
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Flexible Hardware-Managed Isolated
Execution: Architecture, Software Support and

Applications
Dmitry Evtyushkin∗, Jesse Elwell∗, Meltem Ozsoy∗, Dmitry Ponomarev∗,

Nael Abu Ghazaleh†, Ryan Riley‡
∗State University of New York at Binghamton, †University of California at Riverside, ‡Qatar University
{devtyushkin,jelwell,mozsoy,dima}@cs.binghamton.edu, naelag@ucr.edu, ryan.riley@qu.edu.qa

Abstract—We consider the problem of how to provide an execution environment where the application’s secrets are safe even in
the presence of malicious system software layers. We propose Iso-X — a flexible, fine-grained hardware-supported framework
that provides isolation for security-critical pieces of an application such that they can execute securely even in the presence of
untrusted system software. Isolation in Iso-X is achieved by creating and dynamically managing compartments (isolated software
modules) to host critical fragments of code and associated data. Iso-X provides fine-grained isolation at the memory-page level,
flexible allocation of memory, and a low-complexity, hardware-only trusted computing base. Iso-X requires minimal additional
hardware, a small number of new ISA instructions to manage compartments, and minimal changes to the operating system which
need not be in the trusted computing base. The run-time performance overhead of Iso-X is negligible and even the overhead of
creating and destroying compartments is modest. An FPGA implementation of Iso-X runtime mechanisms shows a negligible
impact on the processor cycle time.

Index Terms—Security, Hardware security, Isolated execution.

F

1 INTRODUCTION

One of the challenges in securing today’s computing
systems is how to efficiently protect the critical parts
of security-sensitive applications from attacks that are
launched using untrusted or compromised system soft-
ware layers. Modern operating systems (OS) and virtu-
alization layers are growing into large and very complex
pieces of code. Today’s OS kernels and hypervisors are
large pieces of code and it is virtually impossible to design
them without exploitable vulnerabilities [54], [61]. Many
recent attacks, exploiting these vulnerabilities, have been
successfully demonstrated [10], [23], [24], [25], [41], [56],
[75], [82].

One approach to providing a secure execution en-
vironment in the presence of malicious software layers
uses the concept of isolated execution, where the security-
critical pieces of application code execute in isolated soft-
ware modules or compartments [9], [15], [17], [19], [20], [37],
[38], [43], [45], [47], [67]. These modules are inaccessible
to the system software layers and are managed either
entirely by the hardware [15], [45], [47], [53] or by a
special layer of secure software that is sometimes assisted
by hardware [17], [19], [20], [38], [43], [67]. The idea
of supporting secure isolated environments has also re-
ceived considerable attention from industry, exemplified
by ARM’s Trustzone [6], IBM’s SecureBlue++ [15], Intel’s
SGX [9], [21], and Amazon’s CloudHSM service [1].

Isolation schemes that limit their trusted computing
base (TCB) only to hardware are arguably more secure
compared to the schemes that include software into the
TCB. This is because hardware schemes are not suscep-
tible to software attacks (such as a buffer overflows and
subsequent code reuse attack) on the trusted software lay-
ers. Unless security-critical software layers are formally
verified, it is dangerous to assume that such attacks are

impossible. While the hardware itself can also be buggy,
it is much more difficult to exploit bugs in the HDL code
than in C/C++ code that is typically used to implement
system software. In fact, there are no examples of such ex-
ploitation to the best of our knowledge, aside from some
denial of service attacks [50]. In addition, depending on
the frequency of using software-based checks, software
solutions can have noticeable performance degradation.
On the other hand, hardware solutions often lack flexibil-
ity, have high granularity of protection, or do not support
full-fledged secure execution environment. This can lead
to a number of limitations, such as imposing constraints
on the number and size of protected software compart-
ments, or restricting their functionality. We provide a
detailed comparison of previous software and hardware
security schemes, including their limitations, in Section 5.

In this paper, we propose Iso-X (Isolated eXecution)
— a hardware-managed framework for supporting a
fine-grained, flexible and full-fledged isolated execution
environment. Iso-X relies on simple OS functionality only
to support flexible allocation of memory, eliminating
the restrictions inherent in prior hardware-only isolation
schemes. As a result, Iso-X combines the benefits of hard-
ware and software-managed designs in terms of security
and flexibility.

Iso-X achieves the execution isolation through a series
of techniques that center around the use of secure compart-
ment page tables to dynamically map and maintain mem-
ory pages for the compartments. The isolation of compart-
ments is accomplished with only six required additional
ISA instructions for compartment management, as well
as two optional instructions to support page swapping,
resulting in a simple hardware implementation. While the
Iso-X design requires that the application code be written
in a way that explicitly marks the security-sensitive code
to be isolated, the remaining software layers incur min-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

imal changes. The key advantages of Iso-X compared to
Intel’s SGX (the most closely related design to Iso-X) is
that Iso-X does not limit where in memory the compartment
memory pages can reside. Not only does this provide better
flexibility in memory usage and performance advantages
in memory-constrained situations, but also can protects
against recently introduced page-level side-channel at-
tacks [78] on compartments, as we detail in Section 5.
This submission is an extension of the conference pa-
per [32] that appeared in the International Symposium
on Microarchitecture (MICRO), 2014. The contributions
of this submission are the following:

• We describe the Iso-X security architecture — a
hardware/software co-design that supports the
execution of security-critical pieces of applica-
tion code inside isolated compartments. The Iso-
X system is built around the concept of per-
compartment page tables, allowing flexible mem-
ory usage and protection against page-level side-
channel attacks on compartments driven by the
page faults.

• We present evaluation of an integrated HDL im-
plementation of the runtime mechanisms Iso-X
with an OpenRISC processor core [42]. The result-
ing design was synthesized onto an FPGA Altera
DE0-Nano board. The results show only a 2%
increase in the cycle time due to the Iso-X logic.
We also demonstrate that the performance impact
of Iso-X is negligible both in secure and non-secure
execution mode.

• We present detailed security analysis of Iso-X. This
material is contained in Section 4 and is a new
contribution compared to the MICRO 2014 version
of the paper.

• We overview software support that is needed to
fully implement the working Iso-X system. This
includes support from the system software, as well
as modifications to the application code itself. This
is a new contribution compared to MICRO 2014
paper and this material is described in Section 7.

• We present several example scenarios of using the
Iso-X system. These examples include the cloud
scenario, secure machine attestation mechanism,
and also the application of compartments to re-
ducing the costs of remote procedure calls. This
Section (Section 8) has been significantly extended
compared to MICRO 2014 paper.

• We provide a comparison of Iso-X with Intel’s SGX
architecture, including recently published SGX2
extensions [4]. This comparison considers the re-
lationship of both architectures to recently intro-
duced side-channel attack on isolated systems [78].
Discussion of the vulnerability to this side channel
attack is the new contribution in this submission.

• We provide a more complete comparison with
related work, including several recent studies that
appeared after our MICRO 2014 paper was pub-
lished.

2 THREAT MODEL AND ASSUMPTIONS

We assume that any portion of the system software
stack, including the OS and the hypervisor, can be po-
tentially compromised. The software trusted computing
base (TCB) in the Iso-X system is thus limited to the
developer-defined security-critical code. Iso-X guarantees
strong protection of the compartment’s internal memory

from any malicious OS or hypervisor activity. Our iso-
lation mechanism does not prevent compartments from
sending sensitive data to untrusted domains, for example
by writing it into unprotected memory. The compartment
code is considered to be responsible for protecting its
sensitive data, while the hardware isolation mechanism
guarantees sturdiness of the compartment’s perimeter.

While Iso-X relies on some basic functionality of the
OS, such a reliance does not compromise security. Even if
an attacker tampers with the OS services that offer this
functionality, it can only lead to denial of service, but
never to the leakage of the compartment state.

We assume that the hardware TCB of Iso-X is limited
only to the microprocessor, memory controller, physical
memory (DRAM), and system buses. We assume that all
hardware in the TCB is implemented correctly and does
not contain backdoors or bugs. In addition, we assume
that hardware attacks (such as snooping on the memory
bus or probing the physical memory) are not part of the
threat model. We make this assumption for two reasons.
First, hardware attacks are more difficult to perform than
software attacks. Second, if the proposed architecture is
deployed in a cloud environment, then it is reasonable to
assume that a cloud operator will offer physical security
of the system to protect its reputation. This is consistent
with the assumptions made by recent works [31], [64],
[70]. Recently some concerns have been expressed re-
garding the use of isolated execution environments with
physical memory protection for Digital Right Manage-
ment (DRM) and description copy-protected impossible
to reverse engineer software (including malware) [57].
Therefore, in some cases the absence of physical memory
protection can be viewed as an advantage.

We note that it is possible to amend Iso-X to consider
physical memory to be untrusted, by incorporating well-
known techniques for memory integrity verification and
encryption [17], [68]. However, just with those previous
designs, memory integrity checking logic will introduce
significant performance and hardware overhead. In gen-
eral, these techniques are orthogonal to the core isolated
execution support, but they have to be used if the physical
memory can not be trusted.

The current Iso-X design assumes the absence of
vulnerabilities in compartment code. However, if such
vulnerabilities are considered and can be used to launch,
for example, code reuse attacks [62] additional techniques
for protecting against such attacks will have to be imple-
mented on top of Iso-X. Many such schemes have been
proposed in recent literature [12], [26], [39], [51]. This
is an orthogonal attack vector and will require separate
solutions.

We do not explicitly consider architectural side and
covert channel attacks [33], [34], [79] in this work. Pro-
cessor caches can leak some sensitive information, such
as memory access patterns, from compartments. Several
techniques exist to protect against these attacks [28], [73]
but further research is required to apply them directly
to isolated execution environments, where the attacker
can utilize the capabilities of a compromised operating
system. However, Iso-X protects against recently pro-
posed page-granularity side-channel attack on compart-
ments [63], as we discuss in Section 5.

We do not consider denial-of-service (DoS) in our
threat model, because it is already trivial for a malicious
OS to deny service to an application or compartment.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

comp base comp size page count comp hash cpt base cpt size flags
Points to the beginning of
the compartment segment

Size of the compart-
ment segment

Current number of pages
mapped to the compartment

Used to perform com-
partment attestation

The starting phys-
ical page of CPT

Size of
CPT

Describes compart-
ment state

TABLE 1: Format of a CT Entry

CMV
CT

...

CPT1
CPT2

CPT3

Re
se

rv
ed

No
rm

al

0x0

(a) Physical mem-
ory layout

Code

Data

BSS

Heap

Compartment
Segment

Stack

U
nt

ru
st

ed
 P

ar
tit

io
n

0x0

OS
Kernel

Code
Data
Heap

Stack

Metadata
page

comp_base

com
p_size

(b) Virtual memory layout

Fig. 1: Iso-X Memory Layout

3 ISO-X DESIGN AND IMPLEMENTATION

This section describes the Iso-X architecture and im-
plementation.
3.1 Iso-X Design Overview

In Iso-X, application developers partition their pro-
grams into one Untrusted Partition (UP) and one or
more Trusted Partitions (TP). The UP contains non-critical
program code and data as well as all system software
and libraries that are also assumed to be untrusted. The
TPs contain security-critical code fragments and associ-
ated data, along with stack and heap memory regions
to provide a fully-functional execution environment. The
compartments also maintain a library for performing
secure interaction with the rest of the system.
3.2 Protected Structures for Supporting Iso-X Com-

partments
Memory protection is at the core of the Iso-X design.

Iso-X protects physical memory using two mechanisms.
First, the basic data structures used for managing Iso-X
are themselves stored in reserved memory that is only
accessible by the Iso-X hardware. This restricted memory
region is defined at boot time and it does not change dur-
ing execution. Second, unreserved physical memory can
also be dynamically protected at runtime for use by the
individual compartments and for storing compartment-
related metadata. The statically reserved memory holds
two Iso-X structures:
Physical Page Compartment Membership Vector
(CMV): This data structure is used to facilitate dynamic
protection of memory pages. The CMV is a bit vector with
one bit for each physical memory page in the system,
specifying whether this page currently belongs to any
compartment. The CMV is used to ensure that compart-
ment pages and their metadata are never accessed by
non-compartment code. It is also used to protect against
double-mapping of compartment pages to other compart-
ments, as described later. The CMV bits are also cached
as part of the regular TLB entries, which are extended by
a single bit that we call the Compartment bit, or the C bit.
Compartment Table (CT): The CT maintains the meta-
data that describes all compartments that have been cre-
ated in the Iso-X system. It is indexed by the compartment
ID, and the format of each CT entry is shown in Table 1.
CPT refers to compartment page tables — another Iso-X
data structure that is explained later in this section.

In addition to the static data structures described

above, Iso-X also maintains dynamic structures that are
established on-demand as compartments are created,
used and destroyed. These structures reside in regular
memory and get initialized as needed. They include:

Compartment Page Tables (CPT): The CPT (one for each
compartment) maintains page address translations for
compartments, similar to regular page tables. Although
it duplicates information stored in regular page tables,
the CPT is needed to protect the page mappings of
the compartments from malicious modifications by the
system software. Since the management of CPTs is a
security-critical operation, it can only be manipulated
by the hardware. Because implementing multi-level page
tables completely in hardware is complicated, we chose
to implement CPTs as single-level page tables. In general,
a compartment will only use a portion of the virtual
address space of the process to which it belongs. There-
fore, a modest number of page table entries are often
sufficient to manage the compartment memory. Please
note that Iso-X does not impose restrictions on the size
of the compartment’s virtual address space. This size is
determined by the size of the CPT structure, the storage
for which is provided by the OS during the compartment
initialization process. Compartment users in Iso-X should
avoid requesting very large virtual address spaces, as this
will result in excessive memory usage for the CPT pages.
For instance, a single 4KB CPT page can service 2MB of
compartment memory, assuming that each CPT entry is
64-bits wide. To address such limitation, Iso-X can use
2MB pages. In this case, a single CPT page will service
about half a terabyte of compartment memory.

In addition, each CPT entry also maintains storage
for hash values to support optional swapping, this is
described in more detail in Section 3.10.

Compartment Metadata Page: Each compartment also
maintains a special page called the Compartment Meta-
data Page. This page is used for storing Iso-X specific data
structures inside of the compartment memory space at a
predefined location, such as the first compartment page.
The information that needs to be stored there includes:
the context data of the compartment, the certificate of
the compartment, and the compartment public key. The
metadata page is protected from the OS just as any other
compartment page. Section 3.5 presents more details on
how this data is used.
In addition to the memory structures described above,
Iso-X also requires minor modifications to the on-chip
hardware. First, we add a small hardware structure
(called CCR — Current Compartment Register) that is
composed of two parts: the CCR.CT is the CT entry
corresponding to the currently active compartment, and
the CCR.ID is the ID of the currently active compartment.
Second, the processor status register is augmented with
a single bit that explicitly indicates whether the CPU
is currently executing compartment code. We call this
mode of operation Compartment Mode. The memory space
layout, including the contents of the reserved memory, is
shown in Figure 1.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Instruction Arguments Priv
Mode

Comp
Mode

1 INIT
comp id, comp base, comp size,

cpt base, cpt size
Yes No

2 MAP
comp id, virt addr, phys addr,

page permission bits
Yes No

3 ENTER comp id No No
4 ATTEST None No Yes
5 REVOKE comp id, phys addr Yes No
6 RESUME comp id Yes No

TABLE 2: Iso-X Instructions

3.3 Iso-X Operations and Instructions for Compart-
ment Management

To support compartment management operations,
several new instructions are added to the ISA and are
directly supported by the Iso-X hardware. These instruc-
tions, along with the mode in which they can be accessed,
are summarized in Table 2. The algorithmic descriptions
of these instructions and their impact on the processor
state are presented in [32].
3.4 Creating and Entering a Compartment

When a process requires the creation of a compart-
ment, it passes the necessary information, such as the
range of future compartment virtual memory pages, to
the OS via a system call. Upon receiving this system call,
the OS inspects its internal data structures to locate an
unused compartment ID (comp id) and finds the required
number of contiguous free physical memory pages to
hold the CPT for the compartment to be created. After
that, the OS executes the new Iso-X instruction called
INIT 1 .

To execute the INIT instruction, the Iso-X hardware
zeroes out the CT entry indexed by comp id. The entry
then is filled in based on the parameters of the INIT
instruction. The page count and comp hash fields remain
zeroed at this point. In addition, hardware clears the
memory pages that will be used as CPT pages for this
compartment. After this instruction completes execution,
the empty compartment is initialized with no pages in-
side.

Populating the created compartment with memory
pages is accomplished using another Iso-X instruction
called MAP 2 . This instruction adds the specified virtual-
to-physical page mapping to the compartment’s CPT
with given permissions. Before making the page specified
by the MAP instruction part of a new compartment, the
Iso-X hardware checks the CMV bit of the corresponding
physical page to ensure that this page does not already
belong to another compartment since we do not allow
double-mapping of the same physical page to different
compartments. If the check passes, then the CMV bit is
set, preventing further accesses to this page by untrusted
code. The instruction also computes the hash of the entire
page and extends the comp hash field in the CT structure.
To ensure the integrity of page mappings and permis-
sions, both virtual page number and page permission bits
are included as part of the page hash. Then, the page count
field of CT is incremented. Finally, the page’s TLB entry
is invalidated in order to prevent further accesses to that
page from the UP.

To enter a compartment from an untrusted address
space, the ENTER 3 instruction is used. The hardware
sets up the CCR with the data corresponding to the
comp id that is used as an argument for this instruction.
Once the CT entry has been loaded into CCR, the CPU
starts executing the compartment code at a statically pre-

defined location. The register state remains intact during
this transition to allow the UP to pass data to the com-
partment.
3.5 Attesting Compartments and Building Trusted

Channels
After a compartment is properly created, there are two

important features required for the compartment to be
useful to an external entity. First, the compartment needs
to be able to prove to that external entity that it was
properly loaded and is running on valid Iso-X hardware.
Second, there must be a way for that external entity to
create a secure communication channel with the compart-
ment. Both of these issues are addressed simultaneously
using the attestation mechanism of Iso-X.

Attestation in Iso-X takes the form of compartment
certificates signed by the CPU. A compartment’s certifi-
cate contains a hash of the compartment after loading as
well as a copy of the compartment’s unique public key.
The CPU signs this certificate using a public/private key
pair that is uniquely generated for the CPU at manufac-
turing time. This signed certificate can then be provided
by a compartment to an external entity in order to prove
that the compartment’s integrity was not compromised
during loading, it is running on valid Iso-X hardware,
and to provide a copy of the compartment’s public key to
facilitate secure channel creation with the external entity.

When the loading of a compartment is completed, the
attestation is performed using the ATTEST 4 instruction.
When ATTEST is executed from within the compart-
ment, the Iso-X hardware combines the comp hash field of
CCR.CT with the compartment’s public key and signs the
resulting data with the CPU’s private key. The resulting
certificate is then placed on the compartment metadata
page. It can be sent by the compartment to outside entities
for verification. After ATTEST is executed for the first
time, the compartment is sealed. No additional code or
non-empty data pages may be added to the compartment.
Empty data pages may still be added in order to support
dynamic growth of the stack and heap memory regions.
To ensure the emptiness of such pages, pages are wiped
before they are added to a compartment.

In order to securely communicate with trusted enti-
ties outside the compartment, the compartment leverages
a secure communication library and standard crypto-
graphic techniques to build a secure channel through the
untrusted partition [48]. This functionality is similar to
that used in HSM devices [58] to create trusted commu-
nication channels.

In order to make use of such channels without in-
troducing a potential man-in-the-middle attack, the com-
partment must have its own, unique public/private key
pair and securely communicate its public key to the
other party in the communication. To this end, Iso-X
allows compartments to execute some initialization code
in isolated mode prior to compartment attestation. This
allows the compartment to generate unique keys com-
pletely within the compartment. The initialization code
then places the freshly generated public key at a specific
location in the metadata page, allowing the hardware to
use it during the attestation process. The private key is
kept with the TP, ensuring that the OS cannot steal it.

To illustrate this attestation process, consider the fol-
lowing example. A programmer, Alice, writes a program
containing both a trusted and untrusted partition. Within
the data portion of the TP, she includes a copy of her
public key, PK1. She also measures the correct hash of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

the trusted partition’s code and data. She then sends
her entire program to a remote machine containing an
Iso-X processor, and her program is started. The TP of
the program is loaded and protected, and right before
calling ATTEST the TP generates a public/private key
pair. It then places that new public key, PK2 onto the
compartment’s metadata page. ATTEST is then executed,
producing a CPU signed certificate containing the com-
partment’s hash as well as PK2. The compartment sends
a copy of this certificate to Alice over the network, and
Alice ensures that the hash is correct, hence verifying
that the integrity of the compartment has not been com-
promised. Alice then creates a secure channel to the
compartment. Alice uses PK2 to verify that her channel
is indeed with the compartment, and the compartment
uses PK1 to verify it is communicating with Alice.
3.6 Revoking Pages and Destroying Compartments

Revoking compartment pages and subsequently
destroying compartments is accomplished via the
REVOKE 5 instruction. The REVOKE instruction wipes off
the page specified as its argument (thus preventing possi-
ble data leaks) and then clears the CMV bit corresponding
to the page, allowing non-compartment code to access it.
After a page has been revoked from the compartment, the
page count field of the CT entry corresponding to comp id
is decremented to reflect this change. If the compartment
is left with no pages, it is considered destroyed. This
instruction is used by the OS to reclaim compartment
memory resources.
3.7 Dynamically Extending Compartments

In order to support heap and stack segments, Iso-X
requires support for adding empty pages during regu-
lar compartment execution of an already attested and
sealed compartment. However, allowing the OS to map
an empty page could possibly compromise security. For
example, the OS can first revoke a page and then map an
empty page at the same virtual address. This allows the
OS to zero out an arbitrary page within a compartment,
thus opening a door for some attacks, such as non-
control data attacks [18]. An example would be zeroing
out a page that contains passwords. Our solution to this
problem is to check the contents of a page when it is
being revoked. If the page is empty, then it is allowed
to be replaced later. If it is not empty, then the address
of the revoked page is marked “revoked” in the CPT and
no further pages can be mapped to that virtual address.
This means that a compartment can explicitly allow pages
(such as empty stack or heap pages) to be revoked by wip-
ing them when they are no longer needed. If a non-empty
page is revoked, however, then it cannot be replaced and
the attack becomes impossible. This means the OS can
still add empty pages at new virtual addresses, but it will
no longer be capable of replacing arbitrary pages with
empty ones.
3.8 Leaving Compartment Code

The Iso-X hardware performs additional actions when
the program control flow transitions from an instruction
belonging to a compartment to an instruction outside of
it. Such a transition occurs in two cases: (1) to support
an event that needs to be handled by the OS, such as a
timing interrupt; and (2) to transition the control flow
back to the untrusted partition after the compartment
execution phase completes. We call this event LEAVE 7 .
It is detected by the hardware during the instruction fetch
stage when the CPU executes in compartment mode.

Memory Access

Comp
ModeComp

Segment Addr

Y

DMA

Code

N

TLB Hit

Y

EPT
Access

N

COMP
LEAVE

Y

EMV Bit
set

Y

TLB Hit

N

Y

N

Reg.
Page
Walk

N

Y

Y N

N

Y

Allow Allow Allow Deny

N

Allow Deny Allow

Ju
m

p
to

 U
P

R/
W

 U
P

da
ta

EMV Bit
setC

C

C

Fig. 2: Memory Access Data-flow in Iso-X

When this event is detected, the current state of CCR.CT
is saved in memory in the CT structure, all CPU registers
are saved within the compartment metadata page and
then they are wiped off. Finally, the processor exits the
compartment mode.

To resume the compartment execution after it has been
context switched, another Iso-X instruction – RESUME 6 is
used. To implement it, the hardware restores the CCR.CT
structure from the compartment’s CT record. The com-
partment context is then restored from the compartment
metadata page, and the CPU is switched to compartment
mode.
3.9 Performing Memory Accesses in Iso-X

Securing memory accesses is at the center of Iso-X de-
sign. The integrity of the Iso-X system and compartment’s
data depends on the legitimacy of memory accesses.
Therefore, all components responsible for performing
memory accesses are trusted, including processor caches,
the memory controller, memory buses and DRAM chips.
(DMA devices are not trusted, as we will discuss in
Section 3.10.) Memory protection in Iso-X is based on
a modified paging mechanism. The Memory Manage-
ment Unit (MMU) is the key component responsible for
memory protection. The MMU checks the (trusted) TLB,
and on a TLB miss it accesses the CPT. Disabling of
the MMU by the OS/hypervisor is disallowed whenever
active compartments exist in the system, otherwise those
compartments could be compromised [35].

The memory data-flow in Iso-X is depicted in Fig-
ure 2. If the processor is executing in compartment mode,
memory accesses are checked to see if they fall in the
compartment segment range using existing segmentation
support or similar hardware. If an access falls outside of
the compartment segment, this situation is treated dif-
ferently for data and instruction accesses. While outside
code accesses generate the LEAVE event, data accesses
are allowed, as it is the basis for the interaction of the
compartment with the rest of the system. For an access
within the compartment segment, the lookup proceeds
using the TLB to determine the corresponding physical
page number. A TLB hit occurs only if the C bit of the
matching TLB entry is set. On a TLB miss, the CPT is
accessed to get the translation, and the CMV bit of the
corresponding physical page is checked. If it is not set,
the access to a revoked page is detected and a security
exception is raised.

If the processor is executing in regular (non-
compartment) mode, then a TLB access is first performed
to obtain the physical page number and the C bit. On a
TLB hit (which occurs when the matching virtual page
entry is found and its C bit is set to zero), the memory
access is allowed — it is a regular access outside of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

the compartment. Otherwise, on a TLB miss, a regular
page walk of the conventional page tables is performed
to obtain the translation, and then the CMV bit of the
physical page is read from memory. If the CMV bit is
zero, then the page mapping is installed in the TLB and
the memory access is allowed to proceed. Otherwise, if
the CMV value of the translated physical page is set,
it signifies that the code outside of the compartment is
attempting to perform a compartment access. Such an
access is denied and a security exception is raised.
3.10 Direct Memory Accesses (DMA)

For systems that rely on the CPU to protect mem-
ory, DMA-enabled hardware is a security risk because it
enables devices to access the physical memory directly,
bypassing memory permission enforcement. Such attacks
are known as DMA-attacks [59], [66]. Within the context
of Iso-X, read and write DMA requests to compartment
pages must be disallowed since they are controlled by
possibly malicious I/O devices or system software. The
specific implementation of a DMA request gating mech-
anism depends on the architecture of the I/O subsystem
and buses. One way of controlling the DMA operations
is by checking CMV bits in the Input-Output Memory
Management Unit (IOMMU) prior to starting the DMA
transfer.

Modern systems implement an MMU specifically for
DMA transactions [5], [7] called IOMMU. The IOMMU
intercepts DMA requests and performs translations from
device addresses to a machine’s physical addresses. Sim-
ilar to a traditional MMU, the IOMMU uses page tables
to perform address translation and also caches recently
used page table entries in a special purpose TLB called
IOTLB. To disallow DMA to compartment memory pages,
the IOMMU hardware needs to be extended to check
the CMV bit of the corresponding physical page before
adding the mapping for this page to the IOTLB. This
check needs to be performed during the I/O page walk. If
the corresponding CMV bit is set, the IOTLB entry cannot
be added, thus denying the DMA request. Novel IOMMU
designs [8] allow to achieve very high IOTLB hit rates,
thus making I/O page walks an infrequent event. The
additional latency imposed by the CMV checks is a small
fraction of the total DMA time, because DMA latency
is dominated by the physical access to relatively slow
I/O devices [14]. For example, according to [14], even
the entire IOMMU has a negligible latency on bare-metal
network throughput, and our design only adds a simple
bit check to the IOMMU. Similarly, if we consider a disk
access as the source of DMA operation, then a bit check
is a negligible fraction of the disk access latency, which
typically amounts to several milliseconds (tens of millions
of the CPU cycles). This is true even when the CMV
bits checked by IOMMU are not cached in the processor
caches.

In cases when the requested DMA region spans
multiple pages, the IOMMU hardware needs to check
all corresponding CMV entries. In particular, when the
IOMMU finishes translation of device addresses into a
machine’s physical addresses, it calculates the number
of 4KB memory frames in the requested region. Next, it
fetches the required number of bits from the CMV and
OR-es individual values to obtain the final permission.
If the OR-ing result is zero, then the IOTLB entry is set,
otherwise the DMA operation is denied.

In addition to denying the establishment of the new
IOTLB entries, Iso-X must restrict the usage of existing

entries when new pages are added to compartments.
To accomplish this, the corresponding IOTLB entries are
invalidated when MAP instructions are executed. We note
that existing IOMMUs already feature IOTLB entry in-
validation capability [7]. In order to prevent the time-
of-check time-of-use attack in which a page is added
to a compartment during an in-flight DMA transaction,
SGX relies on the mechanism used in regular IOMMUs.
In particular, as described in [7], the CPU can issue a
COMPLETION_WAIT command in order to synchronies
the state of IOMMU tables with the rest of the system
fabric.
3.11 Supporting Compartment Page Swapping

In terms of page swapping for the compartment
pages, two approaches are possible. One solution is to
simply pin the compartment pages to physical memory
and disallow their swapping to the disk. With large
DRAM capacities typically available on modern systems,
this may not be a significant limitation. However, it is also
possible to securely support compartment page swapping
in Iso-X via two more ISA instructions (described below).
Note that these instructions are optional and are only
required if swapping support is necessary.

Before a compartment page can be swapped out, the
Iso-X system must prepare it by measuring (hashing)
and encrypting it. The OS is then allowed access to the
page in order to swap it out. The confidentiality of the
page is provided by the encryption, while its integrity is
ensured by storing the page measurement in the internal
Iso-X data structures. Storing the hash of the swapped
out page ensures that when the page is swapped back
in, the system can verify that it is indeed the same
page. The Iso-X hardware prepares a page for swapping
out using SWAP_PREP instruction, and returns it to the
compartment later using the SWAP_RET instruction.

SWAP_PREP (comp id, virt addr). First, the page to be
swapped out is measured and the hash value is saved in
the now unneeded CPT entry. To support such storage,
each CPT entry in the system has to be wide enough to
accommodate secure hash values. For example, SHA-2
produces 256-bit long hash values, so to store those, a 256-
bit hash field is added to each CPT entry. For simplicity
of implementation, this field is added next to the valid
bit, permission bits and the physical frame number bits.
Next, the page is encrypted with a symmetric key. This
key is randomly generated by the hardware at boot time
and stored in a register that is not accessible to software.
Second, the valid bit in the CPT and the corresponding
CMV bit are cleared. After these actions are completed,
the page becomes available for read, write and DMA
accesses by the OS. The OS can then initiate the DMA
access to move the page to the disk. Finally, the TLB entry
that covers the virtual page virt addr is invalidated.

Swapping the page back into memory also requires
co-operation of the OS and the Iso-X hardware. The OS
is responsible for bringing the encrypted page from the
disk back into memory, but further actions to return the
page into the proper compartment can only be performed
by the Iso-X hardware. The OS stores information about
swapped out pages and is capable of distinguishing
compartment pages from the regular ones. After a com-
partment page is moved to memory, the OS executes the
SWAP_RET instruction to complete the swapping process
as follows.

SWAP_RET (comp id, virt addr, phys addr). First, the
CMV bit of the swapped in page is set, making the page

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

accessible only by the Iso-X hardware. Next, the Iso-X
hardware decrypts the page, measures it, and compares
the resulting measurement with the one stored in the
CPT entry that was saved during the swap-out. If the
measurements match, the hardware replaces the CPT
entry with a physical address of the page, provided by
the OS. The valid bit in the CPT entry is then set, allowing
compartment code to access the page. Otherwise, the
swap in of such a page is disallowed. Finally, the old TLB
entry needs to be invalidated to disallow accesses to that
page from regular code.

4 ISO-X SECURITY ANALYSIS

In this section we will discuss a variety of potential
attacks against Iso-X as well as how the system protects
against them.
4.1 Directly Accessing Compartment Memory

An attacker may attempt to directly read or write
compartment memory from outside the compartment.

4.1.1 Access from the OS.

The OS itself could attempt to directly access a com-
partment memory space by mapping the physical pages
of the compartment into the page table for running OS
execution context. From there, the OS could attempt to
directly read or write the pages. Iso-X would prevent this
attack when access is attempted. All compartment pages
are marked as such in the compartment membership
vector (CMV), and access to those pages is denied by
the hardware if the CPU is not currently executing a
compartment when the access occurs. This means that the
OS, despite having full permissions over the page tables,
would still be unable to access the contents of physical
pages that have been assigned to a compartment.

4.1.2 Access from another compartment.

Another attack would involve setting up a malicious
compartment controlled by an attacker and then using
the OS to map pages from a victim compartment into it.
(The pages would be double mapped.) This type of attack
is not possible in Iso-X. The OS cannot directly modify
the compartment page table (CPT) for any compartment,
including a malicious, colluding compartment. Manage-
ment of the CPT is handled directly by the hardware.
An OS could add pages to its malicious compartment
using the MAP instruction, however MAP prevents double
mapping of compartment pages by ensuring that the page
being added to a compartment is not already part of
another compartment. A variation of this attack would be
to first unmap a page from the victim compartment before
mapping it into the malicious compartment (and hence
there is no double mapping), but this attack is thwarted
because the Iso-X hardware wipes pages when they are
unmapped from a compartment.

4.1.3 Direct Memory Access (DMA).

An attacker could attempt to make use of DMA to cause
the hardware to directly read or write the physical pages
associated with a compartment. Under Iso-X, the pages
involved in a DMA request are checked against CMV,
and compartment pages are not permitted to be accessed
using DMA.

4.1.4 Exploiting vulnerabilities in compartment code.

An attacker could analyze the compartment code and
look for vulnerabilities such as buffer-overflows or

pointer errors, that would allow an attacker to read or
write memory directly, or perform a code reuse attack [62]
to divert the control flow. Iso-X does not guarantee the
correctness of compartment code, and as such does not
explicitly address this type of attack. It is the responsibil-
ity of the compartment code developers to ensure that
such vulnerabilities do not exist. For example, writing
compartment code in a type-safe language will greatly
minimize the surface for these types of attacks. In addi-
tion, techniques that explicitly protect from code reuse
attacks can be deployed in conjunction with Iso-X [12],
[26], [39], [51].

4.1.5 Hardware interrupts.

Iso-X compartments can be interrupted by standard in-
terrupts, therefore an attacker could attempt to use in-
terrupts to violate the control flow integrity of the com-
partment by modifying the contents of the PC register
when it is pushed on the stack during an interrupt.
Iso-X prevents this attack through careful handling of
interrupts. If an interrupt occurs while a compartment
is running, the hardware automatically saves the con-
tents of all registers into the compartment’s metadata
page, wipes the registers, and then transfers control to
the OS interrupt handling routine. When the OS later
RESUMEs the compartment, the registers are loaded from
the metadata page and compartment execution continues.
The metadata page is part of the sealed compartment,
and hence inaccessible to the OS. This means that while
the compartment is interrupted, the attacker is unable to
modify the registers.

4.1.6 System management mode

Some processors implement a special execution mode
called System Management Mode (SMM). In this mode,
special purpose software (typically a part of firmware) is
executed with an extremely high privileges and is able to
access any physical memory in the system. SMM has been
previously studied with regards to its ability to violate
a system’s security [29], [81]. SMM could also threatens
Iso-X’s integrity.

SMM in Iso-X can be handle in a few different ways.
SMM could simply be modified to enable the memory
controller to inspect the CMV bits for every memory
operation that occurs. A preferable alternative, however,
is to simply disable SMM whenever active compartments
exist in the system.

4.1.7 Standard compartment leave/enter.

An attacker could attempt to manipulate the compart-
ment registers after a standard LEAVE event. (Where a
compartment voluntarily exits and transfers control to
the untrusted partition.) However, this attack would fail
for the same reason as the attack based on interrupts:
the registers are stored on a memory page within the
compartment.
4.2 Violating Compartment Integrity on Load

An apparently vulnerable time during the lifetime of a
compartment is when it is being loaded. Prior to loading,
the compartment contents may simply be residing on
a disk, easily modified. The process of loading a com-
partment in Iso-X is described in detail in Section 3.5.
In short, verifying correct loading of a compartment is
accomplished by the hardware generating a signed certifi-
cate containing a hash of the compartment contents. This
certificate is verified by an external entity who knows the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

expected hash.
An attacker may attempt to compromise a compart-

ment at load time using a variety of attacks.

4.2.1 Fail to load all pages.

A malicious OS could load the compartment, but inten-
tionally not load all of its pages. While such an attack is
possible under Iso-X, it would be detected by the external
entity that verifies the compartment attestation. As a
compartment is loaded and memory pages are added to
it using the MAP instruction, a hash of the compartment is
constantly updated with the contents of those pages, their
permissions, and the virtual addresses associated with
them. If an attacker does not load all the pages associated
with a compartment, then the hash will not match and
the external entity will detect the modifications as part of
attestation.

4.2.2 Load additional pages.

Instead of failing to load all pages, a malicious OS could
attempt to load additional pages into the compartment.
This attack would fail for the same reason: the hash
would be different, and the changes could be detected.

4.2.3 Misloading pages.

An attacker could load all of the compartment’s pages,
but load them into incorrect locations within the compart-
ment. This attack would fail because the virtual address of
each page is included in the hash along with its contents,
binding contents and location with respect to the hash.

4.2.4 Manipulate the hash register directly.

An attacker could attempt to directly manipulate the hash
value stored in the compartment table (CT), hence allow-
ing the generation of an attestation certificate containing
any desired hash. Under Iso-X, however, the hash value
in the CT cannot be directly accessed by software under
any circumstances, hence this attack is not feasible.

4.2.5 Forging the certificate.

When ATTEST instruction is executed, a certificate con-
taining the compartment’s hash is created and signed
using the processor’s unique private key. An attacker
may attempt to forge this signature. Without access to
the processor’s private key, however, this type of attack
is infeasible. In order to obtain the CPU private key, an
attacker would need to have an insider present at the
time of CPU manufacture, or would need to engage in
the costly process of attempting to extract the key from
the CPU. It is important to note that each Iso-X processor
has its own, unique private key. If an attacker were to
extract the key from a CPU, that key could be revoked by
the manufacturer, and only that one processor would be
affected.

5 RELATED WORK

Several previous solutions for protecting systems from
untrusted OS [52], [55], [80] rely on trusted software
module. In these systems, the software TCB has to be for-
mally verified to guarantee security. In addition, software
approaches may incur substantial performance overhead,
the extent of which depends on how often the critical
security services and checks by the software TCB are
needed. In the remainder of this section, we focus mostly
on hardware-supported solutions with the exception of
Inktag [38] and Virtual Ghost [22] as representatives of
recent state-of-the-art software-only isolation schemes.

5.1 Hardware-Assisted Isolation
The Secret Protection (SP) architecture [30] supports a

secure environment for executing trusted software mod-
ules that perform manipulations with secret keys. How-
ever, SP only supports one trusted software module per
system. A more recent work, Bastion [17], supports many
isolated compartments and is designed for modern soft-
ware stacks supporting virtualization. However, Bastion
relies on a modified hypervisor to be part of the TCB to
provide some critical services. Similarly, SecureMe [20]
uses a combination of memory cloaking (presenting the
OS with encrypted view of memory), permission paging
to provide a secure way for two applications to establish
shared pages, and system call protection. It also relies
on a small secure hypervisor for some of its tasks. Ink-
tag [38] is a recent software-only solution that uses para-
verification, a technique where the untrusted OS actions
are monitored and verified by a trusted hypervisor, to
provide isolation at the process granularity.

Other recent solutions proposed hardware support for
protecting systems against attacks launched by a mali-
cious hypervisor in virtualized systems. These include
HyperWall [70], H-SVM [64] and HyperCoffer [77]. The
granularity of isolation for these solutions is the Virtual
Machine. The effort of [31] proposed an architecture
based on non-inclusive memory permissions, thus not
automatically giving a malicious OS or hypervisor access
to the application code and data. The goal of these tech-
niques is not to explicitly provide an isolated execution
environment, but to protect memory pages from accesses
by higher-privileged software.

XOM [45] proposed execute-only memory that allows
instructions to be executed, but not manipulated in other
ways. AEGIS [67], [69] provided a secure execution en-
vironment where any physical or software tampering
becomes evident. Both AEGIS designs require that the
application remains in secure mode throughout its exe-
cution. HyperWall [70] focuses on hypervisor-secure vir-
tualization. It effectively removes the hypervisor from the
TCB using hardware mechanisms. The CHERI capability-
based architecture [76] offers some level of compartmen-
talization, however as the OS is responsible for saving
and restoring capability state during context switches it is
limited to protecting mutually untrusting domains from
one another within a process. CODOMs [72] is an architec-
ture that leverages the instruction pointer as a capability
to provide isolation between protection domains. Mon-
drian memory protection [74] is an approach targeted at
fine-grain memory protection. In this case, the permis-
sions are stored in memory in a permissions table which is
controlled by a privileged supervisor domain. Flicker [46]
is a system that utilizes existing hardware to provide an
isolated execution environment with a minimal TCB. This
is accomplished through the use of the TPM [71] and
CPU-based secure virtual machine extensions, e.g. Intel’s
Trusted Execution Technology (TXT) and AMD’s Secure
Virtual Machine (SVM) extensions. CrossOver [44] uses
virtualization support available in commodity processors
(specifically the VMFUNC instruction) to support efficient
cross-world calls. The threat model considered in this
work is significantly different than that of Iso-X and
includes trusting the hypervisor for performing critical
tasks.

IBM introduced an isolated execution design called
SecureBlue++ [15]. SecureBlue++ is designed specifically
for the PowerPC architecture. This mechanism cannot

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

combine secure and insecure code in a single process.
ARM’s Trustzone is another commercial example - this
architecture divides each layer of software into secure
and insecure worlds and a trusted software monitor that
controls the switching between the two worlds [6]. Intel’s
recent SGX/SGX2 security extensions is perhaps the most
significant recent development in hardware-supported
security in industry [9], [37], [47]. SGX is build around
the concept of enclaves (hardware-enforceable containers)
that provide isolated execution environment at the gran-
ularity that is determined by the application developers.
5.2 Comparing Iso-X with Intel’s SGX

Since the SGX architecture shares similar goals with
Iso-X, in this subsection we highlight the differences
between the two approaches. Table 3 summarizes com-
parison of the two systems by key features specific to
isolated execution environments. The main differences
between the two designs are in the following areas:
Compartment memory management and performance
predictability: SGX requires all of the enclave’s code and
data to be physically located in a reserved memory region
called the Enclave Page Cache (EPC). The EPC in SGX
is a fixed-size dedicated memory region, which implies some
limitations. For example, if the EPC cannot fit the memory
pages for all enclaves, the OS would need to evict enclave
pages often. Since encryption/decryption and integrity
checks are required on every page eviction/return, this
could slow down the system significantly, especially if
the EPC size is sub-optimally configured at system boot
(the EPC size cannot change dynamically during system
operation). In contrast, Iso-X creates duplicate mappings
in CPTs (Compartment Page Tables) and therefore allows
compartment pages to be placed anywhere in memory.
Only limited-size service data structures are stored in
reserved memory and the memory overhead for each
additional compartment is minimal.

A recently introduced next generation of SGX (called
SGX2) still uses a fixed EPC size. The relevant difference
between SGX2 and SGX is the ability to dynamically
add empty pages to already created compartments —
a capability that Iso-X provides by design. However, the
maximum size of EPC in DRAM is still statically determined
in SGX2 at boot time and cannot be adjusted during execution.
Consequently, while SGX/SGX2 directly protect all compart-
ment pages within EPC, Iso-X allows the actual compartment
pages to be located in the regular memory space, and controls
access to them via CPTs (page mappings).
Vulnerability to Page Fault-based Side-Channels: A
recent work [78] demonstrated how a system running
SGX can be vulnerable to a specific side-channel attack
that leaks memory page access pattern to the malicious
OS. In certain scenarios, such information is sufficient for
recovering security-critical data, such as the encryption
keys [63]. This attack is possible because SGX views the
protected memory as a limited-size cache. In particular,
the OS in SGX-based systems bears full responsibility for
the management of enclave memory pages (except, of
course, reading the content of these pages), including the
capability to evict any page from the protected memory.
When an enclave accesses one of its evicted pages, the
OS is informed about such access. This makes the attack
possible. The OS intentionally evicts some pages in order
to detect later accesses to them.

In Iso-X, the number of protected memory pages is
not limited. Therefore, the OS does not need to be given
the capability to evict pages from protected to regular

as
tar

bw
av

es
bz

ip2

ca
ctu

s

ca
lcu

lix

gam
es

s
gcc

Gem
s

gob
mk

h2
64

hm
mer lbm

les
lie

3d
lib

q.
mcf

milc
na

md

om
ne

tpp pe
rl

po
vra

y

sje
ng

sp
hin

x
ton

to

xa
lan

c

ze
us

mp

av
er

ag
e

0%
2%
4%
6%
8%

10%

IP
C

 D
eg

ra
da

tio
n

(a) Iso-X Performance Degradation

as
tar

bw
av

es
bz

ip2

ca
ctu

sA
DM

ca
lcu

lix

gam
es

s
gcc

Gem
sF

DTD

gob
mk

h2
64

hm
mer lbm

les
lie

3d

lib
qua

ntu
m mcf

milc
na

md

om
ne

tpp pe
rl

po
vra

y

sje
ng

sp
hin

x
ton

to

xa
lan

c

ze
us

mp

av
er

ag
e

0
50

100
150
200

T
LB

 M
is

se
s

P
er

 1
K

 C
yc

le
s

(b) Combined TLB Miss Rates

Fig. 3: Performance results

Parameter Configuration
Datapath 4-way superscalar, 128-entry ROB, 64-entry Issue

Queue, 96-entry LSQ
Inst. & Data TLBs 64-entry, Fully Associative
L1 I & D Caches 32 KB, 8-way, 64B line, 2 cycles
L2 Unified Cache 256KB, 8-way, 64B line, 10 cycles
L3 Unified Cache 8MB, 16-way, 64B line, 40 cycles
Memory latency 150 cycles

TABLE 4: Configuration of the Simulated x86-64 Proces-
sor
memory to free space in the protected memory. This
makes Iso-X immune to such side-channel attacks when
optional swapping is disallowed (compartment pages
always reside in memory). In particular, an Iso-X system
can be configured in a way that restricts the OS from exe-
cuting the swapping instructions. Moreover, it is possible
to disable such functionality for some compartments,
while keeping it for others. Whether or not swapping is
enable can be configured in a compartment’s certificate,
making the compartment’s owner (the user) aware if
the compartment is vulnerable to page fault-based side-
channel attacks.

6 PERFORMANCE EVALUATION

We evaluate performance overhead due to extra mem-
ory permission checks and also the overhead of one-
time or infrequent events such as compartment creation,
destruction, and page swapping.
6.1 Permission Access Overhead

With every memory access, Iso-X must check the
CMV bits. This is the only ongoing overhead that Iso-X
adds during steady-state execution. To model this im-
pact, we simulated the SPEC2006 CPU benchmarks [65]
using MARSSx86 full system x86-64 simulator [2]. The
simulated processor configuration is depicted in Table 4.
For each benchmark, we simulated 5 billion committed
instructions. We assume that the entire benchmark code
is executed inside a compartment.

Since the CMV bits are stored in the processor caches,
our model captures this impact. We expect the perfor-
mance loss to be small for two reasons. First, since the
CMV bits are also stored in the processor TLBs (in the
form of C bits as described in Section 3), the memory
accesses to retrieve them are only performed on TLB
misses. Second, a single cache line containing CMV bits
covers many adjacent pages, therefore a high cache hit
rate is expected.

Figure 3a shows the decrease in the commit IPCs
(Instructions per Cycle) of SPEC2006 benchmarks for an

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Granularity of
protection

System software
in TCB

Limited isolated
execution

environment

Hardware
Attestation
mechanism

Dynamic
protected

space

Requires
encrypted
executable

Secrets can
reside

anywhere

Memory and
memory bus are

trusted

Iso-X Virtual memory
region N N Y Y N Y Y

SGX [47] Virtual memory
region N N Y N N N N

TABLE 3: Comparing Iso-X with Related Efforts on Isolated Execution

Operation Actions(s) Cost (Cycles)

Create
System Call 138
Find Free Enc 2,107
INIT 2
Total 2,247

Populate Hash Page(s) 6.172M
Attest Sign Hash 1.241M
Revoke Page, Add Empty Page Zero Page 596
Destroy Revoke All Pages 52,379
Interrupt LEAVE 52
Resume RESUME 26

Swap Page Out
Hash Page 70,357
Encrypt Page 32,744
Total 103,101

Swap Page In
Decrypt Page 22,593
Hash Page 70,357
Total 92,950

TABLE 5: Compartment Operation Overheads
Iso-X system normalized to a baseline system without
Iso-X. As seen from the results, Iso-X performance loss
compared to the baseline architecture is below 1% on
the average in both secure and non-secure modes. The
largest loss among individual benchmarks was observed
for hmmer — about 8%. Figure 3b depicts the combined
miss rates for both data and instruction TLBs for the Iso-X
system.

The cache miss rates specific to the metadata accesses
were extremely low for Iso-X (about 1.3% on average).
In addition, the small metadata size causes negligible
pollution to the cache which results in little to no increase
in miss rate for normal data.

In order to provide an estimate of the area overhead
and the impact on the cycle time, we implemented Iso-X
permission accesses on the OpenRISC processor core us-
ing an Altera DE0 Nano FPGA board. We used OpenRISC
version 3.1 [42] and Altera Quartus II 13.1 for our timing,
area and power analysis. The OpenRISC processor is a
32-bit in-order pipelined architecture with 16KB data and
instruction caches, 32 registers and 64-entry separate data
and instruction TLBs. In order to estimate the runtime
overhead of Iso-X, we implemented the C bit checks on
every memory access, as well as additional memory reads
from CMV to refill the corresponding C bit on TLB misses.
Since all Iso-X violations are treated as high priority
exceptions, the routing of the Iso-X exception signal is
on the critical path of the processor, resulting in a slight
frequency decrease. The checks reduced the maximum
frequency of the processor only by 2%. However, in a
commercial design with ASIC tools, this extra delay can
be optimized to avoid an increase in cycle time. The CMV
bits for all of the system’s pages occupy only 512 Bytes of
memory for this implementation, since there is only 32MB
of physical memory and OpenRISC uses 8KB pages. The
effect of the dynamic runtime Iso-X logic on the core area
is only 0.65% and it has a 1% increase in dynamic power.
In an ASIC implementation of Iso-X with out-of-order
processor, these overheads will be even lower, as the out-
of-order structures will contribute to a larger fraction of
the chip area and power.
6.2 Overhead of Compartment Operations

We now evaluate other overheads of Iso-X, primarily
those involved in the creation and destruction of com-

partments. These results are summarized in Table 5. This
table shows the number of cycles that each compartment
operation takes. In addition, each operation is broken
down into actions that it requires and the associated costs.
The figures in the table were obtained by running a suite
of micro-benchmarks, which we developed on an Intel
Core i7-4700MQ CPU running at a frequency of 2.4GHz.

The population of compartment memory depends on
the number of pages that must be added to the compart-
ment, and destruction depends on the number of pages
that must be removed. For this example, we have used
the sizes of sshd, which requires 89 4KB pages (88 for
the program itself and a single CPT page), to calculate
the total costs. To compute the total cost of compartment
destruction, we assumed that all 88 pages need to be
revoked. Furthermore, the frequency of some operations
(i.e. revoke, interrupt, resume, swap out, and swap in)
will vary since they depend on the overall system load.
The numbers reported for these operations represent the
cost of each invocation. We evaluated the following cryp-
tographic functions: SHA-256 for hashing, 1024-bit RSA
for certificate signing, and 128-bit AES-CBC for encryp-
tion. We used the polarssl library for hashing, signing,
and encryption. This means that the costs of hashing and
signing are representative of a hardware implementation
which uses the regular CPU datapath to perform these
operations, rather than dedicated hardware. Note that
the polarssl implementation of AES uses Intel’s AES-NI
instructions.

Out of the operations shown in Table 5, the most
expensive ones are hashing and signing — each taking
more than one million cycles for a compartment of the
considered size. However, these operations only occur
once during the lifetime of a compartment. Therefore, the
overhead of these operations can be tolerated. All other
overheads presented in Table 5 are much smaller.

Some of the crypto operations can be substantially
accelerated by deploying dedicated crypto-engines. For
example, the SHA-256 hashing on a dedicated crypto-
engine clocked at 170MHz requires 0.125 cycles/byte
according to [49], which is about 10x faster than the
software implementation reported in Table 5. As another
example, AES encryption performed on a separate engine
clocked at 340MHz requires 0.69 cycles/byte [36], which
is about 1.6x faster than encryption that uses Intel’s
AES-NI instructions. Note that with a crypto-engine, the
encryption can be done in the background, freeing up the
CPU core to continue execution.

In summary, these estimations demonstrate that re-
gardless of how the encryption/hashing/attestation logic
is implemented (either within the main CPU or through
an accelerator), the performance overhead of these ac-
tivities is tolerable given the infrequent nature of these
operations.
6.3 Impact of dynamic memory reservation

One of the key differences between Iso-X and SGX is
that SGX requires that compartments reside in a memory

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

100 200 300 400 500 600 700 800 900

0
2
4
6
8

10
12

C=20% C=50% C=80% Iso-X

Compartment Memory Usage (MB)

To
ta

l R
un

 T
im

e
(s

)

Fig. 4: Effect of Static Memory Provisioning

region to be statically reserved during boot time. There
are a number of situations where the decision of how
much memory to allocate to compartments at boot time
could be difficult. For example, this can be a problem on
memory-constrained systems such as embedded devices
or smart phones, or on systems with drastically changing
workloads such as cloud servers. In contrast, the Iso-X
system can dynamically protect any physical page in the
system.

To provide a basic comparison between this difference
in the models of SGX and Iso-X, we show the effect of
a statically provisioned compartment memory region on
a system where the overall memory pressure is high. In
particular, we created a virtual machine with a total of
1000MB of RAM and the host file system cache disabled
(i.e. VM disk writes go directly to an SSD drive). The
size was selected to be representative of modern smart
phones such as the iPhone 6. Inside this VM we ran a
stripped down copy of 32-bit Debian Linux. We parti-
tioned the memory inside the VM to represent compart-
ment and untrusted partitions. Inside each partition we
run a benchmark that allocates and accesses memory of a
configurable size. By changing this size, we can shift the
pressure from the trusted to the untrusted partition. On
a page fault, we encrypted and sealed the pages on the
compartment partition consistent with swapping support
in Iso-X.

We fix the overall memory demand, but vary the
percentage of workload pages that need to be isolated.
Because the memory pressure is high, only a correctly
provisioned compartment memory size allows the sys-
tem to function without thrashing. If the compartment
memory size is under-provisioned (the left hand side
of Figure 4) many page faults occur in that memory
region, incurring expensive compartment side swaps
(which require encryption and hashing). Alternatively, if
the compartment side is over-provisioned, the untrusted
partition is under-provisioned and page faults occur in
that region. Meanwhile, Iso-X is able to dynamically grow
each partition to the size it needs and avoids thrashing on
either side. Note that if the system uses magnetic drives
instead of SSD, the impact of incorrect provisioning will
be substantially higher.

7 SOFTWARE SUPPORT FOR ISO-X
In this section, we describe software modifications

needed to allow applications to use the Iso-X system.
7.1 System Software Support

Iso-X requires modest modifications to the OS code.
In particular, the OS maintains a list of compartments
created by each application and provides a system call
interface to user programs for creation and management
of compartments. Additionally, the system software is
responsible for allocating contiguous physical memory
pages for constructing the CPTs during the process of
compartment initialization. The OS needs to be aware

of which pages belong to compartments, as those pages
are not accessible for normal page allocations. To sup-
port physical page reclamation from compartments, the
system software also needs to be modified to perform
this service through the use of the REVOKE instruction.
With these modifications, the OS controls the allocation
of compartments and their resources, but has no access to
compartment memory.
7.2 Preparation and Initialization of Iso-X Programs

Applications designed to run on the Iso-X system
must be compiled in a particular way. Specifically, Iso-X
requires all of its pages to reside in contiguous memory
segments, forming a larger compartment segment inside
the virtual address space of the untrusted partition. Exe-
cutables must preserve such continuity of the segments.
In most cases, this requirement does not translate into any
significant complications at the level of source code. This
is because placing compartment-associated code and data
objects into a dedicated compartment segment can simply
be achieved using a combination of compiler attributes
and modified linker scripts. The Iso-X instructions can
be inserted as embedded assembly without requiring any
changes to the compiler. If compartment code needs to
include any library functions (such as the dynamically
linked libc functions) while in compartment mode, these
functions are copied into the compartment code seg-
ment and are statically linked. Otherwise, any attempt
to execute library functions will result in leaving the
compartment.

Compartment sections containing dynamic data, such
as the heap and the stack, are initialized by the untrusted
partition at runtime from its own heap memory. The lay-
out of a compartment’s virtual address space is depicted
in Figure 1b.

Executables containing a compartment segment are
executed in a regular fashion. When the application needs
to initialize a compartment, it initiates and loads all
compartment pages into memory, including all of the
empty pages. After that, it prepares a data structure
containing relevant information about the compartment,
including the compartment segment base address and the
size of the compartment segment. Next, a system call
is made which passes a pointer to this data structure
to the OS as an argument. In response, the OS finds a
free compartment ID and executes the INIT instruction.
After the instruction completes, the OS checks all memory
pages in the compartment segment, obtains their physical
addresses, and executes a sequence of MAP instructions
to map all of the compartment’s initial pages. At this
point the compartment initialization process completes.
The OS then returns to the untrusted partition, which
uses the ENTER instruction to enter the newly created
compartment.
7.3 Iso-X Application Structure

To provide strict isolation between compartments
and the untrusted partition, the Iso-X developers can
leverage code analysis tools, such as static information
flow analysis [27], to verify that the isolation property
is fully achieved. Porting existing applications to Iso-X
appears more challenging due to a large number of cross-
references between different parts of the code. For this
case, methods of privilege separation [40], including au-
tomated program partitioning [16] can be utilized.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

Iso-X client Iso-X server
PA is prepared with

integrated CA,
including public
key of the client

Client sends PA
PA is executed

PA Initiates CA creation

CA is filled with
pages, hash is

computed, CA is
entered

CA generates Pub and Priv keys,
executes ATTEST to receive CC

CA sends its Public Key & CC

Trusted channel established

Client verifies CC
based on CPU

Public Key using
Certificate Authority

Client securely sends task requests

CA performs
computation

in isolated
environmentCA sends back results

– Actions in compartment mode– Actions in regular mode

CC – Compartment Certificate CA – Compartment Application PA – Parent Application

Fig. 5: Usage Flow in Cloud Scenario

8 ISO-X APPLICATION EXAMPLES

Some classes of applications can directly benefit from
the Iso-X system by storing their secrets and performing
computations on sensitive data inside the compartments.
The examples include banking and e-commerce applica-
tions, digital rights management applications, password
managers, and disk encryption software. It is also in-
teresting to deploy hardware compartments for stronger
guarantees in support of software isolation mechanisms
(e.g., Java Isolation [11]). In addition to these, we describe
two more scenarios where Iso-X can provide benefits.
8.1 Isolated Execution in A Remote Cloud

Iso-X can significantly improve security of cloud com-
puting. In all currently commercially available clouds,
there is a layer of supervisor software with unrestricted
permissions that is capable of compromising user’s pri-
vate data. Therefore, prospective users of the cloud have
to accept the risks that their sensitive data can be leaked.

In contrast, computational clouds augmented with
Iso-X functionality can provide their users with guaran-
tees that programs that handle sensitive data will always
be executed in a hardware-protected isolated environ-
ment, as described in [13] and [60]. Figure 5 depicts an
example of actions that need to be taken by the user of
the cloud service (the Iso-X Client) and the provider of
the computational cloud resources (the Iso-X Server) to
guarantee secure execution. The Iso-X client first initiates
remote compartment creation, loads the compartment
with the desired code, establishes a trusted channel with
the compartment, and attests and verifies the integrity of
the channel. After the trusted channel with the attested
compartment is set up, the Iso-X client sends out com-
putational tasks to the compartment for secure execution.
The results of these tasks are then returned to the client
using the same trusted channel.

This model is similar in principle to the design of
Hardware Security Modules (HSM) [58]. The Iso-X sys-
tem provides functionality that is similar to the recently
introduced CloudHSM [1] module from Amazon, but
without the need for a separate hardware device.
8.2 Secure Machine Attestation

Code in compartments can be used to periodically per-
form machine attestation to ensure that the platform has
not been tampered with. More specifically, the essential
components of the anti-virus and anti-malware software
can be placed inside a compartment, which makes their
code bases tamper-resistant. Even higher security can be
achieved by periodic attestation of these compartments
using the Iso-X attestation mechanism. A recent exam-
ple of an approach that is close to this philosophy is
the McAfee/Intel Deepsafe technology [3], where some

parts of user-level anti-virus programs are made tamper
resistant using hardware support.
8.3 Partially Isolated Applications

Although the main goal of the Iso-X system is to
provide a hardware framework for building fully-isolated
applications, there can be some benefit from running
programs that feature only partial isolation. Most current
privilege separation solutions split a program into two
parts, depending on whether the code can be tampered
with by the user input or not. These two parts are
executed as individual processes and use some form of
inter-process communication (IPC) to interact, rather than
simple function calls. There are significant performance
implications to this approach due to an increased number
of system calls, context switches, and IPC operations.
Iso-X can be used to mitigate such costs. Instead of relying
on expensive IPC mechanisms, Iso-X relies on switches
between compartment and regular (non-compartment)
mode, achieving very low-overhead communication. For
example, a simple remote-procedure-call that does noth-
ing but return, takes about 16.6K cycles when both client
and server are running on the same machine. In contrast,
the cost of entering and leaving a compartment is only 78
cycles. Both numbers were obtained on an Intel Core i7
4700MQ CPU clocked at 2.4GHz.

9 CONCLUDING REMARKS

Providing trusted and isolated execution environment
for secure execution in the presence of potentially com-
promised system software layers is a challenging task. In
this paper, we introduced Iso-X — a hardware-assisted
framework for isolated execution. Iso-X requires mod-
est hardware support: six new ISA instructions, secure
compartment page tables and associated logic, a bitmap
storing the identity of compartment memory pages, and
a few registers. These mechanisms allow the code ex-
ecuted inside a compartment to be protected from the
OS/hypervisor, from other code executed in the un-
trusted domain, from DMA operations, and also from
other compartments. In addition, the Iso-X trusted com-
puting base (TCB) only includes the software located in-
side the compartment and the Iso-X hardware itself. Iso-X
offers advantages over existing hardware-based isolation
proposals in the granularity of protection and memory
allocation flexibility. Moreover, we demonstrated that the
security benefits of Iso-X are achieved with negligible
overhead. We prototyped critical components of Iso-X
integrated with an OpenRISC core and evaluated them
on an FPGA. Furthermore, we showed that the perfor-
mance overhead of compartment creation, modification
and destruction are tolerable especially given that these
actions are not required frequently.

10 ACKNOWLEDGEMENT

This publication was made possible by the support
of the NPRP grant 4-1593-1-260 from the Qatar National
Research Fund. The statements made herein are solely the
responsibility of the authors.

REFERENCES

[1] “Aws cloudhsm,” 2013, http://aws.amazon.com/cloudhsm/.
Retrieved August 2013.

[2] “Marssx86: Micro-architectural and system simulator for x86-
based systems,” 2013, http://marss86.org. Simulator source
code and documentation.

[3] “Root out rootkits: An inside look at mcafee deep defender,”
2013.

[4] “Intel Software Guard Extensions Programming Reference,”

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

2014.
[5] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Reg-

nier, R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and
J. Wiegert, “Intel virtualization technology for directed i/o.”
Intel technology journal, vol. 10, no. 3, 2006.

[6] T. Alves and D. Felton, “Arm trustzone: Integrated hardware
and software security,” in Information Quarterly, 2004.

[7] AMD I/O Virtualization Technology (IOMMU) Specification, AMD,
Feb. 2015, rev. 2.62.

[8] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “Iommu: Strate-
gies for mitigating the iotlb bottleneck,” in International Sympo-
sium on Computer Architecture. Springer, 2010, pp. 256–274.

[9] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
technology for cpu based attestation and sealing,” in Wkshp. on
Hardware and Architectural Support for Security and Privacy, with
ISCA’13, 2013.

[10] Anonymous, “Xbox 360 Hypervisor Privilege Escalation Vul-
nerability,” 2007, available online: http://www.securityfocus.
com/archive/1/461489.

[11] G. Back, W. C. Hsieh, and J. Lepreau, “Processes in kaffeos:
Isolation, resource management, and sharing in java,” in Pro-
ceedings of the 4th Conference on Symposium on Operating System
Design & Implementation (OSDI), 2000.

[12] M. Backes, M. Planck, and S. Numberger, “Oxymoron: making
fine-grain memory randomization practical by allowing code
sharing,” in USENIX Security Symposium (USENIX Security),
2014.

[13] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” ACM Transactions on
Computer Systems (TOCS), vol. 33, no. 3, p. 8, 2015.

[14] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruem-
mer, and L. Van Doorn, “The price of safety: Evaluating
IOMMU performance,” in The Ottawa Linux Symposium, 2007,
pp. 9–20.

[15] R. Boivie and P. Williams, “Secureblue++: Cpu support for
secure executables,” 2013.

[16] D. Brumley and D. Song, “Privtrans: Automatically partition-
ing programs for privilege separation,” in USENIX Security
Symposium, 2004, pp. 57–72.

[17] D. Champagne and R. Lee, “Scalable architectural support for
trusted software,” in Proceedings of HPCA, 2010.

[18] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in Proceedings of the
USENIX Security Symposium, 2005, pp. 177–192.

[19] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, D. Boneh,
J. D. Dan, and R. Ports, “Overshadow: A virtualization-based
approach to retrofitting protection in commodity operating
systems,” in Proceedings of ASPLOS, 2008.

[20] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “Secureme:
A hardware-software approach to full system security,” in Proc.
International Conference on Supercomputing (ICS), Jun. 2011.

[21] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology
ePrint Archive, Report 2016/086, 20 16. http://eprint. iacr. org,
Tech. Rep.

[22] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Pro-
tecting applications from hostile operating systems,” in Proc.
ASPLOS, 2014.

[23] “CVE-2007-4993: Xen guest root can escape to domain 0
through pygrub,” 2007.

[24] “CVE-2007-5497: Vulnerability in XenServer could result in
privilege escalation and arbitrary code execution,” 2007, avail-
able online:http://support.citrix.com/article/CTX118766.

[25] “CVE-2008-2100: VMware Buffer Overflows in VIX API Let
Local Users Execute Arbitrary Code in Host OS,” 2008.

[26] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: a
detection tool to defend against return-oriented programming
attacks,” in Proceedings of ASIACCS. ACM, 2011, pp. 40–51.

[27] D. E. Denning and P. J. Denning, “Certification of programs for
secure information flow,” Communications of the ACM, vol. 20,
no. 7, pp. 504–513, 1977.

[28] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Pono-
marev, “Non-monopolizable caches: A low-complexity mitiga-
tion of cache side-channel attacks,” in ACM Transactions on
Architecture and Code Optimization, Jun. 2012.

[29] L. Duflot, D. Etiemble, and O. Grumelard, “Using cpu system
management mode to circumvent operating system security
functions,” CanSecWest/core06, 2006.

[30] J. Dwoskin and R. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in Proceedings of CCS, 2007.

[31] J. Elwell, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “A
non-inclusive memory permissions architecture for protection
against cross-layer attacks,” in Proc. International Symposium on
High Performance Computer Architecture (HPCA), Feb. 2014.

[32] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghaz-
aleh, and R. Riley, “Iso-x: A flexible architecture for hardware-
managed isolated execution,” in Microarchitecture (MICRO),

2014 47th Annual IEEE/ACM International Symposium on. IEEE,
2014, pp. 190–202.

[33] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Covert
channels through branch predictors: a feasibility study,” in
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy. ACM, 2015, p. 5.

[34] ——, “Understanding and mitigating covert channels through
branch predictors,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 13, no. 1, p. 10, 2016.

[35] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing ker-
nel code integrity on the trustzone architecture,” arXiv preprint
arXiv:1410.7747, 2014.

[36] A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede,
“A 3.84 gbits/s aes crypto coprocessor with modes of operation
in a 0.18-µm cmos technology,” in Proceedings of the 15th ACM
Great Lakes symposium on VLSI. ACM, 2005, pp. 60–63.

[37] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, and V. Phegade,
“Using innovative instructions to create trustworthy software
solutions,” in Wkshp. on Hardware and Architectural Support for
Security and Privacy, with ISCA’13, 2013.

[38] O. Hofmann, S. Kim, A. Dunn, M. Lee, and E. Witchel, “Inktag:
Secure applications on an untrusted operating system,” in
Proceedings of ASPLOS, 2013.

[39] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev,
“Branch regulation: Low overhead mitigation of code reuse
attacks,” in Proceedings of ISCA, 2012.

[40] D. Kilpatrick, “Privman: A library for partitioning applica-
tions.” in USENIX Annual Technical Conference, FREENIX Track,
2003, pp. 273–284.

[41] K. Kortchinsky, “Hacking 3D (and Breaking out of VMWare),”
in BlackHat USA, 2009.

[42] D. Lampret, C.-M. Chen, M. Mlinar, J. Rydberg, M. Ziv-
Av, C. Ziomkowski, G. McGary, B. Gardner, R. Mathur, and
M. Bolado, “Openrisc 1000 architecture manual,” Description of
assembler mnemonics and other for OR1200, 2003.

[43] R. B. Lee, P. C. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,”
in Computer Architecture, 2005. ISCA’05. Proceedings. 32nd Inter-
national Symposium on. IEEE, 2005, pp. 2–13.

[44] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan, “Reducing world
switches in virtualized environment with flexible cross-world
calls,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture. ACM, 2015, pp. 375–387.

[45] D. Lie, M. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz, “Architectural support for copy
and tamper resistant software,” in Proceedings of ASPLOS, 2000.

[46] J. McCune, B. Parno, A. Perrig, M. Reiter, and A. Seshardi,
“How Low Can you Go? Recommendations for Hardware-
Supported Minimal TCB Code Execution,” in Proc. ACM In-
ternational Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS), 2008.

[47] F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi,
V. Shanbhogue, and U. Svagaonkar, “Innovative instructions
and software model for isolated execution,” in Wkshp. on
Hardware and Architectural Support for Security and Privacy, with
ISCA’13, 2013.

[48] R. Merkle, “Secure communications over insecure channels,”
Communications of the ACM, vol. 21, no. 4, pp. 294–299, Apr.
1978.

[49] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis,
and C. E. Goutis, “On the exploitation of a high-throughput
sha-256 fpga design for hmac,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 5, no. 1, p. 2, 2012.

[50] “NIST National Vulnerability Database,” 2012, available online
at http://nvd.nist.gov.

[51] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda, “Gfree: Defeating return-oriented programming
through gadget-less binaries,” in Proceedings of ACSAC, 2010,
pp. 49–58.

[52] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda,
“Privexec: Private execution as an operating system service,”
in IEEE Symposium on Security and Privacy, May 2013.

[53] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and
A. Vadudevan, “Oasis: On achieving a sanctuary for integrity
and secrecy on untrusted platforms,” in Proceedings of CCS,
2013.

[54] D. Perez-Botero, J. Szefer, and R. Lee, “Characterizing hypervi-
sor vulnerabilities in cloud computing servers,” in Proceedings
of the Workshop on Security in Cloud Computing (SCC), 2013.

[55] R. Riley, X. Jiang, and D. Xu, “Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing,” in
Recent Advances in Intrusion Detection (RAID), 2008, pp. 1–20.

[56] J. Rutkowska, “Introducing the Blue Pill,” 2006, avail-
able Online: http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[57] ——, “Thoughts on intels upcoming software guard exten-
sions,” Invisible Things Lab, 2013.

[58] R. Sanchez-Reillo, C. Sanchez-Avila, C. Lopez-Ongil, and
L. Entrena-Arrontes, “Improving security in information tech-
nology using cryptographic hardware modules,” in Security
Technology, 2002. Proceedings. 36th Annual 2002 International
Carnahan Conference on. IEEE, 2002, pp. 120–123.

[59] F. L. Sang, V. Nicomette, and Y. Deswarte, “I/o attacks in
intel pc-based architectures and countermeasures,” in SysSec
Workshop (SysSec), 2011 First. IEEE, 2011, pp. 19–26.

[60] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “Vc3: Trustworthy data
analytics in the cloud using sgx,” in Security and Privacy (SP),
2015 IEEE Symposium on. IEEE, 2015, pp. 38–54.

[61] “Cve details: The ultimate security vulnerability datasource,”
2013, accessed Nov. 2013 at http://cvedetails.com.

[62] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Proceed-
ings of CCS 2007, S. De Capitani di Vimercati and P. Syverson,
Eds. ACM Press, Oct. 2007, pp. 552–61.

[63] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing
your faults from telling your secrets: Defenses against pigeon-
hole attacks,” arXiv preprint arXiv:1506.04832, 2015.

[64] S.Jin, J.Ahn, S.Cha, and J.Huh, “Architectural support for se-
cure virtualization under a vulnerable hypervisor,” in Proceed-
ings of MICRO, 2011.

[65] C. D. Spradling, “Spec cpu2006 benchmark tools,” SIGARCH
Comput. Archit. News, vol. 35, no. 1, pp. 130–134, 2007.

[66] P. Stewin and I. Bystrov, “Understanding dma malware,” in
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2012, pp. 21–41.

[67] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: Architecture for tamper-evident and tamper-resistant
processing,” in Proceedings of ICS, 2003.

[68] ——, “Efficient memory integrity verification and encryption
for secure processors,” in Proceedings of MICRO, 2003.

[69] G. Suh, C. O’Donnell, I. Sachdev, and S. Devadas, “Design and
implementation of the aegis single-chip secure processor using
physical random functions,” in Proceedings of ISCA, 2003.

[70] J. Szefer and R. Lee, “Architectural support for hypervisor-
secure virtualization,” in Proceedings of ASPLOS, 2012.

[71] “Tpm 1.2 main specification,” 2011, available online
at: http://www.trustedcomputinggroup.org/resources/tpm
main specification.

[72] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero, “Codoms: protecting software with code-centric
memory domains,” in Proceeding of the 41st annual international
symposium on Computer architecuture. IEEE Press, 2014, pp.
469–480.

[73] Z. Wang and R. Lee, “A novel cache architecture with enhanced
performance and security,” in Proc. International Symposium on
Microarchitecture (MICRO), Dec. 2008.

[74] E. Witchel, J. Cates, and K. Asanovic, “Mondrian memory
protection,” in Proceedings of ASPLOS, 2002.

[75] R. Wojtczuk, “Subverting the Xen hypervisor,” in BlackHat USA,
2008.

[76] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Ander-
son, B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe,
“The cheri capability model: Revisiting risc in an age of risk,” in
Proceeding of the 41st annual international symposium on Computer
architecuture. IEEE Press, 2014, pp. 457–468.

[77] Y. Xia, Y. Lin, and H. Chen, “Architecture support for guest-
transparent vm protection from untrusted hypervisor and
physical attacks,” in Proceedings of HPCA, 2013.

[78] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,”
2015.

[79] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719–732.

[80] F. Zhang, J. Chen, H. Chen, and B.Zang, “Cloudvisor:
Retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization,” in Proceedings of SOSP, 2011.

[81] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “Spectre: A depend-
able introspection framework via system management mode,”
in Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on. IEEE, 2013, pp. 1–12.

[82] D. Zovi, “Hardware Virtualization Based Rootkits,” in Black-
Hat USA, 2006, 2006, available Online: http://blackhat.com/
presentations/bh-usa-06/BH-US-06-Zovi.pdf.

Dmitry Evtyushkin Is a PhD student in the
Department of Computer Science at SUNY
Binghamton. His research interests are in
the areas of computer architecture and se-
cure system design, with specific focus on
architectures for isolated execution and in-
vestigation of covert channels and side chan-
nels through shared processor resources.
He received his undergraduate degree from
Moscow Institute of Electronics and Mathe-
matics in 2011.

Jesse Elwell Is a PhD student in the Depart-
ment of Computer Science at SUNY Bing-
hamton. His research interests are in the ar-
eas of computer architecture and secure sys-
tem design. He received his undergraduate
degree at SUNY Binghamton in 2011.

Meltem Ozsoy is a Research Scientist at In-
tel Labs, Hillsboro, OR. She received her PhD
in Computer Science from SUNY Binghamton
in 2015. Her research interests are in the
areas of computer architecture and secure
system design.

Dmitry Ponomarev is a Professor in the
Department of Computer Science at SUNY
Binghamton. His research interests are in the
areas of computer architecture, secure sys-
tem design, power-aware systems and high-
performance computing. He received his PhD
in Computer Science from SUNY Binghamton
in 2003.

Nael Abu-Ghazaleh is a Professor in the
Department of Computer Science and Engi-
neering and the Department of Electrical and
Computer Engineering at the University of
California at Riverside. His research interests
are in the areas of secure system design,
parallel discrete event simulation, networking
and mobile computing. He received his PhD
from the University of Cincinnati in 1997.

Ryan Riley is an Assistant Professor at Qatar
University. His research interests are in the
area of computer security. He received his
PhD from Purdue University in 2009.

