
IEEE TRANSACTIONS ON COMPUTERS 1

SIFT: Low-Complexity Energy-Efficient
Information Flow Tracking on SMT Processors

Meltem Ozsoy∗, Student Member, IEEE, Dmitry Ponomarev∗, Member, IEEE,
Nael Abu Ghazaleh∗, Member, IEEE, Tameesh Suri†, Member, IEEE,

Abstract—Dynamic Information Flow Tracking (DIFT) is a powerful technique that can protect unmodified binaries from a broad range
of vulnerabilities including buffer overflow and format string attacks. Software DIFT implementations suffer from very high performance
overheads, while comprehensive hardware implementations add substantial complexity to the microarchitecture, making it unlikely
for chip manufacturers to adopt them. In this paper, we propose SIFT (SMT-based DIFT), where a separate thread performing taint
propagation and policy checking is executed in a spare context of an SMT processor. The instructions for the checking thread are
generated in hardware using self-contained off-the-critical path logic at the commit stage of the pipeline. We investigate several
performance optimizations to the base design including: (1) Prefetching of the taint data from shadow memory when the corresponding
data is accessed by the primary thread; (2) Optimizing the generation of the taint code to remove unneeded security instructions;
(3) The use of aggregated instructions for collapsing the frequently used groups of security instructions into a single new instruction.
Together, these optimizations reduce the performance penalty of SIFT to under 20% on SPEC CPU 2006 benchmarks– much lower
than the overhead of previously proposed software-based DIFT schemes. We also analyze the energy overhead of SIFT and show it to
be very high - 113% for SPEC 2006 benchmarks. We then propose several techniques that reduce this overhead to only 23%, making
SIFT design practical from the energy standpoint. To demonstrate the feasibility of SIFT, we design and synthesize a core with SIFT
logic and show that the area overhead of SIFT is only 4.5% and that instruction generation can be performed in one additional cycle at
commit time.

Index Terms—Security, Microarchitecture, Dynamic Information Flow Tracking, Energy-aware systems.

�

1 INTRODUCTION

DYNAMIC information flow tracking (DIFT) is a secu-
rity mechanism that marks untrusted data, tracks

its propagation, and limits how it can be used [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12]; because of
its generality, it can defend against a broad range of
security exploits, including buffer overflow [13], [14],
[15], [16] and other code injection attacks [17], [18].
DIFT works by detecting situations where the tainted
data is used in potentially insecure ways. For example,
when a tainted pointer is dereferenced or a branch target
address is tainted, a security exception can be raised.
Several realizations of the general DIFT ideas have been
proposed in recent years, including both hardware [1],
[3], [4], [5], [10], [8], [12], [11], [19] and software [7], [20],
[2], [21], [6], [22] solutions.

Software DIFT implementations inline additional in-
structions that perform taint propagation and checking
with the main program. These extra instructions are
inserted either by the compiler, or using binary rewrit-
ing. A primary drawback of this approach is the high
performance penalty: several-fold slowdown is typical.
In addition, software implementations do not address
security problems with self-modifying code or multi-
threaded programs [5].

∗Computer Science Department, Binghamton University, Binghamton, NY
13902–6000. Email: {mozsoy,dima,nael}@cs.binghamton.edu†Intel Corporation, Santa Clara, CA.

In response to these limitations, hardware-assisted
DIFT solutions have been proposed [1], [3], [5], [10],
[8]. The idea is to augment each register and memory
location with one or more bits to maintain the taint state.
Taint propagation and checking is carried out in parallel
with the main program execution using dedicated hard-
ware that checks and manipulates the taint state. Such an
approach minimizes the performance overhead of DIFT,
but requires major changes to the processor datapath,
including changes to the timing-critical pipeline stages,
and the highly optimized memory hierarchy. As a result,
it may be difficult to adopt these designs in practice [5].

In this paper, we propose SIFT (SMT-based DIFT)
- a novel, lightweight DIFT design that uses a sepa-
rate context of a Simultaneously Multithreaded (SMT)
processor for performing DIFT checks. SIFT does not
require any software support and mostly utilizes exist-
ing instruction execution infrastructure of an SMT core
to perform security operations. The key idea of SIFT
is that taint checking and propagation is performed
in a separate thread context of an SMT processor, all
within a single core. We call this thread the security
thread in the rest of the paper. The instructions for
performing security checking are generated in hardware
using off-the-critical path logic at the back end of the
pipeline. Specifically, the committed instructions from
the application program (called primary thread in the
rest of the paper) are dynamically translated by this
logic into taint checking and propagation instructions

Digital Object Indentifier 10.1109/TC.2012.189 0018-9340/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 2

to form the security thread. These new instructions are
then supplied directly to the fetch queue of the security
thread, bypassing the instruction cache. Figure 1 depicts
the flow of instructions from the primary thread and the
security thread through the SIFT pipeline. In addition to
the baseline SIFT architecture, we also propose a number
of optimizations targeted at improving performance and
energy-efficiency of SIFT.

Instruction
Cache

Decode /
Dispatch Execute Writeback Commit

SIFT
Instruction
Generation

Primary Thread

Security Thread Inst. Buffer

Fig. 1. Instruction Flow in SIFT Architecture

The key advantages of the proposed SIFT architecture
are the following:

• It requires minimal changes to the processor data-
path design. Our analysis show that the core area
increase due to the SIFT logic amounts to 4.5%
and at most one additional cycle is required at the
commit stage of the pipeline to accommodate the
checking instruction generation.

• SIFT logic is concentrated in the commit stage of
the pipeline and is located off the critical timing
path. This is an important advantage for SIFT com-
pared to most previously proposed hardware-based
schemes. This makes it easier to integrate SIFT
design with commercial SMT microprocessors.

• SIFT (even with all optimizations) is transparent to
the ISA and the compiler. It does not require any
instrumentation of the source code or the binary,
and does not require dynamic binary translation.
Thus, it can protect unmodified legacy binaries.

• SIFT can be easily adapted to new threats and/or
scaled to support a number of different security
checking policies simultaneously. In fact, the whole
width of the datapath (64-bits in our model) is
available for maintaining the multi-bit taint values
for free if so desired.

• It has a modest impact on the application perfor-
mance and energy consumption when our proposed
optimizations are applied.

An important aspect of SIFT architecture is the non-
invasive nature of the architectural changes required by
the proposed design. In contrast to traditional hardware
DIFT solutions, the SIFT logic is contained at the com-
mit stage of the pipeline off the critical timing path.
In addition, SIFT does not require any changes to the
memory datapath. The low-complexity nature of SIFT
changes allows for easier verification and retrofitting of
these changes into existing SMT datapath designs. In
addition, the performance losses incurred by SIFT are
quite modest, although they are higher that those of
traditional hardware schemes.

The idea of SIFT was originally presented in our paper
published in 2011 ACM Computing Frontiers conference

[23]. The current submission extends the original paper
in the following ways:

• In addition to evaluating performance, area and
cycle time impact of SIFT, this submission also
analyzes the implications of SIFT on the processor
energy consumption. Our analysis show that the
energy overhead of SIFT design, as proposed in
[23], is 113% on the average for SPEC 2006 bench-
marks. As such a large overhead clearly presents
a challenge for the practical adoption of SIFT, this
paper proposes several optimizations that reduce
the energy overhead of SIFT to about 20%.

• We present a detailed analysis quantifying our de-
sign decision to use shared caches between primary
and security threads. This design choice avoids
the need for implementing separate taint caches or
augmenting existing cache lines with taint bits, thus
significantly simplifying the memory datapath. We
demonstrate that the performance loss due to cache
sharing is fairly small: 3% compared to the ideal
case where the security thread has perfect memory,
but never accesses the primary thread’s cache.

• We present a new performance optimization that
aggregates multiple security instructions into one
instruction, thus further boosting the performance
of SIFT.

• The text and the presentation of the CF material
have been significantly modified, updated and im-
proved throughout the paper.

2 SIFT DESIGN OVERVIEW

SMT processors are mainstream today - for example,
the recent microarchitectures such as Intel’s Core I7 [24]
and IBM’s Power 7 [25] use SMT cores. The SIFT design
utilizes one of these thread contexts for security; when
such security support is not needed, SIFT logic can be
turned off and the context can be used for executing
regular applications.

2.1 Overview of the SIFT Framework

The proposed SIFT architecture is based on the following
two key ideas.

• Execution of the security checking thread in a spare
hardware context of a SMT processor in parallel
with the primary application thread. The security
thread uses general purpose datapath registers and
shadow memory locations. We assume that every
memory location is augmented with a shadow copy,
which maintains the taint information about this
location.

• Hardware-based instruction generation for the se-
curity thread. Specifically, when the instructions
from the primary thread are processed through the
commit stage of the pipeline, they are presented to
the security instruction generation logic. This logic
produces the checking instructions and supplies

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 3

Fetch
Unit

Decode/
Dispatch

Mem
Units

FU 1

SIFT
Instruction
Generator

addr

Inst

Instruction
Cache

IQ

ROB

Data Cache

LSQ

SMT Datapath with SIFT Support

PC

IFQ
FU 2

FU N

Shared Resources

Private Resources

Register
Rename

Fig. 2. SMT Datapath Augmented with SIFT Logic

them to the security thread, effectively acting as its
instruction cache.

The combined effect of these two approaches is that
SIFT achieves the low design complexity due to the
reuse of existing datapath, but without introducing any
changes to the compiler and without requiring binary
translation. All of this is achieved with modest perfor-
mance, area and energy overhead. In SIFT, the primary
thread and the security thread are synchronized only at
the system call boundaries. It has been demonstrated in
previous research [5], [26], [27], that such synchroniza-
tion provides the same security model as instruction-
level synchronization.

Figure 2 depicts a typical SMT processor datapath
augmented with the logic for implementing SIFT. The
SIFT instruction generation logic is shown as a solid box
at the commit stage of the pipeline.

2.2 Taint Checking and Propagation Policies

In this subsection, we describe the rules used for gener-
ating taint propagation and checking instructions. These
rules are not unique to SIFT, we refer the readers to
earlier work [1] where the generated instructions for
propagation and policy enforcement are described in
more detail.

There are two types of instructions that are generated:
taint propagation and violation checking instructions.
Propagation instructions are used to track the taint state
of data as the program proceeds; these are mostly ”OR”
instructions for arithmetic operations (OR-ing the taint
values of source registers and associating the resulting
taint with the destination register) and ”LOAD/STORE”
instructions for memory operations. The violation detec-
tion policies define the rules for when to raise security
exceptions. An attractive feature of SIFT is that the
violation detection policies can be flexibly and dynami-
cally configured through a control register. The situations
that can cause security exceptions are listed below; any
subset of these can be enabled, allowing flexible compos-
able security policies. In our simulations, we model the
performance overhead when both data and address of
memory operation, system call arguments, conditional

branches and jump destinations are checked. However
control register can be programmed with a combination
of following list of checks.

1. Address of a load, 2. Address of a store, 3. Jump
target, 4. Branch condition, 5. System call arguments,
6. Return address, 7. Stack pointer, 8. Memory address
AND data, 9. Memory address OR data is tainted

Every checking policy causes a number of additional
instructions for implementing the respective checks.
Each committed instruction generates between 1 to 3
checking instructions. An exception to this rule is the
system call instruction, which requires checking up to 7
arguments for the system that we model. The summary
of instruction generation is provided in Table 1.

Primary Thread Security Thread
Arithmetic 1 OR Instruction
Memory Instructions 1 OR, 1 Memory, 1 Branch
Branch Instructions 1 Branch
Floating Point Arith 3 Floating Points
FP memory 1 FP Memory, 1 Branch
System Calls 7 Branches

TABLE 1
Generated Instruction Counts

2.3 SIFT Instruction Generation Logic

This subsection presents the Instruction Generation
Logic (IGL), which is the SIFT component used for
generating instructions for the security thread. The in-
ternal structure of the IGL block is shown in Figure 3.
For simplicity, this figure shows the IGL datapath for
processing a single committed instruction.

When an instruction commits, its 6-bit opcode (we
assumed Alpha ISA for this study) is used as an index
to the opcode decoder. The decoder generates a 5-bit
”taint code”, which uniquely identifies the sequence of
checking instructions corresponding to the instruction
being committed. The possible combinations of checking
instructions are stored in the Checker Opcode Table
(COT): one entry for each combination. The COT only
provides the opcodes of the checking instructions, the
rest of the checking instruction bits are derived from

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 4

D
ec
od
er

CHECKING POLICY

Taint
Code

Inst.

Addr

Register
Organizer
(RO)

Full

Full

Taint
Type

Unsuccessful

Checking Opcode
Table (COT)

Instruction Buffer
(IB)

Address Buffer
(AB)

LSQ Tail
(Security Thread)

IFQ Tail
(Security Thread)

ROB Head
(Primary Thread)

LSQ Head
(Primary Thread)

32

5

9

3264

Taint
Code

6

26

5

ORLOAD BNE
BNEOR

OR
STORE

BNE

ORLOAD

Ins. 2 Ins. 3Ins. 1

opcode

6

26 26

32

...
...

Fig. 3. SIFT Instruction Generation Logic

Register Organizer (RO) logic, as described below.
The RO block has two inputs: the taint code (generated

by the opcode decoder) and the entire 32-bit primary
thread instruction that is being committed. The purpose
of the RO logic is to either reorganize the remaining 26
bits of the instruction (by switching the positions of some
register addresses), or leave them unchanged.

To illustrate the concept of register reorganization,
we consider a LOAD instruction as an example. As
described in the previous subsection, in the most strict
security checking policy, the LOAD instruction sets the
taint bit of its destination register if either the value
being loaded or the address from which it is being
loaded are tainted. Furthermore, either of these con-
ditions can result in a security trap, if they are true.
This functionality is implemented via three separate

ldq_u r1,56(r0) r1<-MEM[(r0+Sign_Ext(56))&~7]
ldq_u r1 56

bis r1 r0 func_bis r1
bis r1,r0,r1 r1<-r0||r1

Main Instruction Checking Instructions
→

→

bne r1 excp_addr
bne r1,excp_addr (r1!=0) PC = excp_addr→

r0 ldq_u r1 56r0

Fig. 4. Register Reorganization Example

checking instructions, as illustrated in Figure 4. First,
the checking load instruction performs the load from
the corresponding address in the shadow memory to
the destination register. This instruction is analogous to
the LOAD instruction from the primary thread. Next,
in the second checking instruction, the OR-ing of the
taint values associated with the data and the base ad-
dress are performed in a separate OR (BIS in Alpha)
instruction. The requisite OR instruction needs to have
registers arranged in the order ”load dest reg, base
address register, load dest reg”. Again, the RO logic
performs the required arrangement of register addresses.
Finally, the BNE instruction performs the security check

by comparing the resulting taint value of the destination
register against zero.

The checking instruction sequences are stored in the
Instruction Buffer (IB) for subsequent consumption by
the security thread. When the IB becomes full, the in-
struction commitment process stalls until a free entry
becomes available. Sensitivty analysis for different buffer
sizes is presented in the results section.

One important issue that needs to be addressed in the
proposed design is how to communicate the memory
addresses computed by the load and store instructions of
the primary thread to the security thread. The difficulty
stems from the fact that the registers used by the security
thread cannot be utilized for anything else other than the
storage of taint values. Our solution to this problem is
to directly communicate the effective memory addresses
produced by the LOAD and STORE instructions of the
primary thread to the security thread through a new
structure that we call Address Buffer (AB). The AB is
shown on the bottom left of Figure 3. For efficiency, the
AB can be placed next to the LSQ, it is shown as part of
the IGL box in Figure 3 just for the sake of clarity.

3 SIFT PERFORMANCE OPTIMIZATIONS

Although the performance overhead of SIFT is much
lower than that of software based DIFT frameworks,
it incurs a performance penalty for the following two
reasons: (1) Resource contention: the security thread
contends with the primary thread for datapath resources
(data cache and other datapath structures such as the
instruction queue, execution units and the physical reg-
ister file); and (2) Load imbalance: the security thread
executes several instructions for each primary thread
instruction. As a result, the IB fills up causing the
primary thread to stall. This section discusses several
optimizations that reduce the performance impact of
SIFT, while retaining its full information flow tracking
capabilities.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 5

3.1 Prefetching for the Security Thread

The key observation that we exploit in this optimization
is that when an instruction in the primary thread makes
an access to memory address X, then the security thread
will access the same address X in the shadow mem-
ory space in the near future. Therefore, we propose to
prefetch the data from the location X in shadow memory
when the access to this location by the primary thread
is encountered. Since a significant slack between the two
threads exists (because the checking instructions are gen-
erated only after the commitment of the primary thread
instructions), timely and highly accurate prefetches are
possible.

Specifically, the prefetching mechanism that we pro-
pose works as follows. At the time of the primary
thread’s memory access to address X, we initiate a
prefetch to the same address in the shadow memory
(we will refer to this address as Xs). When this prefetch
request is generated, the L1 cache is first probed for
address Xs (using spare cycles when the cache accesses
are not performed), and on a miss the memory request
for address Xs is sent. This prefetching scheme is a low-
complexity solution, as it does not involve the mainte-
nance of complex prefetching tables based on previous
execution histories. It is also quite effective in terms of
performance improvements, as we demonstrate in the
results section.

3.2 Filtering Security Instructions

The second optimization targets elimination of redun-
dant security instructions. In hardware, it is more diffi-
cult to carry out such optimizations dynamically due to
the absence of the program structure and the complexity
of examining a large window of instructions to detect
redundancy. However, simple optimizations are possible
in a way that can be easily implemented. Specifically,
at the front-end of the instruction generation logic we
filter unnecessary instructions according to the following
simple rules:

• When a committed instruction from the primary
thread has two source registers and the register
addresses of both sources and the register address
of the destination are the same, then this instruction
does not change the taint value and can be omitted.
Indeed, if a corresponding checking instruction was
produced, it would be of the form BIS r1,r1,r1,
which leaves the contents of r1 unchanged.

• When an instruction has one source register and the
register addresses of the source and the destination
register are the same, then this instruction can again
bypass the IGL. An example of such an instruction
is ADD r1,r1,4. Whatever the value of register r1
is before the execution of this instruction, it will
remain the same after the execution.

As we demonstrate in the results section, the percent-
age of checking instructions that can be eliminated with
the above rules is substantial.

3.3 Aggregating Security Instructions

A third optimization that we pursue is to use additional
hardware support for aggregating (fusing) multiple se-
curity instructions into one. In particular, for the primary
instructions that generate several security instructions
as shown in Table 1, we can combine the sequences of
these instructions into a single hardware instruction that
can be implemented within the existing pipeline. That
way, every primary instruction will generate exactly one
security instruction. For example, memory instructions
can be checked with a new chk_mem security instruction
which combines OR, memory and branch instructions.
When a chk_mem instruction proceeds to the dispatch
stage of the pipeline, only a single issue queue entry
gets allocated to it. After the memory operation is com-
pleted, the result is immediately forwarded to the new
functional unit, which is composed of one comparator
and an OR circuit. Since there is only one instruction in
the issue queue and the ROB for the entire aggregated
group, this design effectively amplifies the size of these
resources, thus increasing performance. Three more new
aggregate checking instructions can be defined in this
manner, specifically chk_fp_arith, chk_fp_mem and
chk_syscall . Since aritmetic operations only generate
1 instruction, they will remain same.

Although these new aggregated security instructions
need to be supported in hardware, they are generated
internally and do not appear in the application binary.
Therefore, this technique does not break the binary
compatibility and can still apply to the existing legacy
binaries.

4 POWER AND ENERGY ANALYSIS AND OPTI-
MIZATION

SIFT design encounters only modest performance over-
head, mainly because of concurrent execution of the two
threads. However, a large number of extra instructions
executed results in significant power and energy over-
head. SIFT generates an average of about 2 security
instructions per committed instruction. With filtering,
these instructions decrease to 1.5 on average. In this
section, we analyze the energy consumption of SIFT and
propose two optimizations to reduce it.

Figure 5 shows the energy overhead of SIFT due to
the execution of extra instructions. These results were
obtained using the Wattch simulator[28]. As seen in the
figure, the energy overhead of SIFT is 113% on average
across the simulated benchmarks.

To keep explanations clear, and without loss of gen-
erality, we describe the optimizations relative to SIFT
with a single bit taint; however, both proposed energy
and power optimizations generalize to any meta-data
size. In order to reduce the SIFT energy overhead, we
exploit the fact that SIFT instructions only operate on
small size taint values. Therefore, most of the bit slices
in the datapath used by the security instructions can
be turned-off and/or clock-gated without any impact

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 6

Fig. 5. Energy Overhead of SIFT

on performance. For example, in a 64-bit datapath that
we used for our studies, 63 bits can be deactivated,
reducing the energy requirements for processing security
instructions in SIFT dramatically. In order to accomplish
this deactivation, we propose two general approaches
that are described below.

4.1 Optimization 1: Bit-Level Clock Gating

The first optimization relies on the fact that the SIFT ar-
chitecture is amenable to the Deterministic Clock Gating
(DCG) scheme proposed in [29]. A functional block that
is not in use can be clock-gated (suppressing the clock
transition input to it) substantially reducing its power
consumption. DCG exploits the advance knowledge of
how many instructions are going to be active in each
stage of the pipeline to clock-gate the pipeline latches,
result buses and ALU slices in a timely fashion without
performance overhead. Li et al [29] apply DCG at the
instruction granularity. We propose to apply it at the
level of individual bits in order to clock-gate all of the bit
slices that are unused by security checking instructions.
In the case of SIFT, as soon as the security instructions
are inserted into the issue queue, we know that they will
only need a single bit of the datapath to perform security
checks and taint propagation. Of course, the approach
generalizes to implementations that maintain multi-bit
taint values by enabling the appropriate number of bit-
slices.

To distinguish security thread instructions from the
main thread instructions, we can rely on the context id
bit that is associated with every entry in the issue queue.
The context id bits are already used to enable thread-
specific instruction squashing on branch mispredictions,
so no additional hardware modifications are needed to
maintain them. We simply clock gate the inactive bit
slices of the security instructions (in the ALU, results
buses and pipeline latches), once those instructions are
selected for the execution. Figure 6 depicts the clock-
gating implementation within the ALU. Here, only a
single bit-slice is activated for instructions that execute
in the context of the security thread (as determined by
the context id).

4.2 Optimization 2: Partitioned On-chip Storage

The second optimization addresses the power and en-
ergy consumption within the on-chip storage compo-

Funct.
Unit

Clk

Clk

Context
ID

Clk

Clk

Context
ID

Data B
(Register)

Data B
(Bypass)

Data A
(Register)

Data A
(Bypass)

Context
ID

64

1

1

64

Clk Context
ID

Result

Fig. 6. Clock Gating for Functional Units

nents such as register files and caches. Since the size
of the taint information is known (one-bit), the unused
bits of the storage structures hosting them can be turned
off. However, in SMTs, the storage components are
shared among the different threads, making it difficult
to identify which components are used by the taint
thread. Moreover, even if we track the components at
fine-granularity (say, on a register by register basis), sub-
stantial complexity would need to be added to control
the fine-grained storage elements.

To address the above problem, we propose to use
a partitioned design. For register files, we propose to
partition the physical register file into two halves, such
that one half is exclusively used for security instructions
and the other half is used by the main thread instruc-
tions. The register allocation scheme has to be slightly
adjusted to support such partitioning to ensure that only
the registers from a predefined partition can be allocated
to each thread. Our experiments show that such a small
restriction does not have any noticeable impact on the
benchmark performance - we observe at most a 1%
performance degradation due to this restrictive use of
registers.

The benefit of the partitioned design is that we can
turn-off all but one bit-slice in the partition that supports
the security thread. If the register file is multi-banked
(as is the case in modern designs to reduce port require-
ments) [30], [31], then the partitioned design becomes
even more natural, as the power-saving optimizations
can be applied to one or several banks supporting secu-
rity instructions.

We also propose similar optimization for caches (in
SIFT, the shared cache is used to hold both security and
main thread data). Here, exploiting the fact that for each
regular memory access we use one access to the shadow
memory (and therefore, the cache capacity is equally
split between the main and security instructions), we can
statically allocate some cache ways for the main thread
and other ways for the security thread. Way selection
can be driven by the thread context id. Such partitioned
cache design will immediately reduce by half the num-
ber of ways that are activated in a set-associate cache for

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 7

every instruction (as each of the threads only activates
their own ways). In addition, the unused bit-slices can
be turned-off within the ways allocated for the security
thread. Our simulations show that this optimization does
not result in any performance degradation due to the
fact that the threads have very similar memory access
patterns.

D
ec
od
er

Active
Cell

Power Gated Cells

Turnoff
signal

Vdd

Write Drivers

A
dd
re
ss
D
ec
od
er

Deactivated
Cells

Deactivated
Cells

BitlineBitline

= = = =

Primary Thread Security Thread

...

Write Drivers
Context
ID

Context
ID

Fig. 7. Partitioned L1 Cache for SIFT-EE

These partitioning optimizations can be activated at
the time when the processor switches to SIFT mode. At
the time of the switch, the SIFT instruction generation
logic will be activated, register file allocation scheme will
be altered and the ways of the first-level data cache will
be statically partitioned between the main thread and
the security thread.

5 SIFT EVALUATION METHODOLOGY

In order to obtain a conservative estimate of the
core area overhead introduced by the SIFT logic, we
implemented the instruction generation logic block and
integrated it with a single SUN T1 Open source core
[32]. The estimate is conservative because SUN T1 core
features in-order pipeline. For a processor with out-or-
order pipeline, the larger area of the dynamic scheduling
engine will reduce the overhead of SIFT.

The integrated processor netlist was placed and routed
using Cadence SoC Encounter, to accurately model area
and timing overhead due to wire and cell placements.
The timing delays of the combinational logic (such as
decoders and the RO logic) were accurately modeled
using standard cell models provided with TSMC 90nm
standard cell library [33]. We used HSPICE circuit simu-
lator from Synopsys to simulate the analog components
of the memory structures, such as the sense amps. The
wire parasitics (RC delay) were computed using the
calculated length of wires from the placed and routed
circuit.

For SIFT performance studies, we used M-Sim [34] - an
execution-driven simulator of an SMT processor, which
was developed in-house from Simplescalar simulator.
We used most strict SIFT checking policy described in

section 2.2 for all of our simulations unless otherwise
stated.

The simulated processor configuration is presented in
Table 2.

Parameter Configuration
Machine Width 8-wide fetch, issue and commit
Window Size 128-entry ROB, 48-entry LSQ, 32-

entry IQ
Functional
Units and Lat
(total/issue)

4 Int Add(1/1), 1 Int Mult(3/1) /
Div (20/19), 2 Load/Store (1/1), 4
FP Add (2/1), 1 FP Mult (4/1) /
Div (12/12) / Sqrt (24/24)

Physical Registers 256 Integer + 256 FP Physical Reg-
isters

L1 I-Cache 64 KB, 2-way set-associative, 64
byte line, 1 cycle hit time

L1 D-Cache 64 KB, 4-way set-associative, 64
byte line, 1 cycle hit time

L2 Unified Cache 512 KB, 16-way set-associative, 64
byte line, 10 cycle hit time

Memory latency 300 cycles

TABLE 2
Configuration of the Simulated Processor

We use 23 SPEC CPU2006 [35] benchmarks for
this study (we had difficulties compiling the remain-
ing 3 benchmarks for Alpha). The benchmarks were
compiled on a native Alpha AXP machine running
tru64 unix operating system. Benchmarks were com-
piled using the native C compiler on DEC Alpha with
-04 -fast -non_shared optimization flags. For each
benchmark, we simulated 100 million instructions after
skipping the initial to 2 Billion instructions to avoid
simulating the initialization stages.

For estimating the energy and power overhead of SIFT,
we used Wattch power estimation tool [28] configured
for 90nm technology node with structure sizes listed in
Table 2.

6 AREA AND TIMING EVALUATION

In Figure 8 the die image of the modified core with
SIFT logic is depicted. Our experiments show that the
core area increased by about 4.5% with the integrated
SIFT unit. We also noted that the IB unit requires about
2% of the area budget. The high area requirement of the
IB can be attributed to the large number of ports, which
results in a large wire overhead and increased cell area,
due to increase in wordline and bitline wires.

Figure 8 shows that the SIFT unit is placed close to the
instruction fetch (IF), instruction commit (IC), and the
load-store unit (LS), since IB interacts with IF and IC, and
AB interacts with LS. It is important to note that since
SIFT unit is tightly integrated with multiple modules,
it is difficult to distinguish the area overhead of SIFT
in Figure 8, which provides a conservative estimate. We
note here that SUN T1 processor has in-order execution
core, and this is another reason why the area estimate

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 8

Load
Store
Unit

Instruction
Commit

Unit

Instruction
Execute
Clusters

Instruction
Fetch Unit

SIFT

Fig. 8. Die Image of the Core

reported here is conservative since the area of an out-of-
order core is significantly larger. On SMT processor, this
overhead will further reduce because the core supports
additional thread contexts. We used Sun T1 architecture,
because it was the only open source design available to
us to obtain conservative estimates of area and timing.
For power evaluation, we use Wattch-based simulations.

We now discuss the timing analysis of the proposed
logic. The RO and COT are accessed in parallel, and
the resulting checking instructions are inserted into the
IB. The COT delay is significantly larger than the RO
delay in the generation logic, since access to the COT
requires decoding and accessing the memory array. Fig-
ure 9 shows the timing of three memory arrays used:
COT, AB and IB. The timing of SRAM arrays can be
classified as Tdecode + Tbitline + Twordline [36]. Figure 9
shows that COT requires more time to decode than IB
and AB. COT array is designed to allow access to any
of the 32-entries. However, IB and AB are designed as
FIFO queues, with a separate read and write counters.
Hence, IB and AB decode logic only allows instructions
to be written and read from specific contiguous entries,
simplifying the decode logic. Figure 9 also shows that IB
requires much larger time to drive bitlines and wordlines
(Tbitline, Twordline) than other structures.

Fig. 9. Timing Analysis of COT, AB and IB

Overall, the combined access delay of the COT and the
IB is about 600 ps for the modeled technology (90nm).
The RO access delay is hidden by the COT delay since
those two structures are accessed in parallel. Since the
SIFT logic operates in parallel with instruction commit,
at most one additional cycle is needed to implement
SIFT even for a very aggressive implementation with a
3GHz processor (assuming that commit logic operates
in a single cycle and the SIFT logic requires 2 cycles).
For lower frequency implementations, it is likely that the

entire commit with the new logic can be implemented
within a single cycle. In the performance simulations, we
assumed one additional cycle for SIFT processing.

7 EVALUATION OF ENERGY OPTIMIZATIONS

Figure 10-a shows the energy overhead of SIFT and
energy-efficient SIFT (called SIFT-EE in the rest of this
section) compared to the baseline processor without
SIFT logic activated. Results are shown for each effected
processor structure separately. To make the comparisons
fair, we assumed that in the baseline execution, only a
single 128-register bank of the dual-banked register file is
accessed by the application. As seen from the results, the
energy reduction achieved in all of these components is
significant, with the largest savings encountered within
the register file. In fact, the baseline SIFT design almost
triples the energy expended in the register file while the
optimized SIFT has just a slight overhead since security
instructions access only a single bit-slice of the dedicated
register file partition. Additionally, Figure 10-b shows
the impact of the proposed optimizations on processor
power. Total power overhead of SIFT-EE is about 20%.
This is lower than the energy overhead, because the
program executed longer with SIFT-EE compared to the
baseline.

Fig. 10. Energy and Power Overhead of SIFT-EE

In addition to the uneffected components, the extra en-
ergy is also expended within the instruction generation
unit of SIFT results in the additional 3% energy overhead
that accounted for in the results presented in Figure 11.

The energy overhead of SIFT and energy-efficient SIFT
on the entire processor is presented in Figure 11. Among
the SPEC 2006 benchmarks, zeusmp and cactusADM suf-
fer the largest energy overhead for the original SIFT -
more than 160%. As seen from the graph, the proposed
optimizations effectively reduce the energy consumption
af all benchmarks, including the one with the highest
overhead. On the average across all simulated bench-
marks, the energy overhead was reduced to only 23%,
which is quite tolerable considering the fact that SIFT
fundamentally relies on the execution of additional in-
structions to provide security.

Note that we presented all our evaluations in terms
of pure energy reduction, and did not use unified en-
ergy/performance metrics such as energy-delay product.
This is because the unified metrics are appropriate for
quantifying trade-offs between energy and performance.
However, SIFT architecture has overhead in both perfor-
mance AND energy, therefore it is more straightforward
to quantify these overheads separately.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 9

Fig. 11. Energy Overhead of SIFT and SIFT-EE over
Baseline

8 PERFORMANCE RESULTS & DISCUSSIONS

In this subsection, we evaluate the performance of
the proposed architecture and study its performance
sensitivity to various parameters and design decisions.

8.1 SIFT Performance and Sensitivity Analysis

Figure 12-a shows the impact of the IB size on per-
formance of SIFT (without any performance optimiza-
tions). On the average across the simulated SPEC 2006
benchmarks, the performance degradation is below 45%
and there is little difference with the IB size. For the
subsequent experiments, we assumed the IB size of 16
entries. For the individual benchmarks, the performance
slowdown ranges from 61% (for gromacs) to 26% (for
GemsFDTD).

Fig. 12. SIFT Overhead a Function of IB Size (a) and
Number of IB Ports (b)

Figure 12-b shows performance degradation of SIFT as
a function of the number of IB ports. The figure compares
the performance of configurations with 2, 4 and infinite
number of ports to the IB. As seen from the results, the IB
with 4 read and 4 write ports performs almost identical
to the IB with the infinite number of ports. Therefore, for
the remaining experiments we assumed a configuration
with 4 ports.

Figure 13 shows the percentage of primary thread
instructions that are blocked at the time of commit due
to the absense of IB ports. When two IB write ports are
used, as many as 20% of all instructions are blocked,
while this number drops to 8% for four ports. This
explains significant differences in performance between
these two points.

8.2 Impact of SIFT Optimizations

First, we consider prefetching optimization and refer to it
as SIFT-P in this section. Figure 14-a shows performance

Fig. 13. Percentage of Blocked Main Thread Instructions
by Number of IB ports

effect of SIFT-P and also correlates these improvements
with the L1 D-cache hit rate experienced by the security
thread in the baseline SIFT architecture. As expected,
prefetching mechanism has a more significant impact on
applications with higher cache miss rates - this correla-
tion is clearly demonstrated in the Figure 14. mcf is one
of the benchmarks that benefits most from prefetching
optimization. Eventhough it has high miss rates for SIFT
beacuse of its data access pattern, it only experiences
33% performance loss which also dropped to around
6% with prefething optimization. On the average across
all simulated benchmarks, about 12% reduction in the
performance loss due to SIFT is observed.

Fig. 14. Prefetching Effect on SIFT Performance and
SIFT L1 Data Cache MKPI(Misses Per Kilo Instructions)

The second optimization that we evaluated eliminates
(filters) ineffectual and redundant security instructions.
We call this scheme SIFT-F. Figure 15-b shows the
percentage of ineffectual security instructions that are
filtered out for each benchmark, and also presents the
performance improvements due to such filtering. For in-
dividual benchmarks, the percentage of filtered instruc-
tions ranges from 17% (for dealII) to 45% (for GemsFDTD)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 10

with the average of about 23%. Consequently, these
numbers translate into commensurate performance im-
provements, although the relative impact of the per-
formance improvement is smaller than the percentage
of filtered instructions (simply because the instructions
from the primary thread are not being filtered and
they represent the constant overhead). On the average
across all simulated benchmarks, almost 5% additional
performance improvement is observed. In other words,
the average performance loss due to SIFT is reduced
from 43% before this optimization to about 38% with the
optimization. For specific benchmarks, the performance
improvement correlates strongly with the percentage of
filtered instructions, as demonstrated by the Figure 15-a.

Fig. 15. Percentage of Eliminated Checking Instructions
and Effect on Performance

Next, we evaluate the last optimization which pro-
vides support for aggregating multiple security instruc-
tions into a single instruction. We refer to this variation
of SIFT as SIFT-A. Similar to SIFT-F, SIFT-A reduces the
number of instructions in the security thread, reducing
the pressure on datapath resources. Figure 16 depicts the
performance effect of ISA support which decreases the
overhead from 43% to 31% on the average. Calculix and
leslie3d benchmarks have about 20% performance gain
with about 50% fewer checking instructions.

Finally, Figure 17 depicts the performance impact of
SIFT with all three optimizations for an 8-way issue pro-
cessor. In this figure, SIFT-F stands for SIFT with filtered
instructions, SIFT-P stands for SIFT with prefetching,
SIFT-A stands for SIFT with instruction aggregation,
and SIFT-FPA refers to the case when all performance
optimizations are implemented simultaneously. The final
performance loss is about 20% for an 8-way machine.
Effectively, the effect of the proposed optimizations is
synergistic and they took the performance overhead of

Fig. 16. Impact of SIFT-A on Performance and the Num-
ber of Security Instructions

SIFT from 43% down to 20%.

8.3 Performance Impact of SIFT Policy Choice and
Processor Width

In this subsection we quantify the effect of checking
policy and processor parameters on performance.

Fig. 18. SIFT-FP Performance with different policies. Pol-
icy 1 - taint propagation only, Policy 2 - Jump destinations,
stack pointer and return address are checked. Policy 3 -
Memory references, system call arguments, conditional
branches and jump destinations are checked.

Figure 18 shows SIFT-FP performance for three dif-
ferent policies. While Policy 3 represents the most strict
checking policy, Policy 1 does not perform any security
checks, but only performs the taint propagation. The
interesting result here is that the performance difference
between these two policies is only 5%, because the
main overhead of SIFT comes from supporting taint
propagation.

In order to evaluate SIFT performance with multiple
threads, we simulated the scenario where two primary
threads are running, but only one of these threads is
checked by the SIFT logic. As a metric for comparison,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 11

Fig. 17. SIFT Performance with all Optimizations

Fig. 19. Comparison of Fair Throughput for SMT and
SIFT

we used fairness (or fair throughput) introduced in [37].
As shown in Figure 19, the drop in performance in this
new case is just slightly higher than the performance
drop experienced by a regular SIFT design with one
primary thread and one checker.

Fig. 20. SIFT-FP Performance with 4-way and 8-way
Issue Processors

Finally, we simulated SIFT-FP on a 4-way processor
in order to gauge the performance impact on a nar-
rower datapath. Figure 20 shows performance loss of
SIFT-FP on 4-way and 8-way processors. While SIFT-FP
performance loss 26% on a 8-way machine, it modestly
increases to 31% for a 4-way processor.

8.4 Performance Impact of Storing Memory Taint in
the L1 Cache

One of the key decisions facing any DIFT design is
how to implement the storage for the memory taint
values. Some techniques augment the processor caches
with the extra bit(s) and store taint information there
for each cache line [3]. Other solutions utilize separate

taint caches to accelerate memory taint processing [10].
Our solution to this issue was to extend the general
design philosophy of SIFT, which is to reuse the existing
datapath as much as possible. Therefore, we opted for
storing the memory taint information (obtained from the
shadow memory space) in the regular L1 and L2 data
caches, just like the register taint information is stored
in the register file itself. While simple to implement, this
design effectively reduces the amount of cache space
available for applications, and therefore can lead to
performance degradation. In this subsection, we quantify
this performance loss and show it to be very small.

Figure 21 shows the effect of cache performance in
SIFT architecture. For each benchmark, the figure shows
three bars. The leftmost set of bars shows the perfor-
mance of SIFT-FP design where a 64KB L1 D-cache is
dynamically shared between the primary thread and
the security thread. The second set of bars shows the
performance of a system where the security thread has
its own 64KB D-L1 cache, in addition to a 64KB D-L1
cache owned by the primary thread. As seen from the
graph, the performance differences are very small - the
second design performs just 0.2% better than the first
one. Finally, the third set of bars shows the performance
with perfect memory system for the security thread.
Even this best-case scenario is only less than 4% faster
compared to SIFT with cache sharing. These results
demonstrate that sharing the cache between the primary
and the security threads is an attractive design choice in
terms of performance/complexity trade-offs.

We also measured the impact of increased memory
pressure on performance. According to our simulaton,
the average memory access time increased by 8% with
SIFT, which is reflected in our performance results.

Finally, we studied the L1 data cache size effect on
performance. Figure 22 depicts the performance loss of
SIFT-FP scheme for different L1 data cache sizes. Even
with 2KB L1 data cache performance loss for SIFT-FP is
around 40%.

In summary, even though the number of executed
instructions significantly increases with SIFT, there are
several reasons why the performance impact of SIFT is
modest. Security instructions are executed in a separate
thread context, thus limiting interference with the pri-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 12

Fig. 21. Shadow Cache Effect on SIFT Performance

Fig. 22. Impact of the L1 Data Cache Size on SIFT
Performance

mary thread instructions. Furthermore, security thread
does not have any long-latency instructions and no
wrong-path instructions are executed. In terms of extra
memory pressure exhibited by SIFT, our experiments
showed 8% increase in the average memory access la-
tency with SIFT, this is accounted for in our performance
results. In situations where this additional memory pres-
sure results in a serious performancce hit, compression
of taint bits can be used to minimize this overhead in
systems where it becomes a significant issue - this is left
for future work.

9 RELATED WORK

DIFT provides a run time version of earlier works that
proposed compile-time static information flow track-
ing [38], [39], [40]. While the static approach avoids
the overhead of runtime information tracking, it is not
applicable to a large number of legacy programs written
in type-unsafe languages such as C or C++.

Both software [7], [20], [2], [21], [6], [22] and hard-
ware [1], [3], [4], [5], [10], [8], [12], [11], [19] DIFT
solutions have been proposed. To avoid the need for
recompilation, software schemes typically use dynamic
binary instrumentation [7], [2], [22]; however, some ap-
proaches use source code instrumentation [20]. The main
drawback of software solutions is the high performance
penalty: several-fold slowdown is typical. This slow-
down is a result of executing additional instructions
(typically, the number of additional instructions is sev-
eral times higher than the number of instructions in the
original program) and also the overhead of dynamic
binary translation. Source-code based instrumentation
[20] has lower performance overhead, but it cannot track
information flow in third-party library code and thus
will miss security exploits that involve these libraries, as
described in US-CERT [41].

Hardware-based DIFT schemes address the perfor-
mance limitations of software solutions by performing

the security checks in hardware, but these schemes re-
quire major redesign of the processor datapath [1], [3],
[5], [10], [8], [12], [11], [19]. Such an approach results in
no performance overhead, but all key (and often timing-
critical) circuitry needs to be augmented with DIFT
support. Such invasive changes complicate the practical
adoption of hardware DIFT support by industry. Such
designs also have significant area overhead. Moreover,
the tight integration of the DIFT logic with the main
datapath retains the overhead even when information
flow tracking is not used.

In response to these limitations, FlexiTaint [10] intro-
duced several new stages prior to the commit stage of
the out-of-order processor and accommodated the DIFT
checks within these stages, relying on the out-of-order
structures to hide the latency. Since FlexiTaint performs
DIFT checks prior to the instruction commitment, the
main execution and the DIFT operations have to be
synchronized at each instruction boundary, as opposed
to system call based synchronization, as in our design.
Furthermore, FlexiTaint design maintains taint informa-
tion in separate structures, such as taint register file and
taint cache. The additional complexity associated with
managing these components is avoided in SIFT, where
the taint information is stored and processed in the same
way as the regular data. This promotes the simplicity of
the SIFT datapath: additional logic is concentrated only
at the commit stage for hardware-supported generation
of security instructions.

In [42], [12], a new design (called GLIFT) is presented
to perform taint checking at gate level with customized
circuitry. In addition to explicit flow of information,
GLIFT also tracks implicit flows, thus eliminating side
channels. In [19], a hybrid monitoring architecture is
proposed, where the main core is tightly couples with
a reconfigurable fabric. Monitoring functions can be
dynamically added to the main core in this design, even
after the chip is fabricated.

Recently, both hardware and software DIFT schemes
have been implemented using multicore processors. To
address the design complexity of tightly integrating
hardware DIFT within the processor logic, Chen et al
[8] proposed the use of a separate core in a multicore
chip to perform the DIFT analysis of the execution trace
captured by another core (along with other security
checks). This approach requires a dedicated core to pro-
cess the trace (halving the chip’s throughput) and also
involves additional changes for generating, compressing
and decompressing the trace. The hardware overhead,
and the resulting performance penalty are both signifi-
cantly higher than SIFT (slowdown of over 100% in the
best case). Another proposed design [5] uses a special-
purpose custom designed off-core co-processor for han-
dling DIFT checks. While avoiding the use of a second
general-purpose core for DIFT checks, the design of [5]
still requires a dedicated co-processor and an interface
between the main processor and the co-processor. While
the performance overhead reported in [5] is minimal,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 13

the analysis are only presented for SPEC 2000 integer
programs executed on an in-order core. It is unclear if
a small dedicated core would be capable of keeping up
with the demands of a larger out-of-order superscalar
core, especially when workloads with higher ILP levels
are executed. In addition, the extensibility of that design
is limited, as it is dictated by the hardware constraints of
the dedicated core. In contrast, SIFT has the entire 64-bit
datapath of the security context that can be utilized with
no additional overhead if so desired.

In [6], a multicore implementation of a software-based
DIFT is described, where a new thread is spawned on
a helper core to perform DIFT. However, the scheme of
[6] still requires a dynamic binary translator to scan the
program image and generate a helper thread.

In contrast to the previous hardware DIFT schemes,
the SIFT design proposed in this paper only maintains
the localized and well-structured hardware for the gener-
ation of security checking instructions, while the check-
ing process itself is relegated to the generated software
running on an essentially unmodified datapath. As we
demonstrate by our experiments, the area overhead of
the SIFT logic is less than 5% and it can be accessed
within a single cycle at the commit stage of the pipeline.
Thus, we believe that the SIFT approach results in impor-
tant benefits, which are unattainable by either traditional
hardware or software schemes. Table 3 below compares
the key features of SIFT with hardware and software
DIFT solutions.

The energy reduction techniques proposed in this
paper rely on bit-level clock-gating and also the use of
partitioned datapath resources such that some bit-slices
within these partitions can be deactivated. While clock
gating proposed in [29], register file partitioning [43],
[44] and cache partitioning [45], [46] have been studied
by previous researchers. We show that the design of
SIFT has some properties that allow the application of
these techniques without performance loss or significant
complexity. To the best of our knowledge, no previous
DIFT design has been analyzed for energy-efficiency.

Hardware
DIFT

Software
DIFT SIFT

Performance
Overhead 0.79% - 3.7% 2x - 37x 20%

Design
Complexity

High, Intrusive
changes
to critical
pipeline stages.
May impact
cycle time

No
hard-
ware
changes

Modest
hardware at
the commit
stage of the
pipeline.
Critical path
not impacted

Binary
Compatibil-
ity

Yes No Yes

Flexibility No High
Supports
multi-bit
taint for free

TABLE 3
Comparison of SIFT with Hardware and Software DIFT

10 CONCLUDING REMARKS

In this paper, we presented SIFT - a novel architectural
implementation of Dynamic Information Flow Tracking.
SIFT uses a separate thread to perform taint propagation
and policy enforcement. The thread is executed in a
spare context of an SMT processor. However, unlike
software solutions, the instructions for the taint prop-
agation and policy enforcement thread (security thread)
are generated in hardware in the commit stage of the
pipeline.

Effectively, SIFT provides run-time taint instruction
generation and hardware acceleration for a software-
based DIFT framework, but requires no compiler sup-
port or support for instrumentation of the source code
or the program binary. Compared to software solu-
tions, SIFT incurs lower performance loss because of
hardware-accelerated generation of checking instruc-
tions and also because of the execution of checking
instructions in a separate SMT context. In contrast to
architectural DIFT solutions, SIFT preserves the design of
all major datapath components. The performance loss of
SIFT with all proposed optimizations is only 20% on the
SPEC 2006 benchmarks - much lower than the overhead
of all earlier proposed software-based solutions.

We analyzed the energy overhead of SIFT and found
it to be 113% across the SPEC 2006 benchmarks. We in-
troduced two optimizations that exploit the small size of
the taint meta-data to selectively gate-clock and power-
off unneeded portions of the datapath. As a result, the
energy overhead of SIFT was reduced to 23%. Finally, we
design and synthesize SIFT logic in a representative VLSI
process to accurately characterize its area requirement
and to verify its impact on the critical path. Conservative
estimates show that the area overhead of SIFT is no
more than 4.5% and that the checking instruction gener-
ation can be performed within a single additional cycle
at the commit stage. Effectively, SIFT support extends
the pipeline by a single stage, but has no impact on
the instruction throughput or the critical path of the
processor. At the same time, SIFT provides exactly the
same security guarantees as other hardware-based DIFT
schemes.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air
Force Research Laboratory under agreement number
FA8750-09-1-0137 and by National Science Foundation
grants CNS-1018496 and CNS-0958501.

REFERENCES

[1] G. E.Suh, J. W.Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in ASPLOS,
Oct. 2004.

[2] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “Lift: A low-
overhead practical information flow tracking system for detecting
security attacks,” in MICRO, Dec. 2006.

[3] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible
information flow architecture for software security,” in ISCA, June
2007.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 14

[4] ——, “Real world buffer overflow protection for userspace and
kernelspace,” in Proc. USENIX Security Symp., July 2008.

[5] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic
information flow tracking with a dedicated coprocessor,” in DSN,
June 2009.

[6] H. K. V. Nagarajan, Y. Wu, and R. Gupta, “Dynamic information
flow tracking on multicores,” in INTERACT, Feb. 2008.

[7] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” in NDSS, Feb. 2005.

[8] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B.Gibbons,
T. C.Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vla-
chos, “Flexible hardware acceleration for instruction-grain pro-
gram monitoring,” in ISCA, June 2008.

[9] H. Chen, X. Wu, L. Yuan, B. Z. P. Yew, and F. T.Chong, “From
speculation to security: Practical and efficient information flow
tracking using speculative hardware,” in ISCA, June 2008.

[10] G. Venkataramani, I. Doudalis, and Y. Solihin, “FlexiTaint: A
programmable accelerator for dynamic taint propagation,” in
HPCA, 2008.

[11] J. Crandall and F. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Microarchitecture, 2004. MICRO-
37 2004. 37th International Symposium on, dec. 2004, pp. 221 – 232.

[12] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and
T. Sherwood, “Complete information flow tracking from the gates
up,” in ASPLOS, Mar. 2009.

[13] Aleph One, “Smashing the stack for fun and profit,” Nov. 1996.
[14] M. Conover and w00w00 Security Team, “w00w00 on heap

overflows,” Jan. 1999, available online at http://www.w00w00.
org/files/articles/heaptut.txt.

[15] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks,” in Proc. of Usenix Security Symp., 1998.

[16] “Cert advisory ca-2001-33: Multiple vulnerabilities in wu-ftpd.”
Nov. 2001, available online at http://www.cert.org/advisories/
CA-2001-33.html.

[17] “Cert advisory ca-2002-12: Format string vulnerability in isc
dhcpd.” May 2002, available online at http://www.cert.org/
advisories/CA-2002-12.html.

[18] G. Kc, A. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in ACM
CCS, 2003.

[19] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible
and efficient instruction-grained run-time monitoring using on-
chip reconfigurable fabric,” in MICRO. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 137–148.

[20] W. Xu, E. Bhatkar, and R. Sekar, “Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks,” in
Proc. USENIX Security Symp., Aug. 2006.

[21] E. Nightingale, D. Peek, and P. Chen, “Parallelizing security
checks on commodity hardware,” in ASPLOS, 2008.

[22] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient
flow tracing with dynamic binary rewriting,” in Computers and
Communications, 2006. ISCC ’06. Proceedings. 11th IEEE Symposium
on, june 2006, pp. 749 – 754.

[23] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “Sift: A
low-overhead dynamic information flow tracking architecture for
smt processors,” in Proc. of the 8th ACM International Conference
on Computing Frontiers (CF’11), May 2011.

[24] “First the tick, now the tock: Intel microarchitecture (nehalem),”
2009, available online at: http://www.intel.com/technology/
architecture-silicon/next-gen/319724.pdf.

[25] B. Sinharoy, “Power 7 multicore processor design,” in Keynote talk
at MICRO, Dec. 2009.

[26] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A delegating
architecture for secure system call interposition,” in NDSS, Feb.
2004.

[27] T. Jim and M. Rajagopalan, “System call monitoring using au-
thenticated system calls,” in TDSC, 2006.

[28] D. Brooks, V. Tivari, and M. Martonosi, “Wattch: A framework
for architectural-level power analysis and optimizations,” in In-
ternational Symposium on Computer Architecture (ISCA), June 2000.

[29] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deter-
ministic clock gating for microprocessor power reduction,” in In
Proc. of 9 th Intl Symp. on High Performance Computer Architecture
(HPCA), 2003, pp. 113–122.

[30] I. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing register
ports for higher speed and lower energy,” in In Proceedings of the
International Symposium on Microarchitecture, 2002, pp. 171–182.

[31] J. H. Tseng and K. Asanović, “Banked multiported register files
for high-frequency superscalar microprocessors,” in Proceedings of
the 30th annual international symposium on Computer architecture,
2003.

[32] “Opensparc t1 micro architecture specification,” in Sun Microsys-
tems, Inc., Mar. 2006.

[33] “Tsmc 90nm core library - tcbn90ghp,” in Application Note -
Revision 1.2, Mar. 2006.

[34] “M-sim version 3.0, code and documentation,” 2005, available
online at: http://www.cs.binghamton.edu/∼msim.

[35] C. D. Spradling, “Spec cpu2006 benchmark tools,” SIGARCH
Comput. Archit. News, vol. 35, no. 1, pp. 130–134, 2007.

[36] S. Palacharla, N. Jouppi, and J. E. Smith, “Complexity effective
superscalar processors,” in ISCA, June 1997.

[37] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput
and fairness in smt processors,” in Performance Analysis of Systems
and Software, 2001. ISPASS. 2001 IEEE International Symposium on,
2001, pp. 164 –171.

[38] N. Heintze and J. Riecke, “The slam calculus: Programming with
secrecy and integrity,” in POPL, 1998.

[39] A. Myers, “Jflow: Practical mostly static information flow con-
trol,” in POPL, 1999.

[40] A. Myers and B. Liskov, “Protecting provacy using decentralized
lebel model,” in ACM TOSEM, (4), pp.410-422, 2000.

[41] “Us-cert,” 2009, available online at: http://www.us-cert.gov/.
[42] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,

R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable
microkernel, processor, and i/o system with strict and provable
information flow security,” in ISCA. New York, NY, USA: ACM,
2011, pp. 189–200.

[43] S. Wang, J. Hu, S. G. Ziavras, and S. W. Chung, “Exploiting
narrow-width values for thermal-aware register file designs,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, 2009.

[44] S. Wang, H. Yang, J. Hu, and S. G. Ziavras, “Asymmetrically
banked value-aware register files for low-energy and high-
performance,” Microprocess. Microsyst., vol. 32, pp. 171–182, May
2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1374867.1375319

[45] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting
generational behavior to reduce cache leakage power,” Computer
Architecture, International Symposium on, vol. 0, p. 0240, 2001.

[46] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, “Reduc-
ing the complexity of the register file in dynamic superscalar
processors,” in MICRO 34, 2001.

Meltem Ozsoy is a PhD student in the Department of Com-
puter Science at SUNY Binghamton. Her research interests are
in the areas of computer architecture and secure system design.

Dmitry Ponomarev is an Associate Professor in the Depart-
ment of Computer Science at SUNY Binghamton. His research
interests are in the areas of computer architecture, secure sys-
tem design, power-aware systems and parallel discrete event
simulation. He received his PhD from SUNY Binghamton in
2003.

Nael Abu-Ghazaleh is an Associate Professor in the Depart-
ment of Computer Science at SUNY Binghamton. His research
interests are in the areas of secure system design, parallel
discrete event simulation, networking and mobile computing.
He received his PhD from the University of Cincinnati in 1997.

Tameesh Suri is a performance architect at Intel Corporation,
Santa Clara, CA. He received his PhD from SUNY Binghamton
in 2009.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

