
A

Understanding and Mitigating Covert Channels Through Branch
Predictors

Dmitry Evtyushkin, State University of New York at Binghamton
Dmitry Ponomarev, State University of New York at Binghamton
Nael Abu-Ghazaleh, University of California Riverside

Covert channels through shared processor resources provide secret communication between two malicious
processes - the trojan and the spy. In this paper, we classify, analyze and compare covert channels through
dynamic branch prediction units in modern processors. Through experiments on a real hardware platform,
we compare contention-based channel, and the channel that is based on exploiting the branch predictor’s
residual state. We analyze these channels in SMT and single-threaded environments under both clean and
noisy conditions. Our results show that the residual state-based channel provides a cleaner signal and it is
effective even in noisy execution environments with another application sharing the same physical core with
the trojan and the spy. We also estimate the capacity of the branch predictor covert channels, and describe a
software-only mitigation technique that is based on randomizing the state of the predictor tables on context
switches. We show that this protection eliminates all covert channels through branch prediction unit with
minimal impact on performance.

CCS Concepts: rSecurity and privacy→ Security in hardware; Systems security; rComputer systems
organization→ Architectures;

General Terms: Hardware Security, Architecture

Additional Key Words and Phrases: Security, Covert channel, Branch Predictor

ACM Reference Format:
Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-Ghazaleh. 2015. Understanding and Mitigating
Covert Channels Through Branch Predictors. ACM Trans. Architec. Code Optim. V, N, Article A (January
YYYY), 23 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Modern computer systems are typically shared by multiple applications which belong
to different security domains. To provide security, systems often have to restrict re-
sources that can be accessible by a program [Yee et al. 2009]. For example, the An-
droid mobile Operating System requires users to explicitly grant permissions for each
application. Some classes of applications can be granted access to the network, while
others can be restricted from it. However, the applications that are restricted from the
network access can still be allowed to access sensitive user data.

To illustrate the above scenario, consider two applications running concurrently on
the same system: a password manager and a weather widget. The password manager
should not be allowed to communicate to any application inside or outside of the system

This work is supported by the National Science Foundation, under grant CNS-1422401. The statements
made herein are solely the responsibility of the authors.
Authors’ addresses: D. Evtyushkin and D. Ponomarev, Computer Science Department, 4400 Vestal Parkway
East, Binghamton, NY 13902; emails: devtyushkin, dima@cs.binghamton.edu; N. Abu-Ghazaleh, Computer
Science and Engineering Department, 900 University Ave, Riverside, CA 92521; email: nael@cs.ucr.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© YYYY Copyright held by the owner/author(s). 1544-3566/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

to avoid password leakage. While the password manager code can be buggy, or can
even contain embedded backdoors, the user passwords will remain secret provided
that the OS correctly enforces communication permissions. At the same time, it is
essential for the weather widget to have network access enabled to properly support its
functionality. One possible threat in this setup is that an adversary that controls both
the password manager and the weather widget can use the networking capabilities of
the weather widget to send some sensitive information from the password manager to
the outside entity, assuming that the password manager and the weather widget can
somehow secretly communicate.

This threat model motivates the following question. How can a malicious or a com-
promised application transfer data to another malicious application in the absence of
a direct communication between them? One way to achieve this is to use shared pro-
cessor resources to create a covert communication channel. We call the two processes
that communicate this way a trojan process (the password manager in the example
above) and a spy process (the weather widget). To transmit sensitive information, the
trojan alters the state of a shared hardware resource in order to intentionally modu-
late events on that resource in a way recognizable by the spy. On the receiving side,
the spy performs measurements to determine how the trojan is accessing the resource,
allowing it to receive and decode the modulated events. We present our threat model
and assumptions in Section 3.

In this paper, we classify, analyze and comprehensively compare covert channels
through processor branch predictor unit. This covert channel is possible because the
branch predictor is shared by multiple applications running on the same CPU. Further-
more, the contents of the branch predictor tables are not flushed on context switches.
Therefore, when the trojan process modifies the state of the predictor, it impacts the
branch prediction rate and the execution time of the spy process (if the spy executes
immediately after the trojan, or simultaneously with the trojan). By measuring its own
execution time or the branch misprediction rate, the spy can deduce whether the trojan
is transmitting a ”one” or a ”zero” through its manipulations with the predictor logic.

Two different mechanisms for creating a covert channel through branch predictor
have been described in the recent literature. The work of [Hunger et al. 2015] outlined
a contention-based covert channel, which (as the name implies) exploits contention
between multiple applications over predictor resources. Specifically, this channel is
constructed in the following way. To transmit a ”one”, the trojan process creates con-
tention for the branch predictor by executing a large number of branch instructions,
such that half of them are taken and the other half are not taken. To transmit a ”zero”,
the trojan executes no-op instructions, thus creating no contention. The spy process
always executes the same code, consisting of branches that are taken with 50% prob-
ability. As a result, when the trojan wants to communicate a ”one”, the contention for
the branch predictor table causes the execution time of the spy to be higher. When the
trojan wants to communicate a ”zero”, there is no contention and the execution time
of the spy is lower. This contention-based channel was only described at a high-level
in [Hunger et al. 2015].

In our preliminary work presented in [Evtyushkin et al. 2015], we proposed an alter-
native covert channel mechanism that is based on exploiting the residual state in the
branch predictor, and not just the contention for its resources. Specifically, to transmit
a ”one”, the trojan executes a large number of taken branches, and to transmit a ”zero”,
it executes a large number of non-taken branches. The spy always executes a series of
taken branches (as in contention-based channel), but a smaller number than the tro-
jan. As a result, when ”one” is transmitted, the trojan aligns the state of the branch
predictor counters with the characteristics of the spy process, causing the spy to have
very few mispredictions. On the other hand, when a ”zero” is transmitted, the predic-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

tor counters are put in a state that causes the largest number of mispredictions by the
spy. By limiting the number of branches in the spy process so that their predictions are
based on the residual state from the trojan (and not the state created by the spy’s own
execution), a cleaner separation between the transmitted signals of ”one” and ”zero”
can be created through this channel. Intuitively, this channel is also more resilient to
the external noise, as it does not fundamentally rely on the presence of contention.

Branch predictor covert channels have a fairly large capacity to be a real threat.
For example, the recent study of [Hunger et al. 2015] estimated that the bandwidth
of the branch predictor channel is comparable to other high-speed covert channels, for
example those created through caches or the AES hardware. In terms of the absolute
numbers, with some optimizations we can achieve the channel capacity of about 100
Kbps. Clearly, this threat should be considered seriously in the design of future se-
cure systems. To this end, we also propose a software-only mitigation technique that
randomizes the state of the branch predictor tables on context switches.

Specific contributions of this paper are the following:

— We describe a complete implementation of both contention-based covert channel (in-
troduced in [Hunger et al. 2015]) and covert channel based on exploiting residual
predictor state (first introduced in [Evtyushkin et al. 2015]. We compare both types
of channels on the same system in an environment without noise, in both single-
threaded and SMT setting.

— We extend this study to account for the noisy environments, where a noise process
executes alongside the trojan and the spy processes, and shares the branch predictor
with them. Again, we compare the two covert channels side by side, and consider
several execution schedules that differ in how the spy, the trojan and the noise pro-
cess share the execution resources. Our results show that while both channels are
effective in clean execution environments (although residual state channel provides
higher signal amplitude), the residual state channel is also realizable in noisy envi-
ronments, with other unrelated applications running in the background.

— We analyze the capacity of the residual state covert channel when fast process
scheduling between the trojan and the spy is used. Furthermore, we quantify the
resulting transmission bit rates and error rates under different channel settings.

— We propose a software-only mitigation mechanism that randomizes the branch pre-
dictor state on every context switch. We implemented this mechanism inside the
Linux kernel and analyzed the sensitivity of performance and security to the num-
ber and type of branches that need to be executed on every context switch to cause
the randomization.

2. DYNAMIC BRANCH PREDICTORS
The branch prediction unit plays a critical role in achieving high performance of to-
day’s CPUs, because every branch misprediction results in significant loss of instruc-
tion execution opportunities and incurs overhead to undo the side effects of erroneous
speculations. This is especially true for deeply-pipelined processors with high degree
of superscalarity.

Covert channels described in this paper work with any dynamic branch predictor,
because the mechanisms for creating covert communication do not require knowledge
of the specific predictor details. While reverse engineering specific predictor configu-
ration can lead to a higher-capacity channel (as the spy and the trojan can precisely
target and use specific parts of the prediction table), such advanced explorations are
left for future work. For simplicity, we use the gshare predictor [McFarling 1993] il-
lustrated in Figure 1 to explain how the branch predictor channels are created. Note

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

1 0 1 1 1 1 10 0

Global History Register

Branch address

Indexing ƒ

Pattern History Table

Prediction

Fig. 1: Schematic of a gshare predictor

that all our experiments were performed on a real machine equipped with a Haswell
processor with specific implementation details of the branch predictor unknown to us.

In a gshare predictor, as shown in Figure 1, the global history register is a shift reg-
ister that accumulates the history of several recently executed branches. The Pattern
History Table (PHT) is a relatively large table of two-bit saturating counters, with the
counter values indicating a prediction range from strongly not-taken to strongly taken.
The indexing function XORs the program counter of the branch that is being predicted
with the bits from the global history register. Thus, the resulting indexed PHT entry
is chosen based on both global and local branch information.

3. THREAT MODEL AND ASSUMPTIONS
We assume that two compromised (or malicious) applications are running in the sys-
tem — a trojan and a spy. We assume that the trojan is a more privileged program that
has access to sensitive data that it attempts to transmit to the spy program. No other
communication channels (through the network, shared memory, file system, etc.) exist
between the trojan and the spy, therefore covert channel represents the only means for
these programs to communicate with each other.

We assume that the trojan and the spy are co-located on the same core, either on
different SMT contexts, or time sharing the use of the core. This assumption is needed
because the branch prediction unit is shared on the same physical core, but not across
different cores of a multi-core processor.

The system software is assumed to be uncompromised, so that it properly enforces
the access control and preserves legitimate information flows. The two processes only
require normal user-level privileges. The channel does not require access to perfor-
mance counters, and therefore would work even if these are disabled as is commonly
done on cloud systems [Zhang et al. 2011]. However, if the access to performance coun-
ters is available, then a significantly better signal quality can be achieved. In our eval-
uations, we consider covert channels through both performance counters and execution
time.

4. COVERT CHANNEL CLASSIFICATION
In this section, we describe two mechanisms for constructing covert channels through
branch predictors, and we demonstrate the code that needs to be executed by the trojan
and the spy processes to realize these channels.

4.1. Contention-Based Covert Channels (CC)
The first way to create a covert channel through branch prediction unit is to use con-
tention for its resources between the trojan and the spy. To be consistent with prior
works [Hunger et al. 2015], we call this type of channel contention-based and refer

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

to it as CC in the rest of the paper. The idea and a high-level overview of CC was
presented in [Hunger et al. 2015].

CC is constructed in the following way. To transmit the value of ”one”, the trojan
process executes a large number of branch instructions, such that half of them are
taken and the other half are not taken. This activity by the trojan creates a random
contention for the use of the branch predictor. To transmit a ”zero”, the trojan executes
no-op instructions (busy waits), thus creating no contention for the branch predictor.
Simultaneously, the spy process always executes the same code, consisting of branches
that are taken with 50% probability, again creating contention for the predictor. As a
result, when the trojan wants to communicate a ”one”, the contention for the branch
predictor increases the number of branch mispredictions and the execution time of
the spy. When the trojan wants to communicate a ”zero”, there is no contention for
the predictor, and thus the number of mispredictions experienced by the spy and its
execution time decrease.

The code for the spy and the trojan processes to implement CC is shown in Figure 2.

/* Trojan: */
while(1){
if (time(0)%2){
branches();

}
else{
nops();

}
}

/* Spy: */
for (int i=0; i <
MAX_PROBES;i++){

usleep(SLEEP_T);
start_t=rdtsc();
branches();
end_t=rdtsc();

}

branches:
push %rbp
movl $0x1,-0x8(%rbp)
cmpl $0x0,-0x8(%rbp)
jne .L2 # taken #
nop
cmpl $0x0,-0x8(%rbp)
je .L1
nop
nop
.L2:
cmpl $0x0,-0x8(%rbp)
je .L1 # not-taken #
nop
nop
......................
.L1:
pop %rbp
retq

nops:
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
......................

Code for Trojan and Spy Code for branches() Code for nops()

Fig. 2: Code Used to Construct CC

4.2. Residual State Based Covert Channel (RSC)
Apart from creating branch predictor contention, a covert channel can also be built
using the observation that the prediction accuracy of a spy process can be directly
impacted (at least for a short period of time) by the residual state of the predictor
counters left by the trojan that executed immediately before the spy. We refer to this
channel as RSC (Residual State Channel). If the time duration when the spy measures
its branch behavior and/or performance is carefully controlled to magnify the impact
of the residual state, a covert channel with an even stronger signal than CC can be
created.

In RSC, the contention for the branch predictor unit does not change. To transmit a
”one”, the trojan executes a large number of taken branches, and to transmit a ”zero”,
it executes a large number of non-taken branches. The spy always executes a series

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

of taken branches (as in contention-based channel), but a smaller number than the
trojan. In this case, the predictions for the spy’s branches are impacted by the residual
state left by the trojan, and not by spy’s own prediction history buildup. As a result,
when a ”one” is transmitted, the trojan aligns the state of the branch predictor counters
with the characteristics of the spy process, causing the spy to have very few mispredic-
tions. On the other hand, when a ”zero” is transmitted, the predictor counters are put
in a state that causes the largest number of initial mispredictions by the spy.

An important aspect of RSC is that the spy’s code is not executed constantly. Instead,
it is only executed once for each probing period, recording the timestamp counter, or
reading the branch misprediction performance counter. When the spy completes the
execution of its block of branches, it executes the sleep() function for a predetermined
amount of time to allow the trojan to refill the predictor table. After a sufficient time
is given to the trojan to refill the predictor state, the spy executes its block of branches
again. The spy samples the execution time or the performance counter readings five
times a second in the presented experiments, with the trojan changing the transmis-
sion from a one to a zero every second. The duration of the block of branches executed
by the spy on every sample is carefully chosen to ensure that the branch predictions
performed within that block are affected by the state created by the trojan, and not
by the spy’s own history. In the presented experiments, we set this number to 500 000
branches, because we observed the best channel characteristics with this setting.

Transmitting data through the branch predictor state in this manner in a single-
threaded environment is possible because the PHT contents are not flushed on a con-
text switch. Several branch predictor designs [Evers et al. 1996] have been introduced
that considered context switches that erase the branch history data from the old con-
text in the PHT. However, these designs have not been adopted in commercial products,
because no performance benefits were observed [Co and Skadron 2001].

Both CC and RSC can also be created on a Simultaneously Multithreaded (SMT)
processor core. The SMT cores share the same branch predictor hardware and its data
structures among the threads. While it is possible to design a branch predictor with
split data structures for the simultaneous threads, such splitting does not bring signif-
icant performance improvements [Ramsay et al. 2003] and thus is not typically used.
We demonstrate and compare CC and RSC in both single-threaded and multi-threaded
environments.

We also observed that adding a uniformly distributed number of no-op instructions
between consecutive branches improves the amplitude of the covert channel measured
by the spy. If the branch predictor hashing function can be reverse-engineered, the
PHT priming can be done even more effectively and without the use of no-ops. The
code for the trojan and the spy process to implement RSC is shown in Figure 3.

5. ANALYZING CC AND RSC IN CLEAN ENVIRONMENT
We demonstrate and evaluate covert channels presented in this paper on a real hard-
ware platform. All our experiments were performed on a machine with an Intel Core
i7-4800MQ CPU (Haswell microarchitecture) clocked at 2GHz. The machine has 16GB
of DDR3 memory clocked at 1600 MHz. We consider scenarios with and without SMT -
to evaluate the latter we disabled the SMT support. The machine runs Ubuntu 14.04.2
LTS operating system, with a generic GNU/Linux kernel version 3.16.0-31.

This section presents the results in a clean environment, where we ensure that only
the trojan and the spy execute on the core. Moreover, we tightly control the scheduling
of these two processes to create ideal conditions for a covert channel. In the next sec-
tion, we relax these conditions and compare both types of covert channels in a noisy
environment.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

/* Trojan: */
while(1){
if (time(0)%2){
taken();

}
else{
nottaken();

}
}

/* Spy: */
for (int i=0; i <
MAX_PROBES;i++){

usleep(SLEEP_T);
start_t=rdtsc();
taken();
end_t=rdtsc();

}

taken:
push %rbp
movl $0x1,-0x8(%rbp)
cmpl $0x0,-0x8(%rbp)
jne .L2
nop
nop
nop
.L2:
cmpl $0x0,-0x8(%rbp)
jne .L3
nop
nop
nop
.L3:
cmpl $0x0,-0x8(%rbp)
jne .L4
nop
......................

nottaken:
push %rbp
movl $0x1,-0x8(%rbp)
cmpl $0x0,-0x8(%rbp)
je .L1
nop
cmpl $0x0,-0x8(%rbp)
je .L1
nop
nop
nop
cmpl $0x0,-0x8(%rbp)
je .L1
nop
nop
......................
.L1:
pop %rbp
retq

Code for Trojan and Spy Code for taken Code for nottaken

Fig. 3: Code Used to Construct RSC

As a measurement mechanism, the spy can use the branch-related performance
counters, or its own execution time. Depending on the measurement used, the chan-
nel can be classified as either a storage channel or a timing channel [Gligor 1994;
Wray 1991]. While using performance counters provides higher measurement accu-
racy, it may require administrative privileges from the spy. Whether such privileges
are required or not depends on the particular hardware, operating system and even
hardware configuration. For example, according to the Intel’s Architecture Software
Developers Manual [Guide 2010], a particular configuration set allows or disallows
user-level accesses to performance counters. However, we conservatively assume that
performance counters are not always available and also consider timestamp counters
as a measurement mechanism for the spy.

5.1. Covert Channels in SMT Mode
Our first set of experiments includes demonstration of the two branch predictor covert
channels in SMT setting, where the spy and the trojan execute concurrently. For the
experiments under the SMT conditions reported here, we assign both processes to iso-
lated virtual cores (a single SMT-enabled physical core is represented in the operating
system as two virtual cores). In this case, the trojan and the spy execute on the same
physical, but on different virtual cores. Such setting allows the processor to fetch in-
structions simultaneously from two threads. Figure 4 depicts the scheduling of the spy
and the trojan in such scenario.

Figure 5 compares the results of CC and RSC in SMT setting in a clean execution
environment without noise or interference. The x-axis represents the number of sec-
onds from the moment the spy process starts probing the PHT. The y-axis shows the
number of branch mispredictions measured in each sample by the spy in CC and RSC.
For this experiment, the trojan continuously executes a large block of branches (we
used 500K branches in each block) or no-ops, depending on the requirements of each
channel, as described previously. Each block of branches executed by the spy process
contains 10K branches for RSC and 1K branches for CC - we found that these values

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Fig. 4: Scheduling of the Trojan and the Spy in SMT Mode

0 5 10 15 20
Time (s)

0

20

40

60

80

Br
an

ch
 M

is
sr

at
e

(%
)

CC RSC

Fig. 5: Comparing Branch Misprediction Based CC and RSC in SMT Scenario with
Clean Conditions

provide the most stable signal for each channel. In each case, the spy samples the pre-
diction accuracy (or its execution time) five times a second. The trojan transmits ”0”
during even seconds, and ”1” during odd seconds.

As shown by the graph, both CC and RSC are quite effective covert channels under
this scenario, with clear separation between the levels of one and zero. However, as
expected, the amplitude of the signal is higher with RSC, because RSC is explicitly
reusing the leftover state from the trojan, instead of relying on contention. Specifically,
in CC, the low signal level corresponds to 6% misprediction rate and high signal level
corresponds to about 50% misprediction rate on average. For RSC, the signal levels are
0.4% and 86% respectively, providing a significantly higher amplitude of the channel
signal.

Covert channels shown in Figure 5 can only be created if the spy has access to perfor-
mance counters, which may not always be possible on all systems. When such access is
not possible, the spy has to rely on measuring its own execution time. Figure 6 depicts
the waveforms obtained by both CC and RSC if only the execution time can be mea-
sured by the spy. All the settings of the spy and the trojan are identical to what was
described above. Note that this figure includes two y-axes. The left y-axis corresponds
to CC, and the right y-axis corresponds to RSC. While the shapes of the two waveforms
are quite similar (and both channels are effective), there is a larger absolute difference
between the levels of one and zero for RSC channel, potentially making RSC channel
more resilient to external noise.

5.2. Covert Channels in Single-Threaded Mode
Next, we consider the creation of CC and RSC in single-threaded execution mode,
where instead of executing simultaneously, the trojan and the spy are taking turns
being scheduled on the same CPU core. In this section, we only consider the case when

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

0 5 10 15 20
time (s)

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

Cy
cl

es

240000

260000

280000

300000

320000

340000

360000

380000

400000

420000

Cy
cl

es

CC RSC

Fig. 6: Comparing Execution Time Based CC and RSC in SMT Scenario with Clean
Conditions

Fig. 7: Scheduling of the Trojan and the Spy in Single-Threaded Mode

the trojan and the spy are scheduled consecutively and are the only two processes using
the core. We defer the treatment of more noisy environments until the next section.

For these experiments, we achieve consecutive scheduling of the trojan and the spy
by dedicating a physical CPU core only to these two programs, using the default op-
erating system functionality. The ideal scheduling depicted in Figure 7 is achieved
in this case. The trojan executes continuously, and the spy only executes periodically
and immediately after the measurement. Specifically, the spy interrupts the trojan’s
execution, samples the PHT and switches the execution back to the trojan. The con-
tention in single-threaded CC is different from the SMT-based CC. When the trojan
executes a block of branch instructions, it fills the predictor tables with the direction
information valid for these branches. As a result, when the spy executes its own branch
instructions, it experiences a higher number of mispredictions. When the trojan does
not execute branches, no contention is created and the spy reuses its own information
accumulated in the predictor. We note that no changes are required in the source code
of the trojan or the spy to explicitly adjust them to SMT or single-threaded modes.

Figure 8 shows the results comparing CC and RSC waveforms obtained by measur-
ing the branch misprediction rate of the spy in a single-threaded execution environ-
ment. Figure 9 compares the CC and RSC measured in terms of the execution time in
a single-threaded environment. As can be seen from these results, both channels are
quite effective in a clean environment without noise processes.

6. ANALYZING CC AND RSC IN NOISY ENVIRONMENT
Previous section demonstrated that both CC and RSC are effective secret communica-
tion channels in clean environments. In this section, we consider the impact of noise
and interference from other programs on the robustness of these covert channels. As
before, we consider both SMT and single-threaded execution environments. As the
source of noise, we consider the GCC compiler compiling a Linux kernel. In this sce-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

0 5 10 15 20
Time (s)

0

20

40

60

80

Br
an

ch
 M

is
sr

at
e

(%
)

CC RSC

Fig. 8: Comparing Branch Misprediction Based CC and RSC in Single-thread Scenario
with Clean Conditions

0 5 10 15 20
time (s)

5000

10000

15000

20000

25000

30000

35000

Cy
cl

es

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

Cy
cl

es

CC RSC

Fig. 9: Comparing Execution Time Based CC and RSC in Single-threaded Scenario
with Clean Conditions

nario, GCC is an integer benchmark that exhibits complex branch behavior and can
significantly distort the state of the prediction table thus complicating the commu-
nication between the trojan and the spy. GCC compiler is a highly CPU-bound noise
process — the average CPU utilization during kernel compilation was 91.56%.

6.1. RSC Under Noise
In this section, we analyze RSC properties in noisy environment. We consider both
SMT and single-threaded settings. First, we consider SMT cores and examine the fol-
lowing three execution schedules, which can be realized by appropriately setting the
affinity masks of the trojan, the spy and the noise processes. We assume two virtual
cores (V1 and V2) and one physical core. We refer to the trojan process as T, the spy
process as S, and the noise process as N.

— Schedule SN-T: S and N execute on V1, and T executes on V2. In this case, the
trojan has the entire thread context (virtual core) to itself, while the noise and the
spy alternate execution on the other context.

— Schedule ST-N: T and S execute on V1, and N executes on V2. Here, the noise
process executes all the time, while the trojan and the spy alternate.

— Schedule TN-S: T and N execute on V1, while S executes on V2.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

(a) SN-T Scheduling

(b) ST-N Scheduling

(c) TN-S Scheduling

Fig. 10: Scheduling of Noise, Trojan and Spy Processes

Furthermore, we also consider RSC in the noisy environment in a single-threaded
scenario. In this case, all three processes - the spy, the trojan and the noise - are sched-
uled consecutively on the same core.

Figure 11 presents the results of RSC under the three SMT schedules and the single-
threaded schedule. The channels are shown both in terms of the number of branch mis-
predictions and in terms of the execution time. For each scheduling type, we also run
the experiment without executing the trojan. In this case, the spy’s measurements is
only impacted by the background noise in the system. A good channel would have the
noise and the signal levels easily distinguishable. This property not only makes it pos-
sible to tolerate the system noise, but also can contribute to building an asynchronous
channel with no prior synchronization between the trojan and the spy. This becomes
possible because the spy can explicitly detect when information is being transmitted
over the channel.

Figures 11a and 11b show the RSC waveforms for branch mispredictions and cycles
respectively, as measured by the spy, for the SN-T schedule above. Figures 11c and 11d
plot similar results for the ST-N schedule. Finally, figures 11e and 11f show the RSC
channel for the TN-S schedule. As seen from the results, the channels are visible and
effective for each execution schedule, both for the number of mispredictions and for
the execution cycles. In addition, the channel is clearly distinguishable from the noise
pattern and therefore can be created even in the presence of external noise.

Figures 11g and 11h show the RSC waveforms obtained by measuring branch mis-
predictions and execution cycles in a single-threaded schedule. As with SMT, for com-
parison purposes we also show the channel between the background noise process
(GCC compiler) and the spy when only two of them are executing. As seen from the
results, RSC in single threaded scenario is also easily distinguishable from the back-
ground noise.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

0 5 10 15 20
Time (s)

0

10

20

30

40

50

60

70

80
Br

an
ch

 M
is

sr
at

e
(%

)

Signal Noise

(a) Misprediction-based RSC with SN-T

0 5 10 15 20
Time (s)

240K

260K

280K

300K

320K

340K

360K

380K

Cy
cl

es

Signal Noise

(b) Time-based RSC with SN-T

0 5 10 15 20
Time (s)

0

10

20

30

40

50

60

70

80

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(c) Misprediction-based RSC with ST-N

0 5 10 15 20
Time (s)

200K

250K

300K

350K

400K

450K

Cy
cl

es

Signal Noise

(d) Time-based RSC with ST-N

0 5 10 15 20
Time (s)

0

20

40

60

80

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(e) Misprediction-based RSC with TN-S

0 5 10 15 20
Time (s)

250K

300K

350K

400K

450K

Cy
cl

es

Signal Noise

(f) Time-based RSC with TN-S

0 5 10 15 20
Time (s)

0

10

20

30

40

50

60

70

80

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(g) Misprediction-based RSC with STN

0 5 10 15 20
Time (s)

200K

250K

300K

350K

Cy
cl

es

Signal Noise

(h) Time-based RSC with STN

Fig. 11: RSC Waveforms in Noisy Environment and Comparison with Background
Noise

6.2. CC Under Noise
Next, we performed similar experiments with CC. Figure 12 shows these results.
Specifically, Figures 12a, 12b, 12c, 12d, 12e and 12f show results for CC for the three
SMT schedules listed above. As in the RSC case, the CC channel is compared against
a hypothetical channel between the noise process and the spy. In contrast to what
was observed for RSC, the channel created by CC is practically indistinguishable from
noise. Therefore, CC cannot be effectively constructed in the presence of noise and in-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

0 5 10 15 20
Time (s)

35

40

45

50

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(a) Misprediction-based CC with SN-T

0 5 10 15 20
Time (s)

20K

25K

30K

35K

40K

45K

Cy
cl

es

Signal Noise

(b) Time-based CC with SN-T

0 5 10 15 20
Time (s)

38

40

42

44

46

48

50

52

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(c) Misprediction-based CC with ST-N

0 5 10 15 20
Time (s)

15K

20K

25K

30K

35K

40K

45K

Cy
cl

es

Signal Noise

(d) Time-based CC with ST-N

0 5 10 15 20
Time (s)

35

40

45

50

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(e) Misprediction-based CC with TN-S

0 5 10 15 20
Time (s)

15K

20K

25K

30K

35K

40K

Cy
cl

es

Signal Noise

(f) Time-based CC with TN-S

0 5 10 15 20
Time (s)

35

40

45

50

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(g) Misprediction-based CC with STN

0 5 10 15 20
Time (s)

15K

20K

25K

30K

35K

40K

45K

Cy
cl

es

Signal Noise

(h) Time-based CC with STN

Fig. 12: CC Waveforms in Noisy Environment and Comparison with Background Noise

terference, regardless of a particular schedule between the spy, the trojan and the noise
process. The main reason is that CC fundamentally relies on the lack of contention to
transfer one of the possible values (either a ”1” or a ”0”). However, the presence of noise
process practically eliminates the non-contention execution periods.

Figures 12g and 12h show CC waveforms for the single-threaded schedule. Again,
as with the SMT scenario, the CC waveform is practically indistinguishable from the
background noise (created by the GCC compiler).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

In conclusion, while both CC and RSC are effective communication channels in a
clean environment where only the trojan and the spy execute, only RSC can provide a
reliable channel in the presence of noise.

7. COVERT CHANNEL CAPACITY ESTIMATION
Covert channel practicality is often determined by its capacity. When a covert channel
is used to transfer only a small amount of data (cryptographic keys, for example),
its capacity may be secondary to reliability and noise resilience. However, only high-
capacity channels are useful for transmitting large amounts of data. For example, it
would take 500 days to transmit an image file of 4MB using a thermal covert channel
with a very low capacity [Guri et al. 2015].

The capacity of a covert channel is impacted by implementation-specific details and
optimizations. The transmission bitrate depends on the nature of the shared resource
used and on a particular data transmission protocol. Some channels can be noisy
requiring noise reduction techniques and error correction codes, such as Hamming
codes [Hamming 1950].

In this section, we explain our experimental setting and estimate the transmission
bitrate and error rate for the channel described in this paper.

2000 3000 4000 5000 6000 7000
Branch block size

0

10

20

30

40

50

Er
ro

r r
at

e
(%

)

20K

40K

60K

80K

100K

120K

140K

160K

180K

Bi
tr

at
e

(b
/s

)
(a) Bitrate and error rate for different branch instruction block sizes (from 2 000 to 7 000)

2900 3000 3100 3200 3300 3400
Branch block size

0

5

10

15

20

25

30

35

40

Er
ro

r r
at

e
(%

)

105K

110K

115K

120K

125K

130K

135K
Bi

tr
at

e
(b

/s
)

(b) Bitrate and error rate for branch blocks from 2 900 to 3 400 instructions

Fig. 13: Capacity (bitrate) and Error Rate for Channels Created with Different Branch
Code Block Sizes

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

7.1. Capacity Estimation of RSC
Computing the maximum possible covert channel capacity would require a large num-
ber of optimizations and knowledge about the exact implementation of the branch
predictor unit. Instead, we construct a simple and fast covert channel prototype that
provides a reasonable estimate for the channel capacity.

In the slow channel, the trojan changes the signal level once every second, therefore
the channel capacity is only one bit per second. In the fast channel, the execution order
switches between the trojan and the spy as fast as possible.

In particular, both programs rely on sched yield() function, which relinquishes the
rest of the CPU time slice allocated to a process. Another important difference is that
instead of transmitting alternating 1s and 0s, now the trojan transmits a sequence of
randomly generated bits.

Every time the trojan is scheduled, it executes one of the two code blocks with branch
instructions, priming the branch predictor. To determine which code block to run, the
trojan looks up the array consisting of randomly generated bits. The bits in this ar-
ray determine the type of signal the trojan sends during current communication cycle.
After that, the trojan calls sched yield() function to force a context switch and subse-
quent scheduling of the spy process. The spy probes the branch predictor by executing
a block of taken branches. The spy also measures the branch misprediction rate, or
the time that it takes to execute this block of code. Based on these measurements, the
spy can determine whether the trojan transmitted a ”1” or a ”0”. Following that, the
spy calls the sched yield() function to force the context switch to the trojan again.
Since both processes always have code to run, they create constant demand for the
CPU resources. As a result, the OS does not schedule other processes (such as the OS
daemons) on that core, allowing the branch predictor state to transfer from the tro-
jan to the spy. After the transmission completes, we compare the number of correctly
transmitted bits and the number of errors to calculate the error rate.

The size of branch blocks executed by the spy and the trojan can be adjusted to con-
trol the channel efficiency. The number of branches should be large enough to affect
most of the branch predictor table entries, but small enough to prevent excessive us-
age of entries already affected by the block. In addition, if the trojan executes a very
large code block, it gives the OS a sufficient time to generate the timing interrupt and
perform a context switch, thus distorting the schedule. To maintain channel-friendly
scheduling, we enforce that each process executes the same number of branches. The
optimal number of branches is a processor-specific parameter, which depends on the
configuration of the prediction unit.

To estimate the channel’s capacity and the error rate, we transmitted 1 000
randomly-generated bits and measured the error rate in the signal received by the
spy. In addition to that, we measured the time spent receiving the signal, and from
there we estimated the channel capacity. We ran the experiment for different sizes of
branch code blocks used by the trojan and the spy. In particular, we started from code
blocks of 2 000 instructions and finished with blocks of 7 000 branches. We computed
the channel capacity and the error rate for each configuration. We ran the experiment
100 times for each block size, and present the results averaged across these 100 runs.

The results of these experiments are presented in Figure 13a. Using blocks of size
less than 2 900 branches does not result in the creation of a usable channel. A more
detailed representation of the most interesting region (between block sizes of 2 900
and 3 400) is shown on Figure 13b. The channel becomes more stable when the block
size approaches 4 000 branches. An example of a sweet spot in terms of the tradeoff
between the bitrate and error rate is the block size of 3 148 branches. In this case we
achive the average bitrate of 121 kbps with the average error rate of 3.9%. In general,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

we observed oscillations of the error rate as the block size increases. This is a function
of specific branch predictor access patterns by these codes (which we did not reverse
engineer), and varying amount of system noise.

Presented results show that a fast covert channel can be constructed using branch
predictor tables. The resulting channel has desirable properties, as it is fast enough to
transfer large amounts of data and has acceptable error rates. Our experiments also
demonstrate that a deep knowledge about the branch predictor organization is not
required in order to construct a fast and reliable covert channel. Instead of reverse en-
gineering the branch predictor, a reasonable approach is to experiment with different
sizes of the branch code blocks, as presented in this section.

7.2. Improving the RSC Capacity
The capacity of the RSC can be further improved. If an adversary is equipped with the
knowledge about the branch predictor organization, this can significantly improve the
bitrate and reduce the error rate. In this case, instead of manipulating large blocks of
branch code to increase the probability of putting the prediction table in the desired
state, the trojan can directly target specific table entries. However, such protocol will
be limited to a particular CPU, while the statistical channel is not. While it is out of
the scope of this paper to analyze such optimizations, we outline several possibilities
for the trojan and the spy to improve the channel:

(1) The branch predictor indexing function and the size of prediction structures can be
reverse-engineered. The adversary can manipulate the branch addresses and the
GHR state to force the mappings of branches to desired PHT entries.

(2) The adversary can control the OS scheduler to obtain a CPU quantum of desired
length and schedule processes in desired order on any core.

(3) The adversary can access measurement tools, such as the timestamp counter or
performance counters, with minimal latency.

(4) The adversary can achieve perfect synchronization between the trojan and the spy
at the granularity of a single instruction.

The detailed exploration of these optimizations is left for future work.

8. MITIGATING BRANCH PREDICTOR COVERT CHANNELS
In this section, we describe and evaluate a protection technique that mitigates covert
channels through branch predictor, including CC and RSC.

8.1. Channel Mitigation: Flushing Predictor on Context Switches
To close the channel, we propose a software-only solution, which flushes the branch
predictor (or randomizes its state) on context switches. This approach mitigates both
types of covert channels considered in this paper, but by different means. RSC is elimi-
nated because flushing of the branch predictor makes it impossible to place the predic-
tor into one of the desired states. CC is mitigated because the context switch creates
constant pressure on the predictor, thus making it impossible to alternate high and
low contention stages.

To implement this protection, we modified the context switch routine in the OS ker-
nel. In particular, before the scheduler assigns the next ready process to the CPU,
a large block of branch-intensive code is executed to randomize the branch predictor
state. As a result, the newly scheduled process starts execution with a clean predictor
state. This mechanism effectively eliminates the secret data transmission between the
trojan and the spy. Note, that this mitigation technique does not consider the spy and
the trojan running on two hardware thread contexts of an SMT processor. For security

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

reasons, the OS should not schedule processes from different security domains simul-
taneously on the same physical core. Alternatively, the SMT support can be disabled.

8.2. Optimal Number of Branches in Randomization Code
The branch predictor can be flushed on a context switch in several ways. For example,
a large number of taken or not-taken branches can be executed to put the entire table
of prediction counters in one of the strong states. Alternatively, a large number of
branches with a random taken/not-taken pattern can be executed, resetting the branch
predictor to a neutral state with 50% taken probability. Such randomized approach is
more likely to have lower performance impact due to the bimodal nature of branch
outcomes.

To determine the optimal number of branch instructions required to randomize the
branch predictor in a secure manner, we conducted the following experiment. First,
we executed several times the code consisting of one million branch instructions, thus
placing the branch predictor into one of the strong states. We call this phase the prim-
ing of the predictor. Then, the flushing code block was executed once. We varied the
number of instructions in the flushing block. Finally, we executed one thousand branch
instructions with the same outcome as branches in the priming phase and measured
the number of mispredictions in this block. We refer to this phase as probing. The
number of branch mispredictions encountered in executing the probing code indicates
how well the flushing phase resets the predictor.

First, we considered the flushing code composed of randomized blocks of branch in-
structions. The results are presented in Figure 14. Figure 14a shows how effectively
the predictor state is reset after it was primed with all taken branches, and Figure 14b
depicts similar results for priming with not-taken branches. As expected, the small
blocks of flushing code are not sufficient to reset the predictor and the misprediction
rate is very low. As the flush code block increases in size, the misprediction rate of
the probing phase also increases. The growth stops at about 50%, indicating that the
branch predictor tables are reset.

To ensure higher probability of a complete branch predictor reset, the OS needs
to use a larger flush code blocks compared to the minimal block size that provides
50% misprediction rate of the probing code. To protect against more sophisticated
and intelligent adversaries (which could potentially explore even minuscule devia-
tions in branch misprediction rates to detect transmission patterns), we conservatively
selected 300,000 branch instructions in the flush block for further experiments and
analysis. So, all performance overheads are presented under this very conservative
assumption.

Next, we examined the effectiveness of using a large number of taken branches as
flushing code block. In particular, priming and probing code contains only not-taken
branches and the flushing code contains only taken branches. The results are pre-
sented in Figure 15. As expected, larger flush blocks make stronger impact on the
branch predictor. However, we note that it is difficult to place all predictor entries into
the strongly-taken state thus causing the misprediction of all probing branches. Fur-
thermore, there are elements of randomness that are present in this flushing mecha-
nism, so the same number of executed instructions can affect the prediction rate dif-
ferently. This is manifested by the dispersion of the results as the misprediction rates
get closer to 100%.

Finally, 16 shows the results of flushing the predictor using not-taken branches.
Surprisingly, not-taken branches have a much smaller impact on the branch predic-
tor state. In particular, when the flushing code runs for the first time, it affects the
number of mispredictions in priming code significantly. However, the predictor makes

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Flush block size

0

10

20

30

40

50

60

Br
an

ch
 m

is
pr

ed
ic

tio
n

ra
te

 (%
)

(a) Probing and Priming with Taken Branches

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Flush block size

0

10

20

30

40

50

60

Br
an

ch
 m

is
pr

ed
ic

tio
n

ra
te

 (%
)

(b) Probing and Priming with Not-Taken Branches

Fig. 14: Branch Predictor Flushing using Different Number of Random Branch In-
structions

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Flush block size

0

20

40

60

80

100

Br
an

ch
 m

is
pr

ed
ic

tio
n

ra
te

 (%
)

Fig. 15: Branch Predictor Flushing Using Taken Branches

adjustments and misprediction rate soon decreases. The misprediction rate remains
relatively low (below 15%) even for very large blocks of all not-taken branches.

The results presented above show that executing an even mix of taken and not-
taken branches with random pattern is the most stable way to reset the predictor.
In addition, assuming bimodal behavior of branches under normal execution pattern,
placing the entire branch predictor into one of the strong states results in a higher
number of mispredictions. In the rest of the experiments we assume a random mix of
taken and not-taken branches in the flushing code.

Since the protection goal is to place the branch predictor into a neutral state, it
is important to avoid flushing the predictor with code that has fixed branch pattern.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Flush block size

0

10

20

30

40

50

60

Br
an

ch
 m

is
pr

ed
ic

tio
n

ra
te

 (%
)

Fig. 16: Branch Predictor Flushing Using Not-taken Branches

Otherwise, the predictor will accumulate statistics for those branches and the flushing
code will create constant branch pressure instead of randomization of the predictor’s
state. However, randomizing the pattern of flushing branch instructions on every con-
text switch will result in a significant performance loss. To optimize this process, we
generated several randomized blocks of flush code and randomly pick one block to use
on every flush instance. This approach provides randomness, while minimizing perfor-
mance impact.

8.3. Results and Performance Overhead
The protection mechanism described above has been implemented inside the Linux
kernel. Since the covert channel involves the trojan and the spy, there are two options
of how the protection can be enforced. The first option targets the trojan (the transmit-
ter of the data). In this case, the protection can be invoked each time the trojan context
is switched out. The second option targets the spy (the receiver of the data). Here, the
protection can be invoked every time the spy’s context is switched in. We implemented
both schemes and the results are presented in Figure 17.

The signal line shows the misprediction rate measured by the spy when the trojan
is active, and the noise line represents normal ambient noise measured by the spy
with no trojan present. Both protection schemes make covert communication through
branch predictor impossible, as the transmission signal waveform can no longer be
visible by the spy. The first protection scheme (targeting the trojan) has lower perfor-
mance overhead. In a normal situation, there are few applications managing secret
data in the system (possible trojans), comparing to many possible spies (any applica-
tion in different security domain with communication permissions).

Flushing the branch histories on context switches can have little performance im-
pact, or even be beneficial in some cases [Evers et al. 1996; Co and Skadron 2001].
However, the flushing operation itself is expensive, when it is performed in software. In
order to completely remove the residual state from the predictor, large blocks of branch
code need to be executed. For the experiments described above, we used 300,000 branch
instructions. We note that since the branch prediction implementation details are un-
known, the protection mechanism does not guarantee flushing of all of the branch
predictor entries. However, it makes it extremely hard if not impossible for the at-
tacker to probabilistically manipulate the predictor to pass information using RSC or
CC. On our experimental system, the overhead of flushing the predictor in software
corresponds to the additional latency of 1.2 milliseconds added to the context switch.
In addition, the flushing code pollutes the state of caches and branch predictors.

Several techniques can be used to reduce the performance impact. First, instead of
flushing the predictor on every context switch, the operating system can do so only

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

when there is a threat of undesired information transfer through the predictor. An-
other optimization is for the OS to group processes by security domains. Predictor
flushes are only needed when a context switch happens between processes residing in
different security domains. By changing the scheduler algorithm, the OS can minimize
the number of context switches that require flushing in order to decrease performance
overhead. Such technique is known as lattice scheduling [Hu 1992].

0 5 10 15 20
Time (s)

0

20

40

60

80

100

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(a)

0 5 10 15 20
Time (s)

0

10

20

30

40

50

Br
an

ch
 M

is
sr

at
e

(%
)

Signal Noise

(b)

0 5 10 15 20
Time (s)

46
47
48
49
50
51
52
53
54

Br
an

ch
 M

is
sr

at
e

(%
) Signal Noise

(c)

Fig. 17: Waveform of the channel with protection disabled (a), enforced when trojan is
switched out (b) and when the spy is switched in (c)

To evaluate the performance impact of our mitigation technique, we used CPU per-
formance benchmark from Sysbench [Kopytov 2004] benchmark suite. We executed the
benchmark with protection disabled (no branch predictor flushes) and enabled (branch
predictor is flushed before the benchmark’s context is switched in). To evaluate the
performance impact under various concurrency scenarios, we executed the benchmark
alongside a number of background processes. The background processes were created
by executing the same benchmark with disabled protection, and the execution was per-
formed on the same core. This created a higher level of contention for CPU resources,
thus increasing the number of context switches.

Figure 18 presents normalized results showing the performance impact of enabled
protection. When no other processes are running on the same core, the performance

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

impact is very small. As more noise processes add contention for the CPU, the OS is
forced to perform context switches more often. The performance impact increases, but
does not exceed 20% in our test case. Such overhead is significantly smaller compared
to some of the earlier presented solutions for other types of timing channels, for exam-
ple the shared memory controller channel [Wang et al. 2014b]. We consider software
protection as a temporary countermeasure until developers implement branch predic-
tor flushing mechanism in hardware.

0 1 2 3 4
Number of Concurrent Processes

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sl

ow
do

w
n

Unprotected Protected

Fig. 18: Performance Impact from Flushing Branch Predictor on Context Switches

9. RELATED WORK
Covert channels through shared microprocessor resources have been explored in sev-
eral recent efforts. Wang and Lee [Wang and Lee 2006] presented covert channels
using exceptions on speculative load instructions and shared functional units on SMT
processors. Wu et al. [Wu and Wang 2012] describe a covert channel that is based on
the Intel Quick Path Interconnect (QPI) lock mechanism. Ristenpart et al. [Risten-
part et al. 2009] present a cross-VM covert channel that exploits the shared cache.
Covert channels based on the use of memory bus were presented in [Saltaformaggio
et al. 2013]. Wang et al. [Wang et al. 2014a] presented a covert channel through shared
memory controllers and proposed some techniques to close it. Their solution to elim-
inate interference across security domains is based on per-domain queuing structure
and static allocation of time slots in the scheduling algorithm.

A number of other efforts addressed the problem of mitigating timing covert chan-
nels. In [Chen and Venkataramani 2014], Chen and Venkataramani present CC-
Hunter - a framework for detecting the presence of covert channels by dynamically
tracking conflict patterns over the use of shared processor hardware. As CC-Hunter is
based on detecting contention, it is not directly applicable to detecting the covert chan-
nels through branch predictors proposed here, because these channels are not created
based on contention. Another fundamental approach that builds the system from the
ground up to detect the presence of side channels [Domnitser et al. 2012], covert chan-
nels, and other unintended information flows is GLIFT (Gate-level information flow
tracking) [Tiwari et al. 2009; Oberg et al. 2014]. While shown to be effective, GLIFT re-
quires significant rearchitecting and redesign of the entire system. A recently proposed
technique to mitigate side channels using obfuscated execution [Rane et al. 2015] can
in principle be used to also close covert channels, but its performance overhead is sig-
nificant. [Askarov et al. 2010] introduced timing channel mitigation methodology that
can achieve predefined bounds on the channel leakage.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Hunger et al. [Hunger et al. 2015] outlined a contention-based covert channel
through branch predictor. In this paper, we quantitatively compared the channel of
[Hunger et al. 2015] (which we call CC) with the channel based on the residual state of
the branch predictor left by the trojan. We performed the comparison in both noiseless
and noisy environments and demonstrated that the CC is only practical in the noise-
less environment, and even then it provides a signal with a lower amplitude than the
RSC.

While the focus of this paper is on covert channels, previous work studied side-
channel attacks through branch prediction units [Aciicmez et al. 2007a], [Aciicmez
et al. 2007b], particularly exploiting the BTB. Therefore, in the future it is important
to consider mitigation techniques that will close the possibilities for both side chan-
nels and covert channels through shared branch prediction units and other shared
resources. Identifying and mitigating side and covert channels becomes a high priority
research direction in the environments that assume potentially compromized system
software layers [McKeen et al. 2013; Evtyushkin et al. 2014; Elwell et al. 2014; Elwell
et al. 2015; Hofmann et al. 2013]. In this case, the OS can assist in the creation of the
timing channels, circumventing strong isolation [Xu et al. 2015].

10. CONCLUDING REMARKS
We performed a systematic analysis and comparison of two types of covert channels
through branch prediction structures - the contention-based channel (CC) and the
residual state based channel (RSC). We showed that in the clean execution environ-
ment where only the trojan and the spy processes execute, both channel are effec-
tive with RSC providing significantly higher signal amplitude. This is true for both
single-threaded and multithreaded cores. We also evaluated and compared both types
of channels in an environment with the interference from one other unrelated pro-
cess. Our results demonstrate that while RSC is still an effective channel in this sit-
uation, any level of interference becomes detrimental to the quality of CC. This is
because CC is based on the presence or absence of contention for the shared branch
predictor resources, but the external noise makes it impossible for the spy to observe
contention-free periods. We also demonstrated that a high-capacity RSC can be cre-
ated with minimal error rate: for example, a channel with about 120 Kbps bit rate
can be constructed with only about 4% error rate in covert communication. Finally, we
proposed a software-based mitigation technique that randomizes the predictor state
on every context switch and showed that the protection can be achieved with modest
performance impact.

11. ACKNOWLEDGMENT
This material is based on research sponsored by the National Science Foundation grant
CNS-1422401.

REFERENCES
O. Aciicmez, K. Koc, and J. Seifert. 2007a. On the power of simple branch prediction analysis. In Symposium

on Information, Computer and Communication Security (ASIACCS). IEEE.
O. Aciicmez, K. Koc, and J. Seifert. 2007b. Predicting secret keys via branch prediction. In The cryptogra-

phers’ track at the RSA conference.
Aslan Askarov, Danfeng Zhang, and Andrew C Myers. 2010. Predictive black-box mitigation of timing chan-

nels. In Proceedings of the 17th ACM conference on Computer and communications security. ACM, 297–
307.

J. Chen and G. Venkataramani. 2014. CC-Hunter: uncovering covert timing channels on shared processor
hardware. In MICRO. ACM.

M. Co and K. Skadron. 2001. The Effects of Context Switching on Branch Predictor Performance. 2001 IEEE
International Symposium for Performance Analysis of Systems and Software (nov 2001).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Non-Monopolizable Caches:
Low-Complexity Mitigation of Cache Side-Channel Attacks. In ACM Transactions on Architecture and
Code Optimization, Special Issue on High Performance and Embedded Architectures and Compilers.

Jesse Elwell, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2014. A Non-inclusive memory per-
missions architecture for protection against cross-layer attacks. In High-Performance Computer Archi-
tecture (HPCA), 2014 IEEE International Symposium on. IEEE.

Jesse Elwell, Ryan Riley, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Iliano Cervesato. 2015. Rethinking
Memory Permissions for Protection Against Cross-Layer Attacks. In ACM Transactions on Architecture
and Code Optimization (TACO), Vol. 12. ACM. Issue 4.

Marius Evers, Po-Yung Chang, and Yale N Patt. 1996. Using hybrid branch predictors to improve branch
prediction accuracy in the presence of context switches. In ACM SIGARCH Computer Architecture News,
Vol. 24. ACM, 3–11.

Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael Abu Ghazaleh, and Ryan Ri-
ley. 2014. Iso-x: A flexible architecture for hardware-managed isolated execution. In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on. IEEE, 190–202.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2015. Covert channels through branch
predictors: a feasibility study. In Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy. ACM, 5.

Virgil D Gligor. 1994. A guide to understanding covert channel analysis of trusted systems. The Center.
Part Guide. 2010. Intel R© 64 and IA-32 Architectures Software Developer’s Manual. (2010).
Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici. 2015. BitWhisper: Covert Signaling Chan-

nel between Air-Gapped Computers using Thermal Manipulations. arXiv preprint arXiv:1503.07919
(2015).

Richard W Hamming. 1950. Error detecting and error correcting codes. Bell System technical journal 29, 2
(1950), 147–160.

O. Hofmann, S. Kim, A. Dunn, M. Lee, and E. Witchel. 2013. InkTag: Secure Applications on an Untrusted
Operating System. In Proceedings of ASPLOS.

Wei-Ming Hu. 1992. Lattice scheduling and covert channels. In Research in Security and Privacy, 1992.
Proceedings., 1992 IEEE Computer Society Symposium on. IEEE, 52–61.

Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath, and Mohit Tiwari. 2015.
Understanding contention-based channels and using them for defense. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 639–650.

Alexey Kopytov. 2004. SysBench: a system performance benchmark. URL: http://sysbench. sourceforge. net
(2004).

Scott McFarling. 1993. Combining branch predictors. Technical Report. Technical Report TN-36, Digital
Western Research Laboratory.

F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi, V. Shanbhogue, and U. Svagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution. In Wkshp. on Hardware and Archi-
tectural Support for Security and Privacy, with ISCA’13.

J. Oberg, S. Meiklejohn, T. Sherwood, and R. Castner. 2014. Leveraging gate-level properties to identify
hardware timing channels. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. IEEE.

Matt Ramsay, Chris Feucht, and Mikko H Lipasti. 2003. Exploring efficient SMT branch predictor design.
In Workshop on Complexity-Effective Design, in conjunction with ISCA, Vol. 26. Citeseer.

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: closing digital side-channels through obfuscated
execution. In 24th USENIX Security Symposium (USENIX Security 15). 431–446.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. 2009. Hey, you, get off of my cloud: exploring infor-
mation leakage in third-party compute clouds. In ACM Conference on Computer and Communications
Security. ACM.

B. Saltaformaggio, D. Xu, and X. Zhang. 2013. Busmonitor: a hypervisor-based solution for memory bus
covert channels. In EUROSEC Conference.

M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T. Sherwood. 2009. Complete information flow
tracking from the gates up. In Architectureal Supportfor Programmimng Languages and Operating
Systems. ACM.

Y. Wang, A. Ferraiuolo, and E. Suh. 2014a. Timing channel protection for a shared memory controller. In
International Symposium on High Performance Computer Architecture. IEEE.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014b. Timing channel protection for a shared memory
controller. In High Performance Computer Architecture (HPCA), 2014 IEEE 20th International Sympo-
sium on. IEEE, 225–236.

Z. Wang and R. Lee. 2006. Covert and side channels due to processor architecture. In Annual Computer
Security Applications Conference. IEEE.

John C Wray. 1991. An analysis of covert timing channels. In Research in Security and Privacy, 1991. Pro-
ceedings., 1991 IEEE Computer Society Symposium on. IEEE, 2–7.

Z. Wu and H. Wang. 2012. Whispers in the hyper-space: high-speed covert channel attacks in the cloud. In
USENIX Security Symposium. USENIX.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. (2015).

Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. 2009. Native client: A sandbox for portable, untrusted x86 native
code. In Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 79–93.

Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. Homealone: Co-residency detection
in the cloud via side-channel analysis. In Proc. 2011 IEEE Symposium on Security and Privacy (S&P).
313–328.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

