

1910 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

Several other interesting projects have been carried out elsewhere in the US
[64±66,95,96,109] and in the world such as in Japan [75,100]. For example, the RWC-
1 project [106] of the Real World Computing Partnership in Japan was initiated
based on the experience of working with data¯ow architectures and their multi-
threaded extensions.

It is possible to de®ne a thread model combining the advantages from both the
static and dynamic data¯ow models. An example is the EARTH model [61] which
provides the full generality of threaded function invocation as in the dynamic da-
ta¯ow model, while maintaining the simplicity of the static data¯ow at the ®ner level
of threads through software pipelining.

2.2. The thread models

Multithreaded execution models with data¯ow origin provide support for ®ne-
grain threads at two levels. For example, under the EARTH model, the ®rst level of
thread is called threaded function invocation: parallel function invocation forks a
thread to execute the function in parallel. Note that the caller continues its own
execution without waiting for the return of the forked threaded function. At a lower
(®ner) level, the body of a threaded function can be further partitioned (by a user or
a compiler) into ®bers [112]: a collection of operations that can be forked as a
separate thread.

The support of such ®ner level of threads is a distinguishing characteristic of
multithreaded architecture models with data¯ow origin. Such a thread may be
generated from a region of a data¯ow graph derived from functional program-
ming such as the so-called ``strongly connected regions'' in the EM-4 architecture
and its successors [74,75], or the superactors in the Super-actor machine [59] based
on the McGill data¯ow architecture model (MDFA [45]). With the recent ad-
vances in compiler technology, new algorithms and methods have been developed
to perform thread partitioning for programs written in conventional programming
paradigms [56,110,111]. A more in-depth discussion on such multithreaded com-
pilation technology can be found in Tang's Ph.D. thesis [105]. Such compilers
may also require the use of a cost model for the underlying multithreaded ma-
chines. This is a non-trivial task due to the features of dynamic thread scheduling
and latency tolerance ± which have motivated the study to develop such models
[98]. The evolution of a combination of compiler advances and architecture
concepts has led to the proposal of the superstrand execution and architecture
model [90±92].

Theobald in his Ph.D. thesis [112] has illustrated that such ®ner-level threads ±
also called ®bers in his thesis ± have played an important role for e�ciently ex-
ploiting producer±consumer style ®ne-grain parallelism in scienti®c applications. He
has demonstrated how to exploit a style of data¯ow software pipelining between
producers and consumers through ®ne-grain synchronization between ®bers (dis-
cussed below in Section 2.4), and how such ``pipes'' can be established smoothly
through threaded function invocations.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1911

2.3. The memory models

Before we discuss the synchronization model, we need ®rst to discuss the issues
and advances in memory models. This is, perhaps, one of the most important areas
where the evolution of such multithreaded execution and architecture models has
departed from the data¯ow models. The pure data¯ow models do not use the con-
ventional notion of an updatable memory. The programming models (e.g. functional
or data¯ow programming languages) are based on a semantic model where there are
no side-e�ects due to execution of any operations. As can be seen from the following
discussion, researchers in multithreaded execution models have advanced far beyond
the pure data¯ow models in developing memory models and cache memory schemes
that take advantage of situations where single assignment rule can apply, while al-
lowing normal load/store operations (with side-e�ects) when required without im-
posing unnecessary constraints for parallelism and e�ciency [60].

Following the convention in [104], a memory model in our terminology contains
two essential aspects: (1) the support of a shared space addressing and (2) the so-
called memory consistency model. Advances have been made in addressing both is-
sues.

Global addressing capability. It is reasonable to assume that part of the storage
space of the system is globally addressable. Experience has shown that a shared
addressing capability makes naming logically shared data much easier for the pro-
grammer because any thread can directly reference any data in the shared space and
the naming of the model is similar to that on a uniprocessor. This should greatly
enhance the programmability for certain applications (although it is still a subject of
debate). For a multithreaded execution model (no matter with data¯ow origin or
not) globally addressable memory provides a seamless extension of the memory
model viewed by threads assigned to the same processing node. For applications
with irregular and unpredictable data needs, the lack of global naming capability can
hurt the programmability and e�ciency [108,116]. The ability to name memory
objects globally will also facilitate the support of dynamic load balancing of threads.
As a result, shared-address space is adopted by most multithreaded execution models
with data¯ow origin.

Consistency and replication. A memory consistency model represents a binding
``contract'' between software and hardware in a shared-memory multiprocessor
system. It is important to provide a memory consistency model that is easy to un-
derstand and that also allows for an e�cient hardware implementation. Issues arise
as to how the replication of non-local data are managed. In a classical shared address
space, since non-local data may be accessed through ordinary processor reads and
writes, opportunities exist for the underlying system to replicate data in a way that is
transparent from the users.

The design of most shared-memory multiprocessors has been based on a multi-
processor memory consistency model, usually one derived from Lamport's concept
of sequential consistency [78] which requires the execution of a parallel program to
appear as some interleaving of the memory operations on a sequential machine.
Substantial research has been performed on how to develop relaxed memory

1912 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

consistency models based on the sequential consistency [50,51,85]. However, there
have been observations that the performance gained by using relaxed models does
not justify their complexity [57], with the implication that perhaps multiprocessors
should only support simple consistency models.

Some multithreaded program execution models with data¯ow origin are taking an
alternative point of view that the function of a memory system is to support correct
execution of programs by the computer system of which it is a part [48]. A computer
system, with its memory subsystem, must be a correct implementation of the pro-
gram execution model. While the formulation of a memory consistency model may
be part of the process of building a multiprocessor computer system, the assumed
sequential consistency ``requirement'' is not essential to the construction of a useful
and e�cient parallel processor, and may even be a distraction from the primary task
of correctly implementing a desirable model of parallel computing. The challenge is
to investigate and develop a sound memory model fully integrated into the under-
lying multithreaded execution framework and design an e�cient cache management
scheme for its implementation.

Most scienti®c applications are determinate, and such programs written under a
suitable execution model will not incur any scenario where memory races may occur.
Therefore, memory coherence is not an issue here. Under a multithreaded execution
model with data¯ow origin, the so-called single assignment style is extended and
enriched in such a way that writes in the same threads can be considered as ordinary
``updates'' to memory. However, the data¯ow style synchronization between threads
ensures that producers and consumers of values are guaranteed to be properly or-
dered.

In particular, under the single assignment property of the I-structure memory [7]
once a data element is de®ned, it will never be updated again. The copies of the data
elements in the local cache will never be updated. Therefore, cache coherence should
not be an issue in I-structure memory systems. It makes the design of I-structure
cache much simpler without having to take care of the cache coherence problem.
Such a memory model and its cache management have been proposed and described
in [35,37]. Implementation of I-structure caches in multithreaded architectures with
data¯ow origin has also been pursued in a number of research groups [2,7,75,86,100].

For applications where non-determinacy is required ± such as transaction pro-
cessing applications ± several schemes based on an extension of functional pro-
gramming and I-structures have been reported. One scheme is based on the
M-structures proposal [9]. Another scheme is to propose a program execution model
where sound non-determinacy operators are introduced so the programs can be
written in such a way that non-determinacy can be isolated, and memory operations
are properly ordered, such that its e�ect of the ordering of memory system can be
ensured to have expected behavior as anticipated by the users without resorting to
traditional memory coherence requirement. A proposal along this line is based on
the non-deterministic merge operator as described in [34].

Another proposal is to develop a memory consistency model, as an alternative to
the SC-derived model that does not make the coherence assumption. One such
model is the Location consistency [46,48,49]. Instead of assuming that all writes to the

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1913

same location are serialized according to some total order, the state of a memory
location is modeled as a partially ordered multi-set (pomset) of write operations and
synchronization operations. The partial order in the pomset naturally follows from
the ordering constraints de®ned by a concurrent program. A cache management
mechanism under the LC model has been proposed in [49] which eliminates the
unproductive tra�c for maintaining cache coherence.

The implementation of these proposals and performance evaluation based on
shared memory programs are yet to be carried out so their advantages and trade-o�s
can be judged both qualitatively and quantitatively.

2.4. Synchronization models

This section will focus mainly on the synchronization among the ®ner-level
threads (as described in Section 2.2) ± a distinctive feature of multithreaded models
with data¯ow origin. The semantics of threaded function invocations themselves is
well understood and has been discussed elsewhere [33].

Recall that when a program is divided into these ®ner-level threads, the data and
control dependencies among the threads must be preserved. Under a program exe-
cution model with data¯ow origin, such control and data dependencies are made
explicit in the code. A synchronization event is posted from one thread to another to
inform the recipient that a speci®c control or data dependence has been satis®ed. For
instance, the sending thread may have produced data required by the receiving
thread according to some data dependence, and the producer thread must tell the
consumer thread that the data are ready. If a thread depends on more than one data
or control event, it has to make sure that all dependences have been satis®ed before it
becomes enabled. The underlying architecture (and runtime system) should provide
atomic operations for sending data (possibly to a global memory location) and
posting an event to guarantee that the data have been properly transferred before the
receiving thread that depends on the data is enabled by the synchronization event.
Some recent studies on the e�ectiveness of these operations have been reported in
[112]. As a remark, these operations are very powerful: they can name any location
in the shared address space for the transaction, they also name a thread which should
be informed when the transaction is completed. Note that a designated thread may
or may not become enabled after the transaction ± because it may wait for more than
one synchronization event. So these operations are related to both traditional
shared-memory synchronization operations as well as message passing operations
(including active messages [113]) but are di�erent from both.

3. Data¯ow in signal processing

Signal processing has its intellectual roots in circuit theory. Algorithms tend to be
modeled as compositions of components that conceptually operate concurrently and
communicate via signals that are functions of time. The components are typically

1914 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

®lters, which transform the input signals to construct output signals. Traditionally,
the signals are continuous functions of the time continuum.

Contemporary signal processing is more likely to involve discrete-time signals
than continuous-time signals. Here, instead of time continuum, a discrete clock
globally regulates the computation. Signals have values at the discrete clock ticks,
but not in between. Multirate systems involve multiple clocks, but with clear rela-
tionships among them, so that ticks in the multiple clocks can be unambiguously
associated.

A fairly direct model of discrete-time systems is obtained using the synchronous/
reactive principle [12,13]. In this model, a concurrent program executes in a sequence
of discrete steps, which correspond to ticks of a global clock. At each clock tick, the
value of each signal is obtained by solving for a ®xed point of a system of equations.
One of the possible outcomes of this ®xed point solution is that a signal has no value
at a particular clock tick. By this mechanism, multirate systems are easily modeled.
Some synchronous/reactive languages, notably Lustre [67,68] and Signal [80], have a
data¯ow ¯avor, in that signals are viewed as streams of values, where each value is
aligned with a clock tick. However, the concurrent semantics of these languages is
very di�erent from Dennis [30,36] or Kahn [70] styles of data¯ow, which are dis-
tinctly asynchronous. Whereas synchronous languages are analogous to synchro-
nous circuits in their treatment of concurrency, Dennis and Kahn-style data¯ow are
analogous to self-timed circuits.

The synchronous model globally orders the tokens according to a global clock. In
Dennis and Kahn data¯ow, by contrast, signals are streams of tokens, where the
relative ordering of tokens within a stream matters, but there is not necessarily any
ordering of tokens across streams. Partial ordering constraints on tokens in distinct
streams are imposed by the data precedences in the actors or processes.

In Dennis data¯ow, actors are enabled by the presence of tokens on the input
streams, and once enabled, can ®re to produce tokens on the output streams. This
enabling/®ring sequence implies a partial order in which output tokens are required
to occur after the input tokens that trigger the ®ring.

In Kahn's model, sequential processes communicate via FIFO queues that are
conceptually unbounded. A process can write to a queue at any time, but if it reads
from a queue, then it will block if there are no data. This blocking is a kind of dual of
the Dennis notion of ®ring, where an actor can be ®red once input data become
available. In Kahn's model, a process replaces a Dennis actor, and it is active unless
there are no input data. A sequence of ®rings of a Dennis actor can be viewed as a
Kahn process [83], so we will henceforth refer to these two models simply as ``da-
ta¯ow''. For their detailed semantic connection, see [84].

The synchronous/reactive model provides an abstraction of discrete-time systems
where the metric properties of time are eliminated. That is, there is no measured or
even speci®ed time interval between clock ticks. Rather, there is a sequence of clock
ticks. But one key property of time is retained: its global ordering of events. Data-
¯ow abstracts things still further by eliminating this global ordering.

Streams of tokens provide a suitable abstraction for signals. Data¯ow actors or
Kahn processes operating on these streams provide a suitable abstraction for the

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1915

components. The notion of time is lost, but the data precedences are preserved.
Thus, the abstraction is more highly concurrent even than the circuit-theory roots of
signals processing, since the tight coordination implied by a global ordering based on
time is no longer required. Instead, only the data precedences need to be respected. It
is arguable that this reduces stream-based processing to its computational essence.

3.1. Industrial practice

The signal processing community has embraced data¯ow modeling. A major
reason for this is the widespread use of block diagrams for documenting and ex-
plaining signal processing algorithms. Data¯ow semantics work well with a block
diagram syntax. Moreover, the use of block diagrams evokes a circuit metaphor,
thus making a connection with the historical roots of signal processing. But it also
proves to be a convenient and lucid way to specify reasonably complex algorithms.
By contrast, attempts to use data¯ow principles directly in the computer architecture
of embedded signal processors have largely failed.

Commercial software environments that combine data¯ow semantics with a block
diagram syntax include SPW from Cadence, Cossap from Synopsys, and several
programs from smaller players. These software environments are used for algorithm-
level modeling of systems, for speci®cation, and as a starting point for synthesis of
customized hardware designs and embedded software.

Some closely related block diagram environments have semantics that more
closely resemble synchronous/reactive languages, such as Simulink from The
MathWorks. These are more explicit about time. Simulink in particular has its roots
in continuous-time modeling of control systems, and therefore has a very physical
model of time as an integral part of its semantics.

Block diagram languages are by no means the only tool used in signal processing.
A very popular alternative is matrix-oriented imperative languages such as Matlab
from The MathWorks. These languages speak to the mathematical roots of signal
processing more than to its roots in circuit theory. Indeed, these languages do not
directly model signals. Instead, signals must be decomposed into ®nite and classical
data structures, particularly vectors and arrays.

Since many of the more sophisticated algorithms in signal processing are based on
matrix formulations, Matlab and related languages prove very convenient for de-
scribing them. These algorithms, however, most often get embedded in systems
where stream-based processing is much more natural. A fairly common compromise,
therefore, is to use coarse-grain data¯ow, where actors can represent large scale
computations that are speci®cally de®ned using a matrix-oriented language. At least
one environment speci®cally permits the functionality of data¯ow actors to be given
using Matlab [20].

3.2. Decidable data¯ow

Many signal processing systems involve repeated (in®nite) execution of a well-
de®ned ®nite computation on an in®nite stream of data. Implementations have real-

1916 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

time constraints, and often take the form of embedded software (such as assembly
code for programmable DSPs [79]). This raises a number of interesting issues. In
particular, it is important that the schedule of actor ®rings be predictable in order to
ensure that real time constraints are met. It is also critical that a program never
deadlocks. Because of the embedded system context, it is also important that the
total memory devoted to storing unprocessed tokens be bounded.

In data¯ow, deadlock occurs when all actors are starved. Deadlock is equivalent
to halting. For general data¯ow models, it is undecidable whether a program will
deadlock. It is also undecidable whether a program has an in®nite execution that
consumes bounded memory for storing pending tokens [18,19]. One approach,
therefore, is to use a subset of data¯ow where these questions are decidable.

The so-called synchronous data¯ow [81] and its extensions [16,44], which is not
synchronous in the same sense as synchronous/reactive languages, is one such de-
cidable model. In SDF, an actor is characterized by the number of tokens that it
consumes and produces on its inputs and outputs on each ®ring. The inputs and
outputs of each actor are labeled with an integer constant. For an input, this is the
number of tokens that are required on that input stream in order to ®re the actor.
For the outputs, it is the number of tokens that are produced by a ®ring.

In a block-diagram syntax, an arc connecting the two actors represents the ¯ow of
tokens between them. If we assume that the topology of such ¯ows is ®xed, and that
the number of tokens produced and consumed by each actor is ®xed, then both
deadlock and bounded memory are decidable. To get an idea of how this is possible,
we review the notion of balance equations [81].

Suppose an actor A produces N tokens on an output that is connected to actor B.
Suppose further that actor B requires M tokens on its input to ®re. Suppose that
actor A ®res fA times, and actor B ®res fB times. Then the balance principle requires
that

fAN � fBM :

One such equation can be written for each arc in an interconnection of actors.
The balance principle is trivially satis®ed if either fA � fB � 0 or fA � fB � 1. A

more interesting situation arises, however, if there is a bounded positive solution for
fi for each actor i such that all balance equations are satis®ed. In this case, there may
be a ®nite but non-zero set of ®rings that achieves balance.

It has been shown that for a connected data¯ow graph, if the balance equations
have a non-trivial solution, then they have a unique smallest positive integer solution
[81]. If they have no solution, then there is no bounded memory in®nite execution of
the data¯ow graph.

If the balance equations have a non-trivial solution, then there is a simple ®nite
algorithm that will determine whether the graph deadlocks. Thus, both the bounded
memory question and the deadlock question are decidable for SDF. Hence, SDF
graphs can reliably be implemented in embedded real-time systems.

Although the decidability of the SDF model is convenient for certain applications,
it comes at a very high cost in expressiveness. In particular, the fact that the token
production/consumption patterns are ®xed means that an application cannot use the

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1917

¯ow of tokens to e�ect control. That is, conditional variations in the ¯ow are not
allowed. Even signal processing applications involve a certain amount of conditional
computation, so this restriction becomes very limiting.

Consider for example an actor which, under the control of a boolean-valued input
stream, routes tokens from another input stream to one of two outputs. Such an
actor is often called a ``switch''. The partner of the switch is the ``select'', which uses
a boolean input stream to guide its decisions about which of two other input streams
to read for the next token. After reading an input token from either of these two
inputs, it outputs that token on its single output. These two actors thus serve the
same function as railway switches, splitting or merging streams of data under the
control of boolean signals. However, the introduction of these two actors alone to
the SDF formalism makes both deadlock and bounded memory undecidable.

One solution is to broaden the data¯ow model that is used by accepting the
undecidability of the key propositions but nonetheless attempt to decide. Undecid-
ability merely states that no algorithm can decide in ®nite time for all programs. It
does not prevent us from constructing a formalism where a compiler can decide for
most programs.

This is the approach taken by Buck [19], who based his approach on the token
¯ow model of Lee [82]. This model generalizes the balance equations to permit the
number of tokens produced and consumed to vary dynamically. To do this, it at-
taches a symbolic value rather than a numerical value to each port of each actor. The
balance equations therefore include symbolic coe�cients, and have to be solved
symbolically. Frequently, it is possible to solve them. The resulting solution can be
used to construct a schedule of actor ®rings that is provably free from deadlocks and
that requires only bounded memory for token storage.

Buck's model came to be called boolean data¯ow, although the basic concept has
been extended to non-boolean control signals [21]. BDF, however, has two prob-
lems. First, because the key underlying implementation questions remain undecid-
able, a programming environment that depends on being able to decide is somewhat
fragile. Small and seemingly innocuous changes to a program may cause the
scheduling algorithms to fail. Also, experience constructing programs using this
model indicates that it is not often the most intuitive way to specify a computation.
Programs often resemble puzzles, where considerable cleverness is required to con-
struct them and to understand what they do. Using the routing of tokens for control
¯ow may not be such a good idea.

3.3. Reactive systems

Signal processing systems almost never do only signal processing. Consider for
example a cellular telephone. It includes intensive numerical signal processing in
both the speech coder and radio modem. It may also include advanced features such
as speech recognition for hands-free dialing. These signal processing components are
each quite sophisticated, and invariably involve algorithms that stress the limitations
of SDF. For example, equalization of a fading radio channel may involve the use of
distinct algorithms during the establishment of a connection vs. steady state. Also,

1918 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

power conservation dictates the use of simpler algorithms when the channel is be-
nign, suggesting mode changes that would be driven by channel estimators. SDF by
itself does not match these requirements well. BDF is a possibility, but it is not a
complete solution if one considers the entire design of the phone.

Signal processing applications fall into a broader class of so-called reactive sys-
tems [89], which are those that interact with their environment at the speed of the
environment. Much of what characterizes many reactive systems is randomly
structured control logic that bears little resemblance to the regular algorithmic
structure of core signal processing algorithms. A cellular phone, for example, in-
cludes not only sophisticated signal processing, but also a substantial amount of
embedded control logic for call processing and multiple-access protocols. BDF no
longer matches well, since even relatively simple control logic becomes very di�cult
to understand.

One possible solution is to embrace a heterogeneous approach, where modeling
techniques can be combined systematically to construct more complex systems.
Decidable data¯ow models would be used for the hard-real-time signal processing in
the cellular phone, but other formalisms would be used for the control logic. Some
researchers advocate melding state machines with data¯ow [52], much the way
StateCharts melds a synchronous/reactive model with state machines [69]. State
machines are good at representing intricate control logic. Moreover, they often yield
to formal analysis, and with careful language construction, remain decidable.

4. Data¯ow as a programming model for recon®gurable computing

The data¯ow graph program representation model has been proposed as a plat-
form for the programming of recon®gurable computing machines (RCMs). Re-
con®gurable computing consists of the dynamic mapping, and re-mapping, of
computations directly onto hardware. Even though the recon®gurable computing
model is not new [41], it has received renewed attention in recent years due to the
development and rapid evolution of FPGA devices in particular [14,22] and of VLSI
technology in general.

The design of computing systems is a trade-o� between generality and e�ciency.
One of the great attractions of the recon®gurable computing model is its ability to
increase e�ciency with a smaller sacri®ce in generality than vector processors for
example. As a computation model, recon®gurable computing avoids one of the
major limitations of the von Neumann stored-program model, namely the fetching
of instructions from a storage, it can therefore achieve a much higher operation
density than general-purpose processors [29,11,12,54,119,120].

Recon®gurable computing is a parallel execution model that combines aspects of
the SIMD, systolic arrays and MIMD models. The granularity of the computation in
this model can vary, within a same program, from bit-level manipulations to loop-
level parallelism. Because of the wide variation in granularity and the ¯exibility of
the execution model, in particular on machines that support partial dynamic re-
con®guration, the programmability of RCMs is a major obstacle to their wider

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1919

acceptance. The development of an accessible yet e�cient programming paradigm
for recon®gurable computing is an important research challenge.

4.1. Recon®gurable computing machines

In its most general form, a recon®gurable computing machine (RCM) consists of
a processor and an array of programmable blocks (RC array). One of the main
distinguishing features of RCMs is the granularity of the programmable blocks. At
one extreme are the FPGA-based machines (FRCMs) where the programmable
block consists of a logical collection of gates. Their programming model is that of a
gate-level net-list [87,88]. On the other extreme are the coarse-grain recon®gurable
machines (CRCMs) where the logic block consists of an ALU and possibly a register
®le. In either of these categories, the architecture of the RCM can be a specialized
processor (such as the Ganglion, built for neural network computations [26]), a
coprocessor (such as the PRISM [8] and the Thinking machine CM-2X [27]) or an
attached processor (such as the DEC PAM and PeRLe-0 and PeRLe-1 [14,15,114]
and the SRC Splash 1 and 2 [22,53]).

Fine-grained RCMs. FRCMs rely on FPGAs as the recon®gurable array. The
computation to be mapped onto hardware is written in a hardware description
language (HDL) such as VHDL or Verilog. The HDL program is then compiled
using a synthesis tool and the resulting net list is placed and routed for the speci®c
FPGA device used. The resulting con®guration codes are then down loaded to a
board that comprises one or more FPGA devices. The programming model for these
machines is, therefore, essentially that of hardware design. It is a lengthy process and
requires expert knowledge of HDLs as well as the particular FPGA device family
being targeted. Its advantages are its low cost and its very high ¯exibility: the con-
®gurable circuit is designed to exactly ®t the computation. It was shown that the
e�ciency of computations on FRCMs, measured in bit operations per k2 second, is
one to two orders of magnitude that of conventional computers [29]. This model,
therefore, tends towards the e�ciency levels of ASICs while preserving a much
higher ¯exibility. Examples of this model are the DEC PAM and PeRLe machines,
the SRC Splash 1 and 2 and the Annapolis Microsystems Wildforce board [1].
FRCMs are generally designed as attached processors communicating with a host
processor on an I/O bus.

Coarse-grained RCMs. At the other extreme are the RCMs where the program-
mable blocks consist of complex ALUs with local registers and possible support for
¯oating-point operations. In these machines the programming model is similar to a
conventional processor or multiprocessor. Examples of this model include the UC
Irvine Morphosys chip [77], the UC Berkeley Garp [55], the MIT RAW machine
[115], the CMU Pipe-Rench [23,107] and the University of Washington RaPiD [40].
The advantage of this model is its simpler programming paradigm. It also bene®ts
better from traditional compiler optimizations, both sequential and parallel. Its
hardware structure, however, is more rigid and hence less ¯exible than that of its
FRCMs. CRMs are generally designed as coprocessors or integrated in the processor
design itself [23,24,77]. These two RC architecture models are by no means exclusive.

1920 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

As a matter of fact, the model proposed by Gerald Estrin in 1963 [41] has been called
the ``Fixed plus Variable'' model: It combines, in one processor, a traditional CPU
and a ®ne-grained recon®gurable engine. In a way, most recon®gurable architectures
follow this same model of ®xed plus variable. However, the relative sizes and the
degree of integration of the ®xed and variable parts vary. The CMU PipeRench,
the UC Berkeley Garp and the UC Irvine M1 processors consist of a CPU and the
recon®gurable component on the same processor chip.

4.2. The programmability of RCMs

The poor programmability of RCMs is probably the most serious obstacle to their
wider adoption. It derives from two distinct and orthogonal problems: (1) The
complexity of the model and (2) The use of HDL (VHDL or Verilog) as a pro-
gramming language in FRCMs.

The complexity of the model. Recon®gurable computing is a powerful model that
can exploit program parallelism at most levels and in an integrated way. The par-
allelism in this model ranges from bit-level manipulations, to instruction, to loop and
task levels (such as producer±consumer relationships). While in a von Neumann
processor, these levels of parallelism are exploited in a somehow hierarchical manner
(re¯ected for example in the storage hierarchy: registers, cache, memory, virtual
memory), in a recon®gurable hardware these levels of parallelism are integrated in a
¯at ``address'' space (the address space becomes physical space). Dynamic recon-
®guration adds another dimension to the programming complexity of this model.
Dynamic recon®guration is the ability to ``re-program'' the RCM, all or just part of
it, dynamically and based on the outcome of a computation. In summary, this
computational model combines the power, and complexity, of the SIMD, systolic
arrays and the MIMD models. The challenge is therefore to migrate, at least in part,
some of that complexity from the user to the compiler.

The use of HDLs. At the root of the resurgence of the recon®gurable computing
model is the emergence of high-density and high-speed FPGAs. It is only natural
that such machines have been programmed using HDLs. However, both Verilog and
VHDL are languages designed, initially, for system level simulation. They are both
based on a discrete-event simulation paradigm and are not easily accessible to
conventionally applications programmers. The challenge is to interface between
traditional high-level languages and HDLs [118].

4.3. Data¯ow graphs and recon®gurable computing

A data¯ow graph represents the essence of a computation. The two major
characteristics of a data¯ow graph program representation are:
· Data are represented by values (arcs) and not by memory location.
· Operations are functional: the output depends only on the inputs.

As a result, the advantages of this model for recon®gurable computing are:

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1921

· The ordering of operations is determined only by true data dependencies. It is not
constrained by arti®cial dependencies introduced by the stored program model,
such as memory aliases.

· It displays parallelism in a computation at all levels. Fine-grained parallelism, at
the operation level, can be exploited within a processor. Coarser, loop or function
level parallelism can be exploited across processors. In contrast: systolic arrays ex-
ploit only ®ne grain parallelism, SMP only coarse grain.

· At the semantic level, combinational logic circuits are naturally functional (their
output depends only on their inputs) and are therefore easily synthesizable from
data¯ow graphs.

· With certain restrictions on actors, data¯ow graphs do not have any implicit state.
They allow easy and correct synthesis of sequential circuits where the storage el-
ements are determined by the synthesis tool rather than by a compiler.
Various forms of data¯ow graphs have been proposed and used for the pro-

gramming of systolic and wavefront arrays [72,94,117] as well as for the synthesis,
hardware/software co-design, of application speci®c hardware [17,58,93].

The Cameron Project is a research e�ort that aims at leveraging the potentials of a
data¯ow graph program representation to provide high-level programming for
RCMs [97]. The application domain that is targeted by the Cameron Project is image
processing, however, the approach is general enough and could be extended to other
areas. Cameron relies on Khoros as a graphical user interface. Khoros is a widely
popular program development environment designed for image processing (IP) ap-
plications [76,103].

Program modules that run on the RCM are written in a single-assignment subset
of C called SA-C. SA-C programs are tightly integrated into Khoros. SA-C has been
extended to support image processing constructs as well as compilation for a
hardware implementation. The most salient features of SA-C are its support for true
n-dimensional arrays, window-based operations on these, and variable precision
®xed-point arithmetic. The ®rst feature simpli®es the expression of image processing
algorithms while the second improves the e�ciency of the mapping to hardware.
Other C-like hardware de®nition languages have been developed (e.g., Handel-C
[101,118]) with a large degree of success. However, they still require the manual
translation of algorithms into logic circuit structures. The objective of Cameron is to
automate that process while still providing the programmer with some control over
the mapping to hardware. SA-C programs are compiled and optimized into a da-
ta¯ow graph. This format is then compiled to VHDL for FRCMs or to native
machine code for CRCMs.

The project described in [102] relies on the synchronous data¯ow model, as im-
plemented in Ptolemy, to develop mapping techniques for RCMs tailored to signal
processing. It extends Ptolemy by developing a new recon®gurable computing do-
main that separates the interface speci®cation from implementation for each signal
processing functional block.

Recon®gurable computing is a very powerful paradigm with a great potential. It
is, however, still in its infancy. The implementation of this model is enabled by the
rapid advances in VLSI technology. Its greatest challenge lies in its programmability.

1922 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

Unless that challenge is e�ectively and e�ciently addressed, recon®gurable com-
puting runs the risk of remaining a potential paradigm.

5. Conclusion

As a model of computation, data¯ow has a long history. It has been used as a
principle for computer architecture, as a model of concurrency in software, as a high-
level design model for hardware. It has demonstrated its ¯exibility and e�ciency at
representing computation by the wide variety of areas in which it has been used.

The astoundingly rapid evolution of computing machines and their phenomenal
penetration of modern society in the last half century has been attributed, to a large
degree, to the simplicity, constance and uniformity of the stored program model. It
has provided the stable conceptual framework within which processors, operating
systems, algorithms, languages and compilers were designed and implemented.
However, as applications evolve and exploit all the computing power of modern
machines, the demand for higher performance machines is rapidly increasing. It is in
the implementations of high performance computing systems that the stored pro-
gram model shows its limitations. These limitations are directly and elegantly ad-
dressed by the data¯ow model. We believe that the data¯ow model is not only still
relevant in many computing research areas, but also that many emerging and future
areas will bene®t from this model.

Acknowledgements

The authors acknowledge the support from DARPA, NSA, NSF, and NASA.
The last author thanks members of his Computer Architecture and Parallel Systems
Laboratory (CAPSL) group, Department of Electrical and Computer Engineering,
University of Delaware, for their valuable input in several discussions. And ®nally,
thanks to Dr. Ruppa Thulasiram for his careful reading of the manuscript and
comments.

References

[1] Annapolis Micro Systems, Wildforce Board Web Page, http://www.annapmicro.com.

[2] B.S. Ang, Arvind, D. Chiou, StarT the next generation: integrating global caches and data¯ow

architecture, in: G.R. Gao, L. Bic, J.-L. Gaudiot (Eds.), Advanced Topics in Data¯ow Computing

and Multithreading, IEEE Computer Society Press, Silver Spring, MD, 1995, pp. 19±54.

[3] B.S. Ang, D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph, Arvind, Start-voyager: a ¯exible

platform for exploring scalable smp issues, CSG Memo 415, Computation Structures Group, MIT

Lab. for Comput. Sci., December 1998.

[4] Arvind, R.S. Nikhil, Executing a program on the MIT tagged-token data¯ow architecture, IEEE

Trans. Comput. 39 (3) (1990) 300±318.

[5] Arvind, K.P. Gostelow, The U-interpreter, Computer 15 (2) (1982) 42±49.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1923

[6] Arvind, R. Iannucci, A critique of multiprocessing von Neumann style, in: International Symposium

on Computer Architecture, Stokholm, Sweden, 1983.

[7] Arvind, R.S. Nikhil, K.K. Pingali, I-structures: data structures for parallel computing, ACM Trans.

on Program. Languages Syst. 11 (4) (1989) 598±632.

[8] P.M. Athanas, H.F. Silverman, Processor recon®guration through instruction set metamorphosis,

Computer 26 (1993) 11±18.

[9] P.S. Barth, R.S. Nikhil, Arvind, M±structures: extending a parallel, non-strict, functional language

with state, CSG Memo 327, Computation Structures Group, MIT Lab. for Comput. Sci., March

1991.

[10] M.J. Beckerle, Overview of the START(�T) multithreaded computer, in: Digest of Papers,

COMPCON Spring '93, San Francisco, CA, February 1993, pp. 148±156.

[11] A. Benedetti, P. Perona, Feature detection on a recon®gurable computer, in: Conference on

Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998.

[12] A. Benveniste, G. Berry, The synchronous approach to reactive and real-time systems, in:

Proceedings of the IEEE, vol. 79 (9), 1991, pp. 1270±1282.

[13] A. Benveniste, P. Caspi, P. Le Guernic, N. Halbwachs, Data-¯ow synchronous languages, in: J.W.

de Bakker, W.-P. de Roever, G. Rozenberg (Eds.), A Decade of Concurrency ± Re¯ections and

Perspectives, Lecture Notes in Computer Science, vol. 803, Springer, Berlin, 1994, pp. 1±45.

[14] P. Bertin, D. Roncin, J. Vuillemin, Programmable active memories: a performance assesment, in: G.

Borriello, C. Ebeling (Eds.), Research on Integrated Systems, MIT Press, Cambridge, MA, 1993, pp.

88±102.

[15] P. Bertin, H. Touati, PAM programming environments: practice and experience, in: Proceedings of

the IEEE Workshop on FPGAs for Custom Computing Machines, IEEE Computer Soc. Press, Los

Alamitos, CA, 1994, pp. 133±139.

[16] G. Bilsen, M. Engels, R. Lauwereins, J.A. Peperstraete, Static scheduling of multi-rate and cyclo-

static DSP applications, in: Proceedings of the 1994 Workshop on VLSI Signal Processing, IEEE

Press, New York, 1994.

[17] M. Bolotski, A. DeHon, T.F. Knight, Unifying FPGAs and SIMD arrays, in: Proceedings of the

FPGA Workshop, 1994.

[18] J.T. Buck, E.A. Lee, Scheduling dynamic data¯ow graphs with bounded memory using the token

¯ow model, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. I, Minneapolis, MN, April 1993, pp. 429±432.

[18] J.T. Buck, Scheduling dynamic data¯ow draphs with bounded memory using the token ¯ow model,

Technical Report UCB/ERL 93/69, Ph.D. Dissertation, Department of EECS, University of

California, Berkeley, CA 94720, 1993.

[20] J.T. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, Ptolemy: a framework for simulating and

prototyping heterogeneous systems (special issue on Simulation Software Development) Int. J.

Comput. Simulation, 4 (1994) 155±182 (http://ptolemy.eecs.berkeley.edu/papers/JEurSim).

[21] J.T. Buck, Static scheduling and code generation from dynamic data¯ow graphs with integer-valued

control systems, Invited Paper, in: Proceedings of the IEEE Asilomar Conference on Signals,

Systems, and Computers, 31 October±2 November, Paci®c Grove, CA, 1994.

[22] D.A. Buell, J.M. Arnold, W.J. Kleinfelder, Splash 2: FPGAs in a Custom Computing Machine,

IEEE CS Press, Silver Spring, MD, 1996.

[23] S. Cadambi, J. Weener, S.C. Goldstein, H. Schmit, D.E. Thomas, Managing pipeline-recon®gurable

FPGAs, in: Sixth International Symposium on Field Programmable Gate Arrays, 1998.

[24] R. Carley, S.C. Goldstein, T. Mukherjee, R. Rutenbar, H. Schmit, D. Thomas, PipeRench Web

Page, Carnegie-Mellon University, http://www.ece.cmu.edu/research/piperench/.

[25] D. Chiou, B.S. Ang, Arvind, M.J. Beckerle, A. Boughton, R. Greiner, J.E. Hicks, J.C. Hoe, StarT-

NG: delivering seamless parallel computing, CSG Memo 371, Computation Structures Group, MIT

Lab. for Comput. Sci., February 1995.

[26] C.E. Cox, W. Ekkehard Blanz, Ganglion ± a fast hardware implementation of a connectionist

classi®er, in: Proceedings of the IEEE Custom Integrated Circuits Conference, IEEE Press, New

York, 1991, pp. 6.5.1±6.5.4.

1924 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

[27] S.A. Cuccaro, C.F. Reese, The CM-2X: a hybrid CM-2/Xilinx prototype, in: Proceedings of the

IEEE Workshop on FPGAs for Custom Computing Machines, IEEE Computer Soc. Press, Los

Alamitos, CA, 1993, pp. 121±131.

[28] A.L. Davis, R.M. Keller, Data ¯ow program graphs, Computer 15 (2) (1982) 26±41.

[29] A. DeHon, Comparing computing machines, in: Con®gurable Computing: Technology and

Applications, Proceedings of SPIE 3526, November 1998, p. 124.

[30] J.B. Dennis, First version of a data-¯ow procedure language, in: Proceedings of the Colloque sur la

Programmation, Lecture Notes in Computer Science, vol. 19, Paris, France, April 9±11, Springer,

Berlin, 1974, pp. 362±376.

[31] J.B. Dennis, Data ¯ow ideas for supercomputers, in: Digest of Papers, COMPCON Spring '84, San

Francisco, CA, February±March 1984, pp. 15±19.

[32] J.B. Dennis, G.R. Gao, An e�cient pipelined data¯ow processor architecture, in: Proceedings of the

Supercomputing '88, Orlando, FL, November 1988, pp. 368±373.

[33] J.B. Dennis, G.R. Gao, Multithreaded architectures: principles, projects, and issues, ACAPS

Technical Memo 29, School of Computer Science, McGill University, Montr�eal, Qu�e., February

1994, in: ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.

[34] J.B. Dennis, G.R. Gao, Multithreaded architectures: principles, projects, and issues, in: R.A.

Iannucci, G.R. Gao, R.H. Halstead Jr., B. Smith (Eds.), Multithreaded Computer Architecture: A

Summary of the State of the Art, chapter 1, Kluwer Academic Publishers, Norwel l, Massachusetts,

1994.

[35] J.B. Dennis, G.R. Gao, On memory models and cache management for shared-memory

multiprocessors, ACAPS Technical Memo 90, School of Computer Science, McGill University,

Montr�eal, Qu�e., December. 1994, in: ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.

[36] J.B. Dennis, Streams data types for signal processing, in: J-L. Gaudiot, L. Bic (Eds.), Advanced

Topics in Data¯ow Computing and Multithreading, Prentice-Hall, Englewood Cli�s, NJ, 1995.

[37] J.B. Dennis, G.R. Gao, On memory models and cache management for shared-memory

multiprocessors, in: Parallel and Distributed Processing, IEEE Computer Soc., 1995.

[38] J.B. Dennis, A parallel program execution model supporting modular software construction, in:

Proceedings of the Massively Parallel Programming Models (MPPM-97), IEEE Computer Soc.,

1997, pp 50±60.

[39] J.B. Dennis, General parallel computation can be performed with a cycle-free heap, in: Proceedings

of the International Conference on Parallel Architectures and Compiler Technology, Paris, France,

October 1996, pp. 96±103.

[40] C. Ebeling, D.C. Cronquist, P. Franklin, RaPiD ± recon®gurable pipelined datapath, in Proceedings

of the Field Programmable Logic, 1996.

[41] G. Estrin, Parallel processing in a restructurable computer system, IEEE Trans. Elect. Comput.

(1963).

[42] G.R. Gao, A Code Mapping Scheme for Data¯ow Software Pipelining, Kluwer Academic

Publishers, Boston, Massachusetts, 1990.

[43] G.R. Gao, H.H.J. Hum, J.-M. Monti, Towards an e�cient hybrid data¯ow architecture model, in:

Proceedings of the PARLE '91, vol. I, Lecture Notes in Computer Science, vol. 505, Eindhoven, The

Netherlands, June 1991, Springer, Berlin, pp. 355±371.

[44] G.R. Gao, R. Govindarajan, P. Panangaden, Well-behaved data¯ow for DSP computation, in:

Proceedings of the ICASSP-92, San Francisco, March 1992.

[45] G.R. Gao, An e�cient hybrid data¯ow architecture model, J. Parallel Distrib. Comput. 19 (4) (1993)

293±307.

[46] G.R. Gao, V. Sarkar, Location consistency: stepping beyond the barriers of memory coherence and

serializability, ACAPS Technical Memo 78, School of Computer Science, McGill University,

Montr�eal, Qu�e., December 1994, in: ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.

[47] G.R. Gao, L. Bic, J-L. Gaudiot (Eds.), Advanced Topics in Data¯ow Computing and

Multithreading, IEEE Computer Soc. Press, New York, 1995, book contains papers presented at

the Second International Workshop on Data¯ow Computers, Hamilton Island, Australia, May

1992.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1925

[48] G.R. Gao, V. Sarkar, On the importance of an end-to-end view of memory consistency in future

computer systems, in: Proceedings of the International Symposium on High Performance

Computing, Fukuoka, Japan, 1997, pp. 30±41.

[49] G.R. Gao, V. Sarkar, Location consistency ± a new memory model and cache consistency protocol,

CAPSL Technical Memo 16, Department of Elec. and Computer Engineering, University of

Delaware, Newark, Delaware, February 1998, in: ftp://ftp.capsl.udel.edu/pub/doc/memos.

[50] K. Gharachorloo, A. Gupta, J. Hennessy, Revision to `memory consistency and event ordering in

scalable shared-memory multiprocessors', Technical Report No. CSL-TR-93-568, Computer

Systems Lab., Stanford University, Stanford, CA, April 1993.

[51] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy, Memory consistency

and event ordering in scalable shared-memory multiprocessors, in: Proceedings of the ISCA-17,

Seattle, Washington, May 1990, pp. 15±26.

[52] A. Girault, B. Lee, E.A. Lee, Hierarchical ®nite state machines with multiple concurrency models,

IEEE Trans. on CAD, 1999, 18 (6) (1999). (Revised from Memorandum UCB/ERL M97/57,

Electronics Research Laboratory, University of California, Berkeley, CA 94720, August 1997)

(http://ptolemy.eecs.berkeley.edu/papers/98/starcharts).

[53] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, D. Lopresti, Building and

using a highly parallel programmable logic array, IEEE Comput. 24 (1991) 81±89.

[54] R. Hartenstein et al., A recon®gurable machine for applications in image and video compression, in:

Conference on Compression Technologies and Standards for Image and Video Compression,

Amesterdam, Netherlands, 1995.

[55] J.R. Hauser, J. Wawrzynek, Garp: a MIPS processor with a recon®gurable co-processor, in: Pro-

ceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines, April 1997.

[56] L.J. Hendren, G.R. Gao, X. Tang, Y. Zhu, X. Xue, H. Cai, P. Ouellet, Compiling C for the EARTH

multithreaded architecture, ACAPS Technical Memo 101, School of Computer Science, McGill

University, Montr�eal, Qu�e., March 1996, in: ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.

[57] M.D. Hill, Multiprocessors should support simple memory-consistency models, Computer 31 (1998)

28±34.

[58] J. Horstmannsho�, T. Gr�otker, H. Meyr, Mapping multirate data¯ow to complex RT level

hardware models, in: 11th International Conference on Application-speci®c Systems, Architectures

and Processors, 1997, (ASAP'97).

[59] H.H.-J. Hum, The super-actor machine: a hybrid data¯ow/von Neumann architecture, Ph.D. Thesis,

McGill University, Montr�eal, Qu�e., May 1992.

[60] H.H.J. Hum, G.R. Gao, A high-speed memory organization for hybrid data¯ow/von Neumann

computing, Future Generation Comput. Syst. 8 (4) (1992) 287±301.

[61] H.H.J. Hum, O. Maquelin, K.B. Theobald, X. Tian, G.R. Gao, L.J. Hendren, A study of the earth-

manna multithreaded system, Int. J. Parallel Programming 24 (4) (1996) 319±347.

[62] R.A. Iannucci, Toward a data¯ow/von Neumann hybrid architecture, in: Proceedings of the ISCA-

15, Honolulu, Haw., May±June 1988, pp. 131±140.

[63] R.A. Iannucci, G.R. Gao, R.H. Halstead Jr., B. Smith (Eds.), Multithreaded Computer Architecture:

A Summary of the State of the Art, Kluwer Academic Publishers, Norwell, Massachusetts, 1994,

book contains papers presented at the Workshop on Multithreaded Computers, Albuquerque, New

Mexico, November 1991.

[64] S. Jenks, J.-L. Gaudiot, Exploiting locality and tolerating remote memory access latency using

thread migration, Int. J. Parallel Programming, 1996, in press.

[65] S. Jenks, J.-L. Gaudiot, Nomadic threads ± a migrating multithreaded approach to remote memory

accesses in multiprocessors, in: Proceedings of the International Conference on Parallel Architec-

tures and Compilation Techniques (PACT '96), Boston, Massachusetts, October 1996.

[66] S. Jenks, J.-L. Gaudiot, Nomadic threads: A migrating multithreaded approach to remote memory

accesses in multiprocessors, in: Proceedings of the 1996 Conference on Parallel Architectures and

Compilation Techniques, Boston, Massachusetts, October 1996.

[67] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer Academic Publishers,

Dordrecht, 1993.

1926 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

[68] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data ¯ow programming

language LUSTRE, in: Proceedings of the IEEE, vol. 79 (9), pp. 1305±1319.

[69] D. Harel, Statecharts: a visual formalism for complex systems, Sci. Comput. Programming 8 (1987)

31±274.

[70] G. Kahn, The semantics of a simple language for parallel programming, in: Proceedings of the IFIP

Congress 74, North-Holland, Amsterdam, 1974.

[71] C. Kim, J.-L. Gaudiot, Data-¯ow and multithreaded architectures, in: Encyclopedia of Electrical

and Electronics Engineering, Wiley, New York, 1997.

[72] I. Koren, B. Mendelson, I. Peled, G.M. Silberman, A data-driven VLSI array for arbitrary

algorithms, Computer 21 (10) (1988) 30±43.

[73] J.-L. Gaudiot, L. Bic (Eds.), Advanced Topics in Data-Flow Computing, Prentice-Hall, New york,

1991.

[74] Y. Kodama, S. Sakai, Y. Yamaguchi, A prototype of a highly parallel data¯ow machine EM-4 and

its preliminary evaluation. in: Proceedings of the InfoJapan 90, October 1990, pp. 291±298.

[75] Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, Y. Yamaguchi, The EM-X parallel

computer: architecture and basic performance, in: Proceedings of the ISCA-22, Santa Margher ita

Ligure, Italy, June 1995, pp. 14±23.

[76] KRI, Khoral Research Inc. Web Page, http://www.kri.com.

[77] F. Kurdahi, N. Bagherzadeh, The Morphosys Project, University of California, Irvine, 1998, http://

www.eng.uci.edu/morphosys.

[78] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess

programs, IEEE Trans. Comput. 28 (9) (1979) 690±691.

[79] P. Lapsley, J. Bier, A. Shoham, E.A. Lee, DSP Processor Fundamentals Architectures and Features,

IEEE Press, New York, 1997.

[80] P. Le Guernic, T. Gauthier, M. Le Borgne, C. Le Maire, Programming real-time applications with

SIGNAL, Proc. IEEE 79 (9) (1991).

[81] E.A. Lee, D.G. Messerschmitt, Static scheduling of synchronous data ¯ow programs for digital

signal processing, IEEE Trans. Comput. (1987).

[82] E.A. Lee, Consistency in data¯ow graphs, IEEE Trans. Parallel Distributed Syst. 2 (2) (1991).

[83] E.A. Lee, T.M. Parks, Data¯ow process networks, Proc. IEEE 83 (5) (1995) 773±801.

[84] E.A. Lee, A denotational semantics for data¯ow with ®ring, Memorandum UCB/ERL M97/3,

Electronics Research Laboratory, UC Berkeley, January 1997.

[85] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, J. Hennessy. The DASH

prototype: implementation and performance, in: Proceedings of the ISCA-19, Gold Coast,

Australia, May 1992, pp. 92±103.

[86] W.-Y. Lin, J.-L. Gaudiot, I-structure software cache: a split-phase transaction runtime cache system,

in: Proceedings of the 1996 Conference on Parallel Architectures and Compilation Techniques,

Boston, Massachusetts, October 1996, pp. 122±126.

[87] W.H. Mangione-Smith, Seeking solutions in con®gurable computing, IEEE Comput. 30 (1997) 38±

43.

[88] W.H. Mangione-Smith, Application design for con®gurable computing, Computer 30 (1997) 115±

117.

[89] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Springer, Berlin,

1991.

[90] O.C. Maquelin, H.H.J. Hum, G.R. Gao, Costs and bene®ts of multithreading with o�-the-shelf

RISC processors, in: Proceedings of the EURO-PAR '95, no. 966 in Lecture Notes in Computer

Science, Stockholm, Sweden, Springer, August 1995, pp. 117±128.

[91] A. M�arquez, K.B. Theobald, X. Tang, T. Sterling, G.R. Gao, A superstrand architecture and its

compilation, CAPSL Technical Memo 18, Department of Elec. and Computer Engineering,

University of Delaware, Newark, Delaware, March 1998.

[92] A. Marquez, K.B. Theobald, X. Tang, G.R. Gao, A superstrand architecture and its compilation, in:

Proceedings of the MTEAC99 Workshop held in conjunction with HPCA-5, Orlando, FL, January

1999.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1927

[93] B. Mendelson, B. Patel, I. Koren, Designing special purpose co-processors using the data-¯ow

paradigm, in: J.-L. Gaudiot, L. Bic (Eds.), Advanced Topics in Data-Flow Computing, Prentice-

Hall, Englewood Cli�s, NJ, 1991, pp. 547±570.

[94] B. Mendelson, G.M. Silberman, Mapping data ¯ow programs on a VLSI array of processors, in:

Proceedings of the International Symposium on Computer Architecture, Pittsburgh, Pennsylvania,

June 1987, pp. 72±80.

[95] W.A. Najjar, W.M. Miller, A.P.W. B�ohm, An analysis of loop latency in data¯ow execution, in:

Proceedings of the ISCA-19, Gold Coast, Australia, May 1992, pp. 352±360.

[96] W. Najjar, J.-L. Gaudiot, Multi-level execution in data-¯ow architectures, in: Proceedings of the

ICPP '87, St. Charles, Ill., August 1987, pp. 32±39.

[97] W. Najjar, A.P.W. Bohm, B. Draper, R. Beveridge, The Cameron Project, Colorado State

University, Fort Collins, CO 1998, http://www.cs.colostate.edu/cameron.

[98] S.S. Nemawarkar, Performance modeling and analysis of multithreaded architectures, Ph.D. Thesis,

Montr�eal, Qu�e., August 1996.

[99] R.S. Nikhil, Arvind, Can data¯ow subsume von Neumann computing? in: Proceedings of the ISCA-

16, Jerusalem, Israel, May±June 1989, pp. 262±272.

[100] K. Okamoto, S. Sakai, H. Matsuoka, T. Yokota, H. Hirono, Multithread execution mechanisms on

RICA-1 for massi vely parallel computation, in: Proceedings of the 1996 Conference on Parallel

Architectures and Compilation Techniques, Boston, Massachusetts, October 1996, pp. 116±121.

[101] Oxford Hardware Compilation Group, The Handel Language, 1997.

[102] E.K. Pauer, C.S. Myers, P.D. Fiore, J.M. Smith, C.M. Crawford, E.A. Lee, J. Lundblad, C.X.

Hylands, Algorithm analysis and mapping environment for adaptive computing systems, Second

Annual Workshop on High Performance Embedded Computing, MIT Lincoln Labs, Lexington,

MA, September 1998 (http://ptolemy.eecs.berkeley.edu/papers/98/ACSmapping/).

[103] J. Rasure, S. Kubica, The KHOROS application development environment, in: J.L. Crowley

(Ed.), Experimental Environments for Computer Vision and Image Processing, HICa, New Jersey,

1994.

[104] S.K. Reinhardt, J.R. Larus, D.A. Wood, Tempest and typhoon: user-level shared memory, in:

Proceedings of the ISCA-21, Chicago, Ill., April 1994, pp. 325±336.

[105] X. Tang. Compiling for multithreaded architectures, Ph.D. Thesis, University of Delaware, Newark,

DE, April 1999.

[106] S. Sakai, K. Okamoto, H. Matsuoka, H. Hirono, Y. Kodama, M. Sato, Super-threading:

architectural and software mechanisms for optimizing parallel computation, in: Conference

Proceedings of the 1993 International Conference on Supercomputing, Tokyo, Japan, July 1993,

pp. 251±260.

[107] H. Schmit, Incremental recon®guration for pipelined applications, IEEE Symposium on FPGAs for

Custom Computing Machines, 1997.

[108] J.P. Singh, J.L. Hennessy, A. Gupta, Scaling parallel programs for multiprocessors: methodology

and examples, IEEE Computer 6 (26) (1993) 42±50.

[109] A. Sohn, M. Sato, N. Yoo, J.-L. Gaudiot, Data and workload distribution in a multithreaded

architecture, J. Parallel Distributed Process. 1997, pp. 256±264.

[110] X. Tang, J. Wang, K.B. Theobald, G.R. Gao, Thread partitioning and scheduling based on cost

model, in: Proceedings of the SPAA `97, Newport, R hode Island, June 1997, pp. 272±281.

[111] X. Tang, G.R. Gao, How hard is thread partitioning and how bad is a list scheduling based

partitioning algorithm? in: Proceedings of the Tenth Annual ACM Symposium on Parallel

Algorithms and Architectures, Puerto Vallarta, Mexico, June 1998.

[112] K.B. Theobald. EARTH: an e�cient architecture for running threads, Ph.D. Thesis, Montr�eal,

Qu�e., January 1999.

[113] T. von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser, Active messages: a mechanism for

integrated communication and computation, in: Proceedings of the ISCA-19, Gold Coast, Australia,

May 1992, pp. 256±266.

[114] J. Vuillemin et al., Programmable active memories: recon®gurable systems come of age, IEEE Trans.

on VLSI Syst. (1996).

1928 W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929

[115] E. Waingold, M. Taylor, D. Srikrishna, V. Srakar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R.

Barua, J. Babb, S. Amarsinghe, A. Agrawal, Baring it all to software: raw machines, IEEE Comput.

30 (1997) 86±93.

[116] M. Warren, J.K. Salmon, A parallel hashed oct-tree n-body algorithm, in: Proceedings of the

Supercomputing '93, Portland, Oregon, November 1993, pp. 12±21.

[117] S. Weiss, I. Spillinger, G.M. Silberman, Architectural improvements for a data-driven vlsi processing

array, J. Parallel Distributed Comput. 19 (4) (1993) 308±322.

[118] N. Wirth, The Hardware Description Language Lola, June 1995.

[119] M.J. Wirthlin, B.L. Hutchings, DISC : the dynamic instruction set computer, in: J. Schewel (Ed.),

Field Programmable Gate Arrays for Fast Board Development and Recon®gurable Computing, vol.

SPIE 2607, 1995, pp. 92±103.

[120] M.J. Wirthlin, B.L. Hutchings, Improving functional density through run time constant propogat-

ion, in: International Symposium on Field Programmable Gate Arrays, April 1997, pp. 86±92.

W.A. Najjar et al. / Parallel Computing 25 (1999) 1907±1929 1929

