
A

AIR: Application-level Interference Resilience for PDES on Multi-core
Systems

Jingjing Wang, Binghamton University
Nael Abu-Ghazaleh, University of California, Riverside
Dmitry Ponomarev, Binghamton University

Parallel Discrete Event Simulation (PDES) harnesses parallel processing to improve the performance
and capacity of simulation, supporting bigger and more detailed models simulated for more scenarios. The
presence of interference from other users can lead to dramatic slowdown in the performance of the simula-
tion. Interference is typically managed using Operating System scheduling support (e.g., gang-scheduling),
a heavy-weight approach with some drawbacks. We propose an application level approach to interference
resilience through alternative simulation scheduling and mapping algorithms. More precisely, the most re-
silient simulators allow dynamic mapping of simulation event execution to processing resources (a work pool
model). However, this model has significant scheduling overhead and poor cache locality. Thus, we investi-
gate using application level interference mitigation where the application detects the presence of interfer-
ence and reacts by changing the thread task allocation. Specifically, we propose a locality-aware adaptive
dynamic-mapping (LADM) algorithm that adjusts the number of active threads on the fly by detecting the
presence of interference. LADM avoids having the application stall when threads are inactive due to con-
text switching. We investigate different mechanisms for monitoring the level of interference, and different
approaches for remapping tasks. We show that LADM can substantially reduce the impact of interference
while maintaining memory locality.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]: Types of Simulation—Discrete
event, Parallel

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Interference, Application Adaptation, PDES, Proportional Slowdown

1. INTRODUCTION
Discrete Event Simulation (DES) is a simulation methodology for systems where
changes of state occur at discrete times. It is widely used in a range of application do-
mains such as computer and telecommunication systems, war-gaming, transportation
systems, operational planning and biological simulations. Parallel Discrete Event Sim-
ulation (PDES) [Fujimoto 1990a] harnesses the computational power and resources of
parallel computing to improve the performance and capacity of DES, allowing the sim-
ulation of larger models, in more details, and for more scenarios.

Parallel applications are commonly designed under the assumption of a homoge-
neous environment with no interference from other co-located applications. Interfer-
ence from other applications as well as other noise in the system creates competition
for the available resources leading to slowdowns [Zhuravlev et al. 2010; Tsafrir et al.

This work is supported by Air Force Research Laboratory under agreement number FA8750-11-2-0004. This
work is also supported by National Science Foundation grants CNS-0916323 and CNS-0958501.
Author’s addresses: J. Wang and D. Ponomarev, Computer Science Department, Binghamton University; N.
Abu-Ghazaleh, CSE and ECE Department, University of California, Riverside
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 J. Wang et al.

2005]. Ideally, under interference, an application experiences a slow down proportion-
ately to the reduction in its share of the resources: a metric which we call proportional
slowdown. However, the impact of interference can be significantly worse, even when
the amount of interference is small. For example, when evaluating a multi-threaded
PDES engine, we discover that even one external computationally bound thread re-
sults in a slowdown of up to 3.9 for an 8-way simulation on the core i7 platform, and
up to 2.8 for a 48-way simulation on an AMD Magny-Cours platform.

A primary reason for the high cost of interference is the granularity of the operating
system (OS) scheduler. When the OS schedules an interfering process on a core, it has
to context switch one of the simulation threads out, making it inactive. As a result, this
thread is stalled for an extended period of time related to the OS scheduling quantum.
Meanwhile, any dependencies on the stalled thread are delayed, eventually causing
other threads to stall, leading to an impact far beyond proportional slowdown.

Although the problem is common to most parallel applications, the impact is espe-
cially high for fine-grained applications such as PDES. In the context of PDES, assum-
ing optimistic simulation, when a thread is de-scheduled, other simulation threads
surge forward. Eventually, when the OS schedules the thread again, its late events
cause rollbacks throughout the simulation: thus, most of the computation time on all
threads is lost, and additional inefficiency results from the overhead of rollbacks. Since
the dependency pattern is dense and dynamic, the simulation effectively fails to make
progress whenever any of the threads is descheduled. Moreover, the dependency pat-
terns make it difficult to apply traditional approaches to solve the problem such as fine
grained work-sharing or work-stealing [Blumofe and Leiserson 1999].

Gang scheduling is a standard solution to interference problems in parallel applica-
tions [Feitelson and Rudolph 1992]. Gang scheduling eliminates interference by sepa-
rating applications in time. Threads belonging to an application are co-scheduled such
that all threads are active, allowing application progress, or all are inactive, allowing
other interfering applications to run. However, gang scheduling is a heavy-weight ap-
proach that can lead to loss of application performance and system throughput. For
example, applications may be able to co-exist if some of the threads are I/O bound;
they are forcibly separated by gang-scheduling reducing utilization and increasing
run-time [Feitelson and Rudolph 1992; Wiseman and Feitelson 2003]. If interference
is limited, the machine could be more efficiently shared by partitioning in space (us-
ing a fewer number of processors) rather than in time. The bursty operation under
gang-scheduling may cause contention and challenge real-time applications. Finally,
gang-scheduling may not be available on many platforms such as networks of work-
stations [Arpaci et al. 1995] and clouds [Armbrust et al. 2010].

The goal of this paper is to develop alternative organizations to PDES simulation
that are more resilient to the impact of external interference. In conventional PDES
implementations a simulation model is partitioned across multiple processing ele-
ments (PEs), each responsible for executing the events destined to a subset of the
simulation objects. Each PE is executed by a process (or thread).

In many existing PDES simulators such as ROSS [Carothers et al. 2000] and
WarpIV [Steinman 2008], the mapping between PEs and processes (or threads) is es-
tablished at the initialization of simulation, and does not change during the simulation
(the so called fixed-mapping, or FM, scheme). FM is an effective strategy in a load bal-
anced simulation in the absence of external interference, primarily because it promotes
locality of memory references, and because it incurs little overhead for scheduling [Fu-
jimoto 2000]. However, FM suffers in the presence of interference because a stalled
thread remains responsible for simulating its objects leading to poor performance.

In this paper, we explore application level interference-resilience for PDES on multi-
core platforms. We first propose a dynamic-mapping (DM) scheme that is capable of

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:3

dynamically changing the mapping between PEs and threads during the simulation.
In particular, each thread attempts to work on the next available PE in a round-robin
fashion. For correctness, each PE can only be mapped to one thread at a time. As a
result, DM has limited opportunities to solve the problem: a thread is often switched
out while in the middle of processing events on a PE while holding its lock. Thus, we
discovered that the baseline DM cannot effectively solve the interference problem.

We next investigate an adaptive DM scheme that reduces the number of active
threads when interference is detected. As a result, the number of threads is again
matched to the available hardware contexts, and the simulation does not have to suf-
fer extended periods when one of its threads is switched out. The active threads have to
service a number of PEs that is larger than them. Having the threads switch in round
robin fashion among the PEs, promotes load balanced operation but leads to poor local-
ity as PEs move among threads causing cache interrogation. To promote locality, the
Locality Aware Adaptive DM (LADM) scheme creates a schedule where each thread is
primarily associated with one PE, but spends a portion of its time helping one or more
other PE whose primary thread has been disabled. The proportion of time is chosen so
that the total active time each PE receives remains balanced. Since each thread works
on a limited number of PEs (two under reasonable interference conditions), locality is
kept high.

LADM has the following key characteristics:

(1) In the absence of external loads, LADM incurs small performance loss (less than
5%) compared with the optimal FM implementation on both the Intel core i7 and
AMD Magny-Cours machines. The loss includes the overhead of detecting interfer-
ence, but also the cost of rate misprediction of interference; a problem we hope to
address with more careful design of the detector.

(2) LADM can substantially reduce the impact of interference, thus reducing the gap
with proportional slowdown. For example, LADM is able to achieve 2-4X improve-
ment in performance in the presence of interference on both a 4-core (8 hardware
threads) Intel core i7 and a 48-core AMD Magny-cours machine.

The remainder of the paper is organized as follows. Section 2 provides background
information regarding both PDES simulator and two multi-core platforms we used in
our experiments. We then define proportional slowdown to quantify the PDES perfor-
mance in the presence of external loads in Section 3. In Section 4, we show the actual
impact of external loads on the performance of fixed-mapping PDES simulators. We
then explain why the performance of PDES simulator with FM implementation suf-
fers considerably when the simulation is interfered by external loads. In Section 5, we
provide a design overview of the baseline DM mechanism. In Section 6, we provide the
details of our LADM scheme that can address the limitations in the baseline DM im-
plementation. Section 7 provides the details of the experimental setup and simulation
benchmarks. Section 8 presents an experimental evaluation. In Section 9, we overview
some related work. Finally, in Section 10 we present some concluding remarks.

2. BACKGROUND
In this section, we first overview the multi-threaded simulator used in this paper. We
follow by providing an overview of the two multi-core platforms used in the experi-
ments: a quad-core Intel core i7 system, and a 48-core AMD Opteron Magny-Cours.

We use a recently developed multi-threaded version [Jagtap et al. 2012b; Wang
et al. 2014] of the Rensselaer’s Optimistic Simulation System (ROSS) [Carothers et al.
2000]. ROSS is a state-of-the-art PDES simulation engine which supports both conser-
vative and optimistic simulations. The multi-threaded ROSS (ROSS-MT) encapsulates
each group of objects as a PE and assigns each PE to a thread (i.e., it uses Fixed Map-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Wang et al.

ping). The thread-based implementation allows optimizing communication using fast
shared memory operations [Jagtap et al. 2012b; Wang et al. 2014]. Moreover, the sim-
ulator was evaluated on and optimized for a number of platforms, including conven-
tional multi-cores [Jagtap et al. 2012b; Wang et al. 2014], the Tilera Tile64 manycore
processor [Jagtap et al. 2012a] as well as clusters of multi-cores [Wang et al. 2013].

In PDES, a simulation model is partitioned across multiple PEs. Each PE processes
the events in time-stamp order. When an event is processed, it may update the state
of the simulation object and/or schedule future events. These time-stamped events are
communicated to the destination PE. The events for each PE are continuously pro-
cessed within a simulation loop until the simulation time of the PE reaches the sim-
ulation completion time. During each iteration, a designated number of events (batch
size) can be processed before moving to the next iteration.

Each PE processes events in time stamp order to ensure correct causality of the
simulation [Jefferson 1985]. Enforcing causality across multiple PEs requires the im-
plementation of synchronization protocol. PDES simulators use either conservative or
optimistic synchronization [Fujimoto 1990a]. In conservative simulation, a model prop-
erty called lookahead is used to allow PEs to communicate safe processing distances
to other PEs and guarantee correct execution. In contrast, optimistic simulation al-
lows PEs to process events without synchronization, advancing their local simulation
time (LVT). Thus, it is possible to receive a remote event with an earlier time stamp
than the current simulation time indicating a causality error; such an event is called
a straggler. Correct execution requires a rollback to a time earlier than the straggler
time, restoring the simulation state and cancelling any generated events after the
checkpoint. ROSS-MT leverages efficient reverse computation [Carothers et al. 1999],
instead of the more conventional state saving [Palaniswamy and Wilsey 1993], to re-
store the simulation state in the case of a rollback. In order to be able to commit events,
and to reclaim rollback checkpoint information, Global virtual time (GVT) is computed
periodically to measure the overall progress of the simulation. GVT computation is
a form of the classical distributed global checkpoint computation problem [Koo and
Toueg 1987].

We use two multi-core platforms with significantly different CPU and memory orga-
nizations. The first is a quad-core Intel core i7 system. In this platform, each core has
private 32 KB L1 and 256 KB L2 caches, and shares 8MB L3 cache with other cores.
With Hyper-Threading enabled, each core can simultaneously execute two hardware
threads which share both L1 and L2 caches. The second architecture we use is an AMD
48-core machine. It consists of four AMD Opteron 12-core chips, connected with Hyper-
Transport links. Each chip has two dies, with each die holding six cores. Each core has
private 64 KB L1 and 512 KB L2 caches, and shares 6MB L3 cache with other cores
on the same die. In addition, the memory accesses to different memory regions on this
platform have non-uniform memory access (NUMA) latencies [Conway et al. 2010].

3. IDEAL SLOWDOWN UNDER INTERFERENCE
Consider a primary application, such as our PDES simulation, running with Np

threads on a multi-core platform. Let Nc be the total count of hardware threads such
that all these threads can execute concurrently; hardware threads refers to cores, or
hardware contexts in the case of Simultaneous Multi-Threaded (SMT) processors. Sup-
pose that one or more external interfering loads can start or terminate at any time
during the simulation. Thus, to measure performance more accurately, we divide the
simulation into n small intervals [Xj−1, Xj] indexed by j. In addition, let Ntotal,j be the
total number of software threads executing on the machine (i.e., the number of primary
application threads, as well as the number of external loads running concurrently) dur-
ing the interval j. In typical conditions, the operating system scheduler fairly allocates

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:5

its CPU resources to each thread (e.g., the Linux Completely Fair Scheduler (CFS)
with SCHED NORMAL scheduling policy [Jones 2009]). In other words, each load ob-
tains (Nc

Ntotal,j
) of the available CPU time on average during the interval j, assuming

that Ntotal,j loads compete for Nc CPUs. Therefore, the expected primary application
slowdown under such conditions during the interval j is approximated by:

Sj =
Ntotal,j

Nc
=

Np +Ne,j

Nc
(1)

where Ne,j is the number of external loads running concurrently with the primary ap-
plication during the interval j. Note that the above reasoning assumes that threads
are computation bound. We call Sj the proportional slowdown during the interval j,
since Sj increases proportionately to the number of interfering load processes. We as-
sume that Ntotal,j is always greater than or equal to Nc, and the interference from
external loads on the primary application performance occur if Ntotal,j > Nc.

The run time of the entire application in the presence of external loads can be ap-
proximated by adding up the expected run time across all intervals. Let Tj be the
execution time required for the interval j of a FM simulation without interference. By
multiplying Tj by the corresponding Sj , we obtain T

′

j , defined as the execution time re-
quired for the interval j of the simulation in the presence of external loads. Therefore,

Tideal =

n∑
j=1

T
′

j =

n∑
j=1

Tj × Sj (2)

denotes the ideal runtime of the entire simulation in the presence of external loads.
Tideal represents a best case scenario where the presence of interference merely re-
duces the amount of available resources and results in a slowdown proportional to
this reduction. Such a slowdown may be experienced by embarrassingly parallel ap-
plications. In practice, the impact is significantly worse than Tideal because of the de-
pendencies between the threads belonging to one application. In the case of optimistic
simulation, Tideal also does not take into account the effect of rollbacks to undo the
erroneous computation after a thread being interfered with is activated.

4. MEASURED IMPACT OF INTERFERENCE
In this section, we evaluate the slowdown experienced by ROSS-MT, and show that it
far exceeds proportional slowdown. We also explain and quantify the reasons for the
slowdown.

4.1. PDES Slowdown Under Interference
For most of the experiments, we use the Phold simulation model [Fujimoto 1990b],
which equally distributes a number of simulation objects among PEs. We use a control-
lable version of Phold that allows specifying the communication percentage between
different objects on different cores. The simulation consists of 8 PEs running on the
Intel core i7 platform, and 48 PEs running on the AMD 48-core machine, with 1000
objects per PE. Each PE was also mapped to a different thread: thus all CPU resources
were used by ROSS-MT threads in the absence of external loads. In addition, we se-
lected a GVT computation interval of 128 batches on both platforms, with a batch size
of 24 events. Although the results are somewhat sensitive to the GVT interval (as a
small GVT interval acts as a throttle to the simulation [Tay et al. 1997]), these values
are in the range where ROSS-MT is most efficient across a majority of the models.

For these experiments, we use a CPU-intensive process as the external load; the
process repeatedly performs computation within a tight loop. Thus, the process when

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Wang et al.

0 1 2 3 4 5
0

2

4

6

8

10

12

R
el

at
iv

e
S

lo
w

d
o

w
n

Number of External Loads

0% Remote

5% Remote

10% Remote

20% Remote

Proportional

(a) Intel Core i7 System

0 1 12 18 24 30
0

2

4

6

8

10

12

R
el

at
iv

e
S

lo
w

d
o

w
n

Number of External Loads

0% Remote

5% Remote

10% Remote

20% Remote

Proportional

(b) AMD Magny-Cours System

Fig. 1: The Relative Slowdown of ROSS-MT caused by External Loads

active competes continuously for CPU cycles with the ROSS-MT threads. In the experi-
ments, the external load is started with ROSS-MT, and executes for the duration of the
simulation. Thus, proportional slowdown factor from 1 external load can be calculated
by Equation 1 to be 9

8 for the core i7 and 49
48 for the AMD Magny-cours.

Figure 1(a) and Figure 1(b) show the relative slowdown experienced by ROSS-MT as
the number of external loads increases, on the Intel core i7 system and AMD Magny-
Cours machine respectively. The relative slowdown is calculated by dividing the execu-
tion time of simulation in the presence of interference by the one without interference.
As the percentage of remote communication is increased, the dependencies among the
different PEs increase. ROSS-MT with 0% remote communication performs close to
proportional slowdown: since there are no dependencies between PEs, if a PE is de-
layed it does not affect the progress at other PEs and, on average, all threads make
progress with their computation. In contrast, the interference from external loads dra-
matically degrades the performance of ROSS-MT even when a small amount of remote
communication exists, far beyond proportional slowdown. For example, even 1 exter-
nal load can result in a slowdown of up to 3.9 on the core i7, and 2.8 on the AMD
Magny-Cours whereas proportional slowdown is 1.125 and 1.02 respectively for the
two machines.

The problem is not specific to ROSS: we were able to demonstrate similar trends,
and even worse slowdown, on the WarpIV PDES simulator [Steinman 2008]. Table I
shows 4-way optimistic and conservative simulations interfered by 1 external load on
a quad-core processor; due to export control restrictions on WarpIV, we had to run
this experiment on a quad-core Xeon machine. Somewhat surprisingly, the simulation
almost stops when the external load takes 100% of the time on one core (a situation
which occurred some times, a decision that the linux scheduler makes). We believe
this situation is due to the fuzzy barrier used in GVT computation in WarpIV [Gupta
1989]. At any given time, one thread is not executing and the fuzzy barrier condition
is not met. However, even when the external load gets a lower scheduling priority
and shares one of the CPU cores with a PDES process, the WarpIV simulation still
experiences a performance slowdown factor of about 2. The situation was the same for
both conservative and optimistic simulation.

4.2. Explaining the Impact of Interference
Recall that in ROSS, each thread is assigned a PE consisting of a group of simulation
objects. The groups of objects assigned to each thread are selected, often via a par-
titioning algorithm (e.g., [Bahulkar et al. 2012]), to minimize costly communication

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:7

Table I: Execution Time of a 4-way Simulation on a Quad-core Processor using WarpIV
Simulator

Optimistic Conservative

No External Load 6 sec 10 sec
1 External Load takes

50% CPU of a core 12 sec 19 sec
1 External Load takes

100% CPU of a core > 4.7 hours > 40 hours

and to load balance computation. Each thread is responsible for processing all events
whose destination is an object in its PE group. Thus, the mapping of work to threads
is fixed.

Consider a 2-way simulation of ROSS-MT, with 1 LP per PE, as seen in Figure 2. PE
1 and PE 2 are executed by thread 1 and thread 2 respectively. Suppose an external
load starts and interferes with thread 2 at wall clock time t1, after a GVT compu-
tation phase (which requires barrier synchronization in ROSS). Once the interfering
noise process is scheduled, thread 2 is context switched out and stops execution, while
thread 1 continues. Thread 2 does not get scheduled again until the noise process ex-
hausts its OS quantum (or otherwise, a hardware context becomes available); the OS
quantum is typically in the 10s of milliseconds, sufficient for Thread 1 to execute for
several million CPU cycles. At a wall clock time t2 (t2 > t1), thread 2 resumes execu-
tion, and PE 2 sends an event e1 to PE 1. Due to the large pause in execution, this
event is a straggler as PE 1 has executed far ahead of PE 2 limited only in the ROSS
case by the GVT computation interval; in other simulators, the degree of optimism can
be unbounded. Upon receiving e1, PE 1 is rolled back to a simulation time before that
of e1, and then is re-executed. Thus, loss of efficiency occurs for two reasons: (1) Inac-
tive PE on the critical path: not only is processing time lost at PE 2 while it is context
switched out, but most of the time available to PE 1 is also wasted due to the depen-
dency between the two PEs; and (2) Rollback Overhead: the straggler causes other PEs
to be rolled back. Thus, the overhead of large rollbacks in terms of state restoration
(or reverse computation), sending anti-messages, and other data structure restoration
exacerbates the inefficiency.

To identify the contributions to the slowdown from the two effects above, we show
the relative slowdown of both optimistic simulation and conservative simulation on
the core i7 and Magny-Cours platforms (Figure 3). In this experiment, we fixed the
remote communication percentage at 5%. In the absence of interference, ROSS-MT
performs similarly in both optimistic and conservative modes for the Phold model.
Under interference, conservative simulation suffers from delays when the inactive PE
slows down the other PEs as they wait for their dependencies to be satisfied (the first
effect), but there is no cost for rollbacks. In contrast, optimistic simulation suffers both
forms of overhead. Thus, the performance gap between optimistic and conservative
simulations is a reasonable estimate of the overhead of rollbacks for this particular
model. Clearly, the overhead of rollbacks is substantial and increases with the degree
of interference.

5. CAN DYNAMIC MAPPING HELP?
To address the harmful behavior that occurs in the presence of interference, we pursue
application level resilience to interference. Specifically, we consider approaches for de-
tecting the presence of interference and remapping the application to avoid contention
for hardware resources. Our first attempt is dynamic mapping (DM) of threads to PEs.
More specifically, in this scheme, we periodically remap the threads to different PEs

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Wang et al.

Thread 1

LVT

External
Loads

1. At t1, thread 2
stops execution
because of
context switch

 GVT synchronization

2. At t2, thread 2
resumes execution,
and PE 2 sends e1
to PE 1

4. It may later cause
other PEs to be rolled
back

PE 1 PE 1 PE 1

Thread 2

LVTPE 2 PE 2

3. PE 1 is rolled back
and re-executed

Fig. 2: A Rollback caused by Interferences from External Loads

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

R
el

at
iv

e
S

lo
w

d
o

w
n

Number of External Loads

Conservative

Optimistic

(a) Intel Core i7 System

0 1 12 18 24 30
0

2

4

6

8

10

R
el

at
iv

e
S

lo
w

d
o

w
n

Number of External Loads

Conservative

Optimistic

(b) AMD Magny-Cours System

Fig. 3: The Effect of Rollbacks

(recall that each PE encapsulates a group of objects in the simulation). The intuition
behind DM is that it allows active threads to rotate across the different PEs, avoiding
having a PE lag far behind the others.

Recall that each thread in ROSS-MT executes a loop that repeatedly performs the
simulation tasks such as sending and receiving events and event processing. To imple-
ment DM, we add a new step at the beginning of the loop where a thread determines
which PE to associate itself with; the base implementation simply rotates threads in a
round-robin fashion across the PEs. Consider the example as shown in Figure 2. After
thread 2 finishes the execution of PE 2 for an iteration, it then switches to PE 1. Thus,
in principle, the active thread alternates working on PE 1 and PE 2, reducing the LVT
difference between them. Alternative basis for scheduling PEs to threads are possible
(for example, attempting to work on the PE with the lowest LVT).

Note that a side-effect of remapping threads to PEs is a loss of data locality: FM
permanently maps a hardware thread to a unit of work, and the caches for the core are
populated with the data relevant to it. As DM remaps work across cores, the PE data
must be brought to each new core (from shared lower level caches or main memory).

A second, more serious, limitation of DM is its limited opportunity for assisting per-
formance. More precisely, for correctness, two threads cannot be attached to the same
PE concurrently, which prevents remapping from being able to assist if the context

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:9

switched thread happens to hold the lock on the PE. We implemented efficient syn-
chronization using a condition variable and a spin lock for each PE. More precisely, a
PE status is checked (without locking); if the status is busy, the thread moves on to the
next PE. If the status is free, the thread acquires the spin lock for the PE, and checks
if it is still free. If it is, the thread sets the PE to busy, and is admitted to work on the
PE. Once the iteration is over, it sets the PE status to free and moves on again to the
next PE. Thus, DM is limited if the first thread is switched out while in the middle of
processing a batch since the PE will be marked as busy until the thread is scheduled
again. Since this is the common case, DM cannot effectively solve the problem.

6. LOCALITY AWARE ADAPTIVE DM
In this section, we propose a locality-aware adaptive DM (LADM) scheduler that is ca-
pable of addressing limitations of DM. LADM improves DM in the following ways. The
first improvement, which we call adaptive DM (ADM), adjusts the number of active
threads to match the available hardware contexts: when a noise process is detected,
the number of active threads is reduced to avoid competing for a core, and the resulting
expensive context switches. Thus, only active threads are allowed to execute and the
simulation work has to be remapped to them. To support ADM two main mechanisms
are needed: one to reduce the number of active threads upon detecting the interfer-
ence, and another to check if the interference is no longer there and to reactivate idle
threads. The second improvement of LADM is control of the mapping of threads to
work to promote high data locality. In particular, LADM uses a locality-aware sched-
uler to map PEs among active threads. We discuss these mechanisms in the remainder
of this section.

6.1. Detecting the presence of Interference
ADM periodically detects the presence of noise during simulation. The detection pe-
riod is set to Tgvt

4 simulation loop iterations in our implementations, where Tgvt is
the GVT interval. We implemented two different interference detection algorithms. In
the first implementation, each active thread periodically monitors its total event pro-
cessing time. The average processing time per event (APTE) of each active thread is
calculated by dividing the total event processing time by the corresponding number
of processed events. A performance anomaly is detected if the ratio of the maximum
APTE to minimum APTE is beyond a defined threshold. There is a tradeoff between
the responsiveness and the stability of the noise detector. If the detection threshold is
set too high, then the system can become less responsive to the presence of noise. On
the other hand, as the threshold is made lower, responsiveness increases but noise can
be erroneously detected in the presence of natural variation in the simulation progress.
We study this tradeoff in the next section.

The APTE based interference detection algorithm assumes that the event processing
time is uniform. Thus, it is vulnerable to misprediction in simulation models where
event processing time varies; a condition common in realistic simulation models. Thus,
we propose an alternative approach that is independent of the simulation model. In
particular, to detect the presence of interference, an active thread periodically executes
and times the pthread_yield() function to relinquish the CPU. If interference is not
present, the calling thread is quickly rescheduled as there is no competition for an
available CPU. In this situation the run time is only several microseconds. On the
other hand, if interference exists, the calling thread is context switched out resulting
in a delay of several milliseconds (a function of the the OS quantum) for the thread to
get scheduled again. We call this detector the Processing Interference (PI) detector.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Wang et al.

6.2. Deactivating PDES Threads under Interference
After a performance anomaly is detected, the status of the thread with maximum
APTE is set to ”inactive”. Each thread checks its status at the beginning of the sim-
ulation loop, and inactive threads idle. The PEs assigned to idle threads are termed
orphan PEs, and the responsibility for processing their events is remapped to the re-
maining active threads.

ADM substantially reduces the effect of interference, and thus significantly improves
the performance of the simulation in the presence of external loads. Consider a 48-way
simulation interfered by 1 external load on the 48-core AMD Magny-Cours machine,
for example. Once a performance anomaly is successfully detected, the simulation is
then executed by 47 active threads. The OS scheduler will later assign each thread to
a different core, thus removing interference between PDES threads and the external
load.

6.3. Reactivating Threads
As the interference from external loads may be transient, it is desirable to detect
the availability of additional cores to reactivate inactive threads once resources are
again available. We implemented two different reactivation mechanisms. The first im-
plementation is to re-activate an inactive thread periodically to check if there is an
available core. If noise remains present, then the deactivation logic detects that and
deactivates the thread. Thus, in this implementation the reactivation period must be
significantly larger than the detection period to avoid too frequent testing: (we use
10 × Tgvt, 40 times larger than the detection period). We call this approach Periodic
Reactivation (PR).

The main disadvantage of PR is that an inactive thread may be incorrectly re-
activated while noise remains present. This harms the performance of the simulation
until the interference is detected again. An alternative approach is to check if the noise
has disappeared before reactivating a thread. In particular, once an inactive thread is
woken up by a signal sent from an active thread, it immediately relinquishes the CPU
by calling pthread_yield() function. The runtime of executing pthread_yield() func-
tion is measured to decide if the interference remains. If the runtime is only several
microseconds, then the calling thread gets reactivated. Otherwise, the calling thread
remains inactive. Since probing is passive, it does not interfere with the simulation
when noise is present, allowing more aggressive reactivation evaluation. We call this
approach Reactivation After Probing (RAP).

6.4. Improving the Data Locality
Similar to DM, ADM remaps threads to PEs in a round-robin fashion even when there
is no interference, leading to poor data locality. To improve the data locality, we modi-
fied the ADM scheduler to increase locality: we call this implementation locality-aware
adaptive dynamic-mapping (LADM). Similar to FM, at the initialization of simulation,
each thread is assigned to a primary PE, and maintains this assignment in the ab-
sence of interference to maximize locality. Once interference is detected and a thread
(or more) is deactivated, the PE assigned to the inactive thread is marked as an orphan
until such a time where its thread is reactivated. The remaining active threads divide
their time between their primary PEs and orphan PEs.

In particular, after each event processing iteration on its primary PE, each active
thread checks PEs on the orphan list in a round-robin fashion; it selects an orphan
that is currently behind its primary PE in the number of processing iterations (alter-
natively, LVT may be used). The status of the selected PE is then checked, and the spin
lock for it is acquired if its status is free. Once the thread is admitted to work on the

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:11

PE, it executes Nbatch iterations before switching back to its primary PE. We set Nbatch

to 10 that performs well on both platforms. The thread returns to its primary PE if all
the orphan PEs have caught up with it. Unlike ADM, the PEs whose primary thread
is active remain exclusively processed by that thread, and only orphan PEs experience
a loss of locality.

6.5. The Expected Runtime of LADM
Suppose that the simulator is configured with Np threads at the initialization of sim-
ulation, where Np equals with the total count of hardware threads on the multi-core
platform. In addition, we divide the simulation into n small intervals [Xj−1, Xj] in-
dexed by j. Let Nj be the number of external loads running concurrently with PDES
during the interval j of the simulation. Once LADM detects Nj (Nj < Np) external
loads, the simulation is then executed by (Np - Nj) active threads during the interval
j. The expected runtime of the entire simulation is thus approximated by:

Texpected =

n∑
j=1

Np

Np −Nj
× Tj (3)

where Tj is the execution time required for the interval j of a FM simulation without
interference. Moreover, LADM allows at least 1 active thread to execute the simulation
if Nj ≥ Np.

It is important to note that LADM does not achieve proportional slowdown. ADM
schedulers simply give up hardware contexts that are in contention to avoid a sit-
uation where they are context switched. Because of this conservative behavior, it is
possible for interference loads to crowd-out the simulation threads resulting in signif-
icant slowdown under high interference. However, the OS scheduling policy will cause
inefficient operation if more threads are running than there are available hardware
contexts. To approach proportional slowdown, alternative OS scheduling policies are
needed.

7. EXPERIMENTAL SETUP AND SIMULATION BENCHMARKS
In most of the experiments, we use the Phold benchmark [Fujimoto 1990b]. In this
model, simulation objects are equally distributed across PEs. During execution each
object sends a time-stamped event message to a randomly selected target. Upon receiv-
ing the message, a new message may be sent to another target. Phold is controllable,
allowing us to specify the communication percentage between different objects [Fuji-
moto 1990b].

We also use a Personal Communication System (PCS) model [Carothers et al. 1995],
for some of our experiments. The PCS model simulates a cellular provider infrastruc-
ture as it manages mobile phone calls. In this model, an event represents a mobile
phone call, sent from one cell phone tower to another. Each cell phone tower has a fixed
number of channels. Upon receiving a call, the cell phone tower assigns an available
channel to the call, and later releases the allocated channel when the call completes.
If all channels are busy, the call is blocked. In addition, the call is handed-off to the
destination cell phone tower if the call’s connected mobile is leaving the area of the cell
phone tower [Carothers et al. 1995]. The experimental configuration for the model on
the two multi-core systems are presented as below:

(1) The first platform we use is a quad-core Intel Core i7-860 machine. The platform is
running Debian 6.0.2 with Linux version 3.0.0-1. The total number of LPs was set
to 8000 in the Phold model, and 36864 in the PCS model. These LPs were equally

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Wang et al.

distributed among 8 PEs. We selected a GVT interval of 128 with a batch size of
24. In addition, the simulation time was set to 30000.

(2) We also evaluated the performance of PDES under interference on an AMD
Opteron 6100 (Magny-Cours) 48 core machine with non-uniform memory access
(NUMA). The platform is running Ubuntu 10.10 with Linux version 2.6.35-30-
server, and has 64GB memory. We fixed the total number of LPs at 48000 in the
the Phold model and 36864 in the PCS model, where LPs are equally distributed
among 48 PEs. We used a GVT period of 128 with a batch size of 24 in our simula-
tions. In addition, the simulation time was set to 10000 for the Phold model, and
30000 for the PCS model.

8. PERFORMANCE EVALUATION
In this section we present a performance evaluation of LADM under interference from
external loads. In particular, we first evaluate the performance of ADM in comparison
to both FM and DM. We follow this by evaluating the performance of locality-aware
scheduler of LADM. We then study the performance of different interference detection
algorithms and thread reactivation approaches implemented in LADM, to identify the
most efficient implementations used in the remainder of the experiments. In addition,
every experiment is repeated 10 times to bound the confidence interval; the figures
plot the average of these 10 runs.

8.1. Evaluation of ADM
We first evaluate the performance of ADM without the data locality optimization. As
described in Section 6, there is a tradeoff between responsiveness and stability in the
design of the the control mechanism that reacts to noise. If the detection threshold is
set too high, ADM responsiveness is affected as we may fail to detect noise quickly. On
the other hand, too small a value can cause the system to react to normal fluctuations
in the application or the system, causing a thread to be incorrectly deactivated in an
interference-free environment. Figure 4(a) and Figure 4(b) show the performance of
ADM with different values of the threshold on the core i7 and Magny-Cours platforms
respectively. In this experiment, we used the APTE based interference detection algo-
rithm. The interfering loads started with the simulation, and ran for the duration. In
addition, we used Phold model, with 40% remote communication (the communication
between PEs). As shown in both Figure 4(a) and Figure 4(b), a threshold of 5.4 achieves
the best performance on both platforms. Thus, we used this threshold in the rest of
our experiments. In practice, this threshold can be derived empirically for important
applications, or derived adaptively by scoring adaptation decisions and adjusting the
threshold accordingly.

We show the performance of ADM compared to FM and baseline DM on the core
i7 (Figure 5) and Magny-Cours (Figure 6) platforms respectively. In this experiment,
the simulations were interfered by 1 external load. In Figure 5(a) and Figure 6(a),
we see the execution time as a function of the percentage of remote communication.
ADM achieves better performance than FM on the core i7, but only outperforms FM at
high remote communication (≥ 20%) percentages on the Magny-Cours machine. The
behavior can be partially explained by the high cost of lower level cache accesses on
the Magny-cours relative to the core i7. The locality aware version of ADM attempts
to address this issue.

In addition, the baseline DM experiences poor efficiency as a thread or more are con-
tinuously deactivated stalling the simulation. Efficiency is defined as the percentage of
all processed events that are committed (i.e., not rolled back). ADM reduces contention
by inactivating one or more threads to match the active thread count to the available
hardware contexts. To evaluate this behavior, we present efficiency of corresponding

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:13

0 1 2 3 4 5
0

50

100

150

200

250

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

Threshold=1.8

Threshold=3.6

Threshold=5.4

(a) Intel Core i7 System

0 1 12 18 24 30
0

50

100

150

200

250

300

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

Threshold=1.8

Threshold=3.6

Threshold=5.4

(b) AMD Magny-Cours System

Fig. 4: Impact of Threshold for Detecting the Interference: ADM

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

Baseline DM

ADM

Ideal Runtime

(a) Execution Time

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 (
%

)

Remote Communication (%)

FM

Baseline DM

ADM

(b) Efficiency

Fig. 5: Performance of ADM on the Intel Core i7 System (Interfered by 1 External
Load)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

Baseline DM

ADM

Ideal Runtime

(a) Execution Time

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 (
%

)

Remote Communication (%)

FM

Baseline DM

ADM

(b) Efficiency

Fig. 6: Performance of ADM on the AMD Magny-Cours System (Interfered by 1 Exter-
nal Load)

simulations (Figure 5(b) and Figure 6(b)). Clearly, the baseline DM exhibits poor effi-
ciency, similar to that of FM on the core i7 machine, but achieves a small improvement

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Wang et al.

in efficiency on the Magny-Cours machine. In contrast, ADM significantly improves
efficiency to over 90% on both platforms.

8.2. The Impact of Data Locality
In ADM, each active thread moves to the next free PE in a round-robin fashion at
the beginning of the simulation loop, even when there is no interference. Thus, ADM
can lead to poor cache locality, as each thread accesses different PEs causing their
state to be interrogated between caches. LADM improves data locality by associating
threads with primary PEs. Only orphan PEs (those whose primary thread is inactive)
experience a loss of locality as their events are processed by the other active threads.

The next experiment evaluates the performance of FM, ADM and LADM in the ab-
sence of external loads to measure the overhead of the mechanisms when they are not
needed. Both ADM and LADM use APTE based interference detection algorithm, and
PR approach to reactivate PDES threads. As seen in Figure 7, LADM performs up to
11% better than ADM on the core i7 machine, and up to 53% on the Magny-Cours
machine. In addition, LADM incurs small performance loss (less than 5%) relative to
the FM version. The overhead is partially due to the extra checking that LADM does;
however, we also noticed that rarely, LADM incorrectly detects the presence of inter-
ference.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

ADM

LADM

(a) Intel Core i7 System

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

ADM

LADM

(b) AMD Magny-Cours System

Fig. 7: Performance of Locality-aware Adaptive Dynamic-Mapping Scheme (No Exter-
nal Load)

In the next experiment, we consider a scenario with 1 external interfering process
(Figure 8). At high remote communication (≥ 20%), LADM outperforms the original
FM by a factor of up to 2.8X on the core i7 machine, and up to 2X on the Magny-Cours
machine. In addition, LADM performs up to 43% better than ADM on the Magny-
Cours machine, due to the fact that LADM can achieve better data locality. Figure 9
shows the cache miss rates, demonstrating how LADM has substantially lower cache
miss rates than ADM.

8.3. Interference Detection and Thread Reactivation Mechanisms
As described in Section 6, we implemented two different approaches for detecting the
interference. The first approach monitors APTE of each active thread (threshold value
of 5.4). On the other hand, the second detector (PI) detects the presence of interference
by measuring the runtime of executing pthread_yield() function. In addition, we de-
veloped two approaches for reactivating threads when additional resources become
available. The first approach uses periodic reactivation (PR) to periodically wake up a

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:15

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

ADM

LADM

Ideal Runtime

Expected Runtime

(a) Intel Core i7 System

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Remote Communication (%)

FM

ADM

LADM

Ideal Runtime

Expected Runtime

(b) AMD Magny-Cours System

Fig. 8: Performance of Locality-aware Adaptive Dynamic-Mapping Scheme (1 External
Load)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

L
1

M
is

s
R

at
e

(%
)

Remote Communication (%)

FM

ADM

LADM

(a) L1 Cache Miss Rate

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

L
2

M
is

s
R

at
e

(%
)

Remote Communication (%)

FM

ADM

LADM

(b) L2 Cache Miss Rate

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

L
3

M
is

s
R

at
e

(%
)

Remote Communication (%)

FM

ADM

LADM

(c) L3 Cache Miss Rate

Fig. 9: Cache Performance of 48-way Simulation on the AMD Magny-Cours System

thread to check if additional resources are available. The second approach, reactivate
after probing (RAP), probes the system to check the availability of resources and reac-
tivates a thread only if it determines there are available resources. In this experiment,
we compare the performance of four combinations: APTE-PR, APTE-RAP, PI-PR and
PI-RAP. Figure 10(a) and Figure 10(b) show the performance of these four versions on
the core i7 and Magny-Cours platforms respectively. Clearly, PI-RAP outperforms the
other three implementations on both platforms.

To explain why PI-RAP performs better, we show the convergence behavior of PI-
RAP on both the core i7 (Figure 11) and Magny-Cours platforms (Figure 12). In this
experiment, the number of active threads of the simulation is periodically recorded as
the simulation progresses. In addition, the simulations were interfered by 5 external
loads on the core i7 machine, and 30 external loads on the Magny-Cours system. Thus,
the optimal number of active threads is 3 on the core i7, and 18 on the Magny-Cours.
As shown in Figure 11 and Figure 12, PI-RAP can track the optimal configuration
than APTE-PR on both platforms. We use PI-RAP in LADM, for the remainder of the
experiments.

8.4. Impact of Event Processing Granularity
In the next experiment we modify the Phold model to increase the granularity of event
processing time. In particular, a new parameter, called Event Processing Granularity

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Wang et al.

0 1 2 3 4 5
0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of External Loads

APTE−PR
APTE−RAP
PI−PR
PI−RAP

(a) Intel Core i7 System

0 1 12 18 24 30
0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of External Loads

APTE−PR
APTE−RAP
PI−PR
PI−RAP

(b) AMD Magny-Cours System

Fig. 10: Impact of Interference Detection and Thread Reactivation Approaches

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

x 10
4

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
cti

ve
 T

hr
ea

ds

Simulation Time

APTE−PR

PI−RAP

Fig. 11: Convergence on the Intel Core i7 System (5 External Loads)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

6

12

18

24

30

36

42

48

N
um

be
r o

f A
ct

iv
e

Th
re

ad
s

Simulation Time

APTE−PR

PI−RAP

Fig. 12: Convergence on the AMD Magny-Cours System (30 External Loads)

EPG, is defined to control the amount of computation for each event processing in
Phold. A higher value of EPG indicates more computation per event increasing the
ratio of computation to communication.

We evaluate the performance of FM and LADM as the number of external loads is
increased, for both the Intel (Figure 13) and AMD Magny-Cours (Figure 14) platforms
at remote communication percentage of 40%. As seen in Figure 13 and Figure 14,
LADM performs better than FM on both platforms when the simulation is interfered
by external loads. In addition, the gap with the ideal performance is decreased as EPG
increases. Another interesting observation is that FM performs closer to LADM as
EPG increases. We discover that FM is capable of achieving relatively better efficiency
at higher EPGs. As each event requires more time for processing in the case of higher

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:17

0 1 2 3 4 5
0

50

100

150

200

250

300

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM

LADM

Ideal Runtime

Expected Runtime

(a) EPG=0

0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

(b) EPG=500

Fig. 13: Impact of Event Processing Granularity on the Intel Core i7 Machine

0 1 12 18 24 30
0

100

200

300

400

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM

LADM

Ideal Runtime

Expected Runtime

(a) EPG=0

0 1 12 18 24 30
0

100

200

300

400

500

600

700

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

(b) EPG=500

Fig. 14: Impact of Event Processing Granularity on the AMD Magny-Cours System

EPG, the advance rate of each PE in FM is more balanced than that in the case of
lower EPG.

8.5. Performance Evaluation of PCS Model
In this experiment, we study a model of a Personal Communication Services (PCS)
system [Carothers et al. 1995]. The PCS simulation consists of 36864 cells (LPs) dis-
tributed among 8 PEs on the Intel core i7 machine, and 48 PEs on the AMD Magny-
Cours machine. Moreover, we fixed the number of channels per cell phone tower at
10. Figure 15(a) and Figure 15(b) show the performance of PCS model in the presence
of external loads on the core i7 machine and the AMD Magny-Cours machine respec-
tively. Clearly, LADM performs better than FM on both platforms. At the case of 5
external loads, for example, the performance of LADM exceeds that of FM by a factor
of 3.7X on the core i7 machine. In addition, LADM outperforms FM by a factor of about
2.8X at the case of 30 external loads on the Magny-Cours machine.

8.6. Impact of Time-varying Interference on PDES Performance
In our previous experiments, the entire simulation was interfered with by a fixed level
of external loads. In order to evaluate if LADM can adapt quickly in an environment
with variable interference, we use an external load model with an on-off pattern. A
parameter in the external load, called Computation Time per Period (CTP), is used to
control the on period of the external load in microseconds every time it is started. We

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Wang et al.

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM

LADM

Ideal Runtime

Expected Runtime

(a) Intel Core i7 System

0 1 12 18 24 30
0

50

100

150

200

250

300

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM

LADM

Ideal Runtime

Expected Runtime

(b) AMD Magny-Cours System

Fig. 15: Performance of PCS Model

then use the same period to determine when the load will restart. Thus, if CTP is 1
microsecond, we have a recurring external process that runs for 1 microsecond and
then sleeps for 1 microsecond.

In this experiment, we used the Phold model, with 40% remote communication.
In addition, we performed the experiment under various CTP. Figure 16(a) and Fig-
ure 16(b) show the performance of FM and LADM when the simulation is partially
interfered by an on-off external load, on the core i7 machine and the Magny-Cours
machine respectively. LADM outperforms FM by a factor of up to 2.1X on the core i7
machine, and up to 1.4X on the Magny-Cours machine.

In the next experiment, we fixed CTP at 1000, and increased the number of on-
off external loads. In this experiment, we started external loads at the same time.
As shown in Figure 17, LADM outperforms FM by a factor of 2.7X at the case of 5
external loads on the core i7 machine, and 1.7X at the case of 30 external loads on the
Magny-Cours machine.

1 10 100 1000
0

10

20

30

40

50

60

70

80

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

CTP (Microseconds)

FM

LADM

(a) Intel Core i7 System

1 10 100 1000
0

10

20

30

40

50

60

70

80

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

CTP (Microseconds)

FM

LADM

(b) AMD Magny-Cours System

Fig. 16: Impact of on-off Interference with different CTPs (1 External Load)

8.7. Comparison to Gang Scheduling
Thus far, experiments have used the Linux Completely Fair Scheduler (CFS) with
SCHED NORMAL scheduling policy. Under this scheduling policy, the threads belong-
ing to the same application are treated as independent scheduling units by the sched-
uler, leading to performance problems under interference. Gang scheduling is a widely

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:19

1 2 3 4 5
0

50

100

150

200

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM

LADM

Ideal Runtime

Expected Runtime

(a) Intel Core i7 System

1 12 18 24 30
0

50

100

150

200

250

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of External Loads

FM
LADM
Ideal Runtime
Expected Runtime

(b) AMD Magny-Cours System

Fig. 17: Impact of on-off Interference as Number of External Loads is Increased
(CTP=1000)

used solution to control interference in parallel processing environments. It operates
by co-scheduling threads belonging to the same application together [Feitelson and
Rudolph 1992; Wiseman and Feitelson 2003]. As a result, all the threads are running
concurrently and the performance problems do not arise.

Gang scheduling may be thought of as creating separation between applications in
time such that different applications do not run concurrently unless there are sufficient
resources to support them. In contrast, Application Interference Resilience (AIR) does
not rely on the OS, but rather attempts to create separation in space, reducing the
number of active threads until contention for cores is eliminated. Given these different
philosophies for managing contention, we expect the following behavior:

— Gang scheduling can lead to poor efficiency when the interfering load is sparse.
For example, if one interfering process is running with an application, the resources
available to the application may be cut in half as the scheduler alternates scheduling
quanta between the application and the interfering process. That is, the slowdown
factor may be significantly worse than proportional slowdown.

— Gang scheduling does not allow applications to share cores even when it is possible
to do so. For example, an I/O bound application may be able to gracefully share a
core with a computation bound one.

— On the other hand, application level resilience is a passive approach and will lead to
unfairness when one application reduces its number of active threads while another
does not. In this case, interference is eliminated but at the expense of the adaptive
application, which relinquishes resources. The non-adaptive application gains from
the additional resources, but the performance of the adaptive application suffers
because it has to do with a possibly much smaller number of cores. This behavior is
inherent to AIR since it has no control over the interfering application. In this case,
assistance from the OS in creating separation is needed for a fair resolution of the
problem. We believe that hybrid policies combining application resilience with OS
co-scheduling are a promising area of future research.

In this subsection, we attempt to illustrate these characteristics by comparing gang
scheduling to AIR under a number of scenarios.

We use the Simple Linux Utility Resource Management (SLURM) [Jette et al. 2002]
for gang scheduling implementation. In addition, external loads were selected from
PARSEC 3.0 [Bienia 2011], a benchmark suite which contains several programs from
different application domains. We evaluated the performance of FM with gang schedul-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Wang et al.

0

20

40

60

80

100

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

st
re

am
cl

us
te

r

sw
ap

tio
ns

x2
64

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

FM (Gang)

LADM (CFS)

Fig. 18: Impact of OS Scheduling Policies on PDES Performance Interfered by PARSEC
Benchmarks (Running 1 Thread of Each External Load)

ing in comparison to LADM with SCHED NORMAL scheduling policy on the core i7
machine (Figure 18). In this experiment, each external load ran 1 thread, with large
input sets. In addition, each external load started concurrently with the PDES simu-
lation. As shown in Figure 18, LADM with SCHED NORMAL scheduling policy can
achieve better performance than FM with gang scheduling. This is because that gang
scheduling keeps other 7 CPUs idle when the external load gets scheduled, thus lead-
ing to inefficiency if the degree of interference is low.

With gang scheduling the application can be isolated in time from external inter-
ference, making the application run-time somewhat resilient to the level of experi-
enced interference. To demonstrate this effect, we evaluated the performance of FM
with gang scheduling and LADM with SCHED NORMAL scheduling when the ex-
ternal load ran 4 threads and 8 threads respectively. As shown in Figure 19(a) and
Figure 19(b), FM with gang scheduling performs worse when the simulation is inter-
fered by I/O bound programs (e.g. blackscholes, canneal, dedup). This is because that
gang scheduling simply creates separation between PDES and the external load, and
thus cannot schedule PDES threads until the time slice of the external load expires
even when the external load enters in the I/O phase, leading to loss of efficiency. On
the other hand, when the external load is CPU intensive (e.g. streamcluster), the per-
formance of LADM with SCHED NORMAL scheduling becomes worse as the number
of threads from the external load increases. This is because that LADM suffers as it
uses a much smaller number of cores.

In our next experiment, we evaluated the corresponding performance of each PAR-
SEC benchmark, as a realistic external load experienced from another user of a com-
putational cluster. Table II and Table III shows the relative slowdown of each PAR-
SEC benchmark and PDES with gang scheduling and SCHED NORMAL scheduling
respectively. Recall that the relative slowdown is calculated by dividing the execu-
tion time of application under interference by the one without interference. In ad-
dition, each PARSEC benchmark ran 4 threads, while PDES ran 8 threads initially.
Clearly, each benchmark in the presence of LADM with SCHED NORMAL scheduling
can achieve better performance than the one interfered by FM with Gang scheduling.
Thus, we believe that it is not sufficient to purely rely on gang scheduling to handle
the interference problem. Instead, some solutions need to be built inside the PDES
simulators (and parallel applications in general).

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:21

0

10

20

30

40

50

60

70

80

90

100

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

st
re

am
cl

us
te

r

sw
ap

tio
ns

x2
64

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

FM (Gang)

LADM (CFS)

(a) Running 4 Threads of Each External Load

0

40

80

120

160

200

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

st
re

am
cl

us
te

r

sw
ap

tio
ns

x2
64

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

FM (Gang)

LADM (CFS)

(b) Running 8 Threads of Each External Load

Fig. 19: Performance of PDES when Degree of Interference is Increased

PARSEC Benchmark FM (Interfered
(Interfered by FM) by PARSEC Benchmark)

blackscholes 1.3 2.38
bodytrack 1.35 2.38
canneal 1.24 2.21
dedup 1.75 1.71

fluidanimate 1.23 2.46
streamcluster 1.25 2.5

swaptions 1.35 2.42
x264 1.82 2.46

Table II: Relative Slowdown of PARSEC Benchmarks and FM with Gang Scheduling

9. RELATED WORK
LADM was originally presented in a previous paper [Wang et al. 2013]. This paper
significantly expands on this work by introducing more efficient interference detection
and thread reactivation algorithms, characterizing the overhead of interference and
evaluating the performance of LADM under gang scheduling. In this section, we first
overview some prior works in the context of PDES. We follow this by describing the
interference problem in the general parallel processing community.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Wang et al.

PARSEC Benchmark LADM (Interfered
(Interfered by LADM) by PARSEC Benchmark)

blackscholes 1.15 1.38
bodytrack 1.23 2.21
canneal 1.12 1.38
dedup 1.38 1.46

fluidanimate 1.16 2.46
streamcluster 1.24 3.33

swaptions 1.22 2.29
x264 1.42 2.5

Table III: Relative Slowdown of PARSEC Benchmarks and LADM with
SCHED NORMAL Scheduling

9.1. Dynamic load-balancing Approaches
Dynamic load-balancing approaches rely on a monitoring scheme to detect load imbal-
ance, and make dynamic adjustment to improve the performance of simulation. These
approaches differ in metrics of detecting load imbalance, and balancing schemes.

Vitali et al. [Vitali et al. 2012] presented a load-sharing scheme developed for a
symmetric multi-threaded optimistic PDES simulator. Each PE is executed by multi-
ple worker threads, in order to improve parallelism of the simulation. The approach
works by allowing a PE that is lagging behind to acquire additional threads to assist
with its computation. Thus, the approach is on the face of it similar to our approach
in that threads can be redirected to work on lagging PEs. The approach can effectively
foster load balanced simulation, but cannot effectively solve the interference problem,
as other threads cannot assist when threads keep getting context switched in the mid-
dle of event processing. Wilsey et al. [Child and Wilsey 2012] proposed a different
approach to support run-time core frequency adjustment on many-core systems, with
the goal of accelerating the critical path of execution of the Time Warp simulation. To
balance workloads of LPs, the cores containing LPs with larger rollbacks are under-
clocked, while the cores having LPs with smaller rollbacks are overclocked. Though
this approach may reduce rollbacks caused by external loads, the performance issue
caused by the interference still exists as LPs can’t advance if their executing thread is
switched out.

Carothers et al. [Carothers and Fujimoto 2000] designed a scheme to support back-
ground execution of Time Warp. A background central process periodically monitors
the workload of each processor, and dynamically determines the set of processors to
be used for the Time Warp Simulation. LPs are then distributed across these pro-
cessors, by using object migration. Kale et al. [Zheng 2005] designed an application-
independent load balancing framework, called Charm++. In a Charm++ application,
the application were divided into a large number of objects, where multiple objects can
be assigned to a single processor. Once a load imbalance was detected, object migra-
tion was applied to move some objects from overloaded processors to underloaded ones.
Object migration cannot solve the interference problem as well unless all objects are
migrated away from a context switched thread.

9.2. Other Approaches to Reduce the Effect of Interference on PDES
Malik et al. [Malik et al. 2009] observed the same behavior present in the cloud envi-
ronment. To reduce excessive rollbacks caused by interference, they developed a pro-
tocol, called TW-SMIP, with the goal of identifying straggler messages early and thus
avoiding frequent rollbacks. Yoginath et al. [Yoginath and Perumalla 2013] proposed a
LVT based hypervisor scheduler to reduce the effect of interference in the cloud envi-
ronment. In this approach, LP with a lower LVT is given a higher scheduling priority.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:23

Replication is another approach that is capable of reducing the effect of interference.
As presented in [Shum 1998], multiple copies of PDES simulation are executed simul-
taneously on heterogeneous workstation cluster. It allows the runtime reconfiguration
in terms of runtime resource availability, and thus this approach can adapt to interfer-
ences from external loads.

9.3. Interference in General Parallel Processing
Similar to PDES, most parallel applications have dependencies between executing
threads. Thus, when the interference occurs, active threads have to wait for context
switched ones before continuing to execute and the pace of the execution is deter-
mined by the slowest thread. As a result, the performance of these applications can
be substantially harmed [Tsafrir et al. 2005; Zhuravlev et al. 2010]. Two approaches
are widely used to balance workloads of threads at run-time: work-sharing and work-
stealing. In work-sharing, when a thread completes its task, it grabs a new one from
a central work pool shared across all threads [Andrews 1999]. In contrast, in work-
stealing scheme such as Cilk, once a thread finishes its tasks, it steals other threads’
tasks [Frigo et al. 1998]. Turner [Turner 1998] concluded that the work-stealing
scheme is not efficient for large PDES simulation, as it increases the critical path
length of the simulation. To the best of our knowledge, both work-sharing and work-
stealing are load balancing approaches, and neither approach can solve the interfer-
ence problem unless a context switched thread does not hold any tasks.

Gang scheduling [Feitelson and Rudolph 1992] can mitigate the effect of interfer-
ence by co-scheduling threads belonging to an application together. Conventional gang
scheduling [Feitelson and Rudolph 1992] separates applications in time to eliminate
interference, however, this approach reduces system throughput. To increase system
throughput, Wiseman et al. [Wiseman and Feitelson 2003] proposed a paired gang
scheduling approach where the threads of two jobs can be scheduled in the same gang.
However, this approach was implemented on the ParPar cluster [Anat et al. 1999],
and thus may not be supported on other systems (e.g. Linux). Xian et al. [Xian et al.
2008] proposed a lock-contention-aware scheduler to reduce lock contention in multi-
threaded applications, by first assigning a priority to each thread associated with the
number of locks the thread holds. To prevent a thread being preempted in a critical
section, the scheduler assigned more time slice to a thread with higher priority. Al-
though this approach may mitigate the effect of interference by preventing a thread
from being preempted in a critical section, it may lead to unfair scheduling across
threads.

10. CONCLUSIONS
In this paper, we demonstrated the sometimes dramatic slowdown that can result in
the presence of external interference. We presented a new metric, called proportional
slowdown, to measure the idealized slowdown of PDES in the presence of interfer-
ence and showed that in practice the observed slowdowns far exceed it. We proposed
to use dynamic mapping to allow active threads to work on the PEs in a fair way, al-
lowing the simulation to continue to proceed even if one or more threads are context
switched. We then proposed a locality-aware dynamic-mapping (LADM) scheme that
improves the locality of the proposed adaptive scheme by attempting to keep PEs as-
signed to their primary threads. Moreover, we studied the tradeoff between different
interference detection and thread reactivation approaches. In addition, we developed
a new external load model with an on-off pattern to evaluate PDES performance. Our
experimental results showed that LADM is significantly better able to tolerate inter-
ference than fixed-mapping implementation, thus reducing the gap with proportional

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Wang et al.

slowdown. Finally, we studied the effect of gang scheduling on PDES performance, and
showed that gang scheduling cannot solve the interference problem effectively.

In our future work, we plan to improve the accuracy of the interference detection
algorithm in LADM. Moreover, we plan to modify the OS scheduler to make it more
friendly to applications. In particular, the OS informs a thread to reach a safe state
without holding any task before the thread is context switched out. Then the tasks of
this thread can be safely executed by other active threads.

Acknowledgements
This work is partially supported by the US Air Force Research Lab grant FA8750-11-
2-0004 and by the US National Science Foundation grants CNS-0916323 and CNS-
0958501.

REFERENCES
D. F. Anat, D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-el, Y. Etsion, A. Kavas, T. Klainer, and M. A.

Volovic. 1999. The ParPar System: A Software MPP. (1999).
G. R. Andrews. 1999. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-

Wesley.
M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia. 2010. A view of cloud computing. Commun. ACM 53, 4 (April 2010), 50–58.
R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A. Patterson. 1995. The inter-

action of parallel and sequential workloads on a network of workstations. SIGMETRICS Perform. Eval.
Rev. 23, 1 (May 1995), 267–278.

K. Bahulkar, J. Wang, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Partitioning on Dynamic Behavior for Par-
allel Discrete Event Simulation. In Principles of Advanced and Distributed Simulation (PADS). IEEE,
221–230.

C. Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.
R. D. Blumofe and C. E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM

46, 5 (Sept. 1999), 720–748.
C. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: A High-Performance, Low Memory, Modular Time Warp

System. In Principles of Advanced and Distributed Simulation (PADS). IEEE, 53–60.
C. Carothers, K. Perumalla, and R. Fujimoto. 1999. Efficient Optimistic Parallel Simulations Using Reverse

Computation. ACM TOMACS (1999).
C. D. Carothers and R. M. Fujimoto. 2000. Efficient execution of Time Warp programs on heterogeneous,

NOW platforms. IEEE Transactions on Parallel and Distributed Systems 11 (2000), 299–317.
C. D. Carothers, R. M. Fujimoto, and Y-B. Lin. 1995. A case study in simulating PCS networks using time

warp. In Principles of Advanced and Distributed Simulation (PADS). IEEE, 87–94.
R. Child and P. Wilsey. 2012. Dynamically Adjusting Core Frequencies to Accelerate Time Warp Simula-

tions in Many-Core Processors. In Proc. ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS). IEEE, 35–43.

P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. 2010. Cache Hierarchy and Memory
Subsystem of the AMD Opteron Processor. IEEE Micro 30, 2 (2010), 16–29.

D. G. Feitelson and L. Rudolph. 1992. Gang Scheduling Performance Benefits for Fine-Grain Synchroniza-
tion. J. Parallel and Distrib. Comput. 16 (1992), 306–318.

M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The implementation of the Cilk-5 multithreaded lan-
guage. In Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and
implementation. 212–223.

R. Fujimoto. 1990a. Parallel Discrete Event Simulation. Commun. ACM 33, 10 (oct 1990), 30–53.
R. Fujimoto. 1990b. Performance of Time Warp under synthetic workloads. Proceedings of the SCS Multi-

conference on Distributed Simulation 22, 1 (1990), 23–28.
R. Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience.
R. Gupta. 1989. The fuzzy barrier: a mechanism for high speed synchronization of processors. In Proc. ASP-

LOS. 54–63.
Deepak Jagtap, Ketan Bahulkar, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2012a. Characterizing and

Understanding PDES Behavior on Tilera Architecture. In Workshop on Principles of Advanced and
Distributed Simulation (PADS 12).

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

AIR: Application-level Interference Resilience for PDES on Multi-core Systems A:25

D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev. 2012b. Optimization of Parallel Discrete Event Simulator
for Multi-core Systems. In Proc. International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 520–531.

D. Jefferson. 1985. Virtual Time. ACM Transactions on Programming Languages and Systems 7, 3 (July
1985), 405–425.

M. A. Jette, A. B. Yoo, and M. Grondona. 2002. SLURM: Simple Linux Utility for Resource Management. In
In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 44–60.

M. T. Jones. 2009. Inside the Linux 2.6 Completely Fair Scheduler: Providing fair access to CPUs
since 2.6.23. (2009). Retrieved Septemer 2013 from http://www.ibm.com/developerworks/linux/library/
l-completely-fair-scheduler/.

R. Koo and S. Toueg. 1987. Checkpointing and Rollback-recovery for Distributed Systems. IEEE Transac-
tions on Software Engineering (Jan. 1987), 23–31.

A. W. Malik, A.J.Park, and R.M. Fujimoto. 2009. Optimistic Synchronization of Parallel Simulations in Cloud
Computing Environments. In Proc. of the International Conference on Cloud Computing. 49–56.

A. Palaniswamy and P. A. Wilsey. 1993. An Analytical Comparison of Periodic Checkpointing and Incre-
mental State Saving. In Proc. of the 7th Workshop on Parallel and Distributed Simulation (PADS 93).
Society for Computer Simulation, 127–134.

K. H. Shum. 1998. Replicating parallel simulation on heterogeneous clusters. Journal of Systems Architec-
ture 44 (1998), 273–292.

J. Steinman. 2008. The WarpIV Parallel Simulation Kernel version 1.5.2. (2008). Software available from
http://www.warpiv.com/.

S. C. Tay, Y. M. Teo, and S. T. Kong. 1997. Speculative Parallel Simulation with an Adaptive Throttle Scheme.
In Principles of Advanced and Distributed Simulation (PADS). IEEE, 116–123.

D. Tsafrir, Y. Etsion, D. Feitelson, and S. Kirkpatrick. 2005. System noise, OS clock ticks, and fine-grained
parallel applications. In Proc. of ACM/IEEE Confernece on Supercomputing. ACM, 303–312.

S. J. Turner. 1998. Models of computation for parallel discrete event simulation. Journal of Systems Archi-
tecture (March 1998), 395–409.

R. Vitali, A. Pellegrini, and F. Quaglia. 2012. Towards Symmetric Multi-threaded Optimistic Simulation
Kernels. In Principles of Advanced and Distributed Simulation (PADS). IEEE, 211–220.

J. Wang, N. Abu-Ghazaleh, , and D. Ponomarev. 2013. Interference resilient PDES on multi-core systems:
towards proportional slowdown. In Proceedings of the 2013 ACM SIGSIM conference on Principles of
advanced discrete simulation (SIGSIM-PADS ’13). 115–126.

J. Wang, D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2014. Parallel Discrete Event Simulation for Multi-
Core Systems: Analysis and Optimization. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014), 1574–1584.

J. Wang, D. Ponomarev, and N. Abu-Ghazaleh. 2013. Can PDES Scale in Environments with Heterogeneous
Delays?. In Proceedings of SIGSIM-PADS Conference.

Y. Wiseman and D. G. Feitelson. 2003. Paired Gang Scheduling. IEEE Trans. Parallel Distrib. Syst. 14, 6
(2003), 581–592. http://dx.doi.org/10.1109/TPDS.2003.1206505

F. Xian, W. Srisa-an, and H. Jiang. 2008. Contention-aware Scheduler: Unlocking Execution Parallelism in
Multithreaded Java Programs. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications. 163–180.

Srikanth B. Yoginath and Kalyan S. Perumalla. 2013. Optimized Hypervisor Scheduler for Parallel Dis-
crete Event Simulations on Virtual Machine Platforms. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques (SimuTools ’13). 1–9.

G. Zheng. 2005. Achieving High Performance on Extremely Large Parallel Machines: Performance Predic-
tion and Load Balancing. Ph.D. Dissertation. Champaign, IL, USA. Advisor(s) Kale, Laxmikant V.
AAI3202198.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. 2010. Addressing shared resource contention in multicore
processors via scheduling. In Proc. of ASPLOS. ACM, 129–142.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

