
A

Rethinking Memory Permissions for Protection Against Cross-Layer
Attacks

JESSE ELWELL, SUNY Binghamton
RYAN RILEY, Qatar University
NAEL ABU-GHAZALEH, University of California, Riverside
DMITRY PONOMAREV, SUNY Binghamton
and ILIANO CERVESATO, Carnegie Mellon University

The inclusive permissions structure (e.g., the Intel ring model) of modern commodity CPUs provides
privileged system software layers with arbitrary permissions to access and modify client processes, allowing
them to manage these clients and the system resources efficiently. Unfortunately, these inclusive permissions
allow a compromised high-privileged software layers to perform arbitrary malicious activities. In this paper,
our goal is to prevent attacks that cross system layers while maintaining the abilities of system software to
manage the system and allocate resources. In particular, we present a hardware-supported page permission
framework for physical pages that is based on the concept of non-inclusive sets of memory permissions for
different layers of system software (such as hypervisors, operating systems, and user-level applications).
Instead of viewing privilege levels as an ordered hierarchy with each successive level being more privileged,
we view them as distinct levels each with its own set of permissions. In order to enable system software
to manage client processes, we define a set of legal permission transitions that support resource allocation
but preserve security. We show that the model prevents a range of recent attacks. We also show that it can
be implemented with negligible performance overhead (both at load time and at run time), low hardware
complexity and minimal changes to the commodity OS and hypervisor code.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; D.4.6 [Operating Sys-
tems]: Security and Protection—Access Controls

General Terms: Architecure, Security

Additional Key Words and Phrases: Architecture, Security, System Software

ACM Reference Format:
Jesse Elwell, Ryan Riley, Nael Abu-Ghazaleh, Dmitry Ponomarev and Iliano Cervesato. 2015. Rethinking
Memory Permissions for Protection Against Cross-Layer Attacks ACM Trans. Architec. Code Optim. V, N,
Article A (January YYYY), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern computing systems employ increasingly complex multi-layer system software
stacks such as operating system kernels and hypervisors. As the complexity and the
number of lines of code in these layers continues to increase, so does the number of se-
curity vulnerabilities that can be exploited by attackers. For example, hypervisors are
growing to be large pieces of code with a large attack surface — Xen 4.0 has over 190
thousand lines of code. As of May 2015, according to [CVE Details 2015] 127 vulnera-
bilities have been identified in Xen and 4 have been identified in the KVM code. More
alarmingly, about half of these vulnerabilities can lead to security breaches in terms of

Acknowledgments
This paper was made possible by NPRP grant 4-1593-1-260 from the Qatar National Research Fund (a
member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1544-3566/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Jesse Elwell et al.

confidentiality, integrity and availability of the OS/hypervisor. Exacerbating the prob-
lem is the monolithic nature of operating system (OS) kernels and hypervisors, where
a single exploit can compromise the entire system.

Current processor architectures and system software layers are centered around
inclusive memory permissions, where software running at a higher-privilege layer has
unconstrained access to the code and data of the lower-privilege layers it manages.
For example, the operating system has complete access to user-level pages, and the
hypervisor has access to both OS and user-level pages, allowing full compromise from
a single exploit.

We call the attacks that cross privilege layers cross-layer attacks (Figure 1). Attacks
from a less privileged to a more privileged layer (arrows 1 and 2 in the figure) require
an exploit of a vulnerability to achieve privilege escalation. In some cases, such as
ret-2-user attacks [Kemerlis et al. 2012], a process obtains OS-level privileges by lever-
aging the fact that the OS can execute code from pages assigned to processes. Attacks
from a more to a less privileged layer (arrows 3, 4, and 5 in the figure) do not require a
software vulnerability. Once a layer is compromised due to inclusive permissions, noth-
ing prevents it from extracting secrets or tampering with operation of less privileged
layers under its control. As a result, attacks have been demonstrated where a mali-
cious hypervisor attacks a guest OS [Szefer and Lee 2012] or an OS attacks user-level
processes.

To defend from cross-layer attacks, we propose NIMP (Non-Inclusive Memory Per-
missions) — a hardware-software framework that assigns each privilege layer only the
minimum set of permissions necessary to carry out its tasks; NIMP does not implic-
itly grant memory access to any privilege layer. Physical memory pages are assigned
distinct permissions for each privilege layer, preventing privileged layers from having
arbitrary access to less privileged layers. At the same time, to enable supervisor layers
to manage their clients, a hardware-based Memory Permission Manager (MPM) fol-
lows a set of static rules to ensure that requests to change permissions will not allow
code in other layers to compromise the confidentiality or integrity of memory pages.
With these mechanisms, NIMP simultaneously allows supervisor layers to manage
their clients, while preventing arbitrary access and closing avenues for cross-layer at-
tacks.

The performance overhead of NIMP arises from two factors: 1) the need to access per-
mission bits on every TLB miss, in the worst case resulting in an additional memory
access; and 2) the need to wipe out the contents of some pages in hardware, as dictated
by the permission modification rules. However, we demonstrate that most of the time
permission bits can be found in the CPU caches thus avoiding the extra memory ac-
cess. Furthermore, as the operations requiring the page permission bits to be changed
during program execution are relatively infrequent, the page wiping overhead is also
small. Consequently, NIMP has a low performance overhead — 2% on the SPEC 2006
benchmarks. In terms of hardware overhead, NIMP requires about 28 bytes of on-chip
Ternary Content-Addressable Memory (TCAM) storage for the permission rules, about
9% increase in the area of all TLBs, a new register to hold the expected permission
bits, and an additional 64-bit register to point to the starting address of the protected
memory region where the new permissions are securely stored.

This paper is an extended version of an earlier conference paper that appeared in
HPCA 2014 [Elwell et al. 2014].

2. THREAT MODEL & ASSUMPTIONS
We assume that the Trusted Computing Base (TCB) of NIMP consists of the processor,
physical memory, TPM and system buses. We also assume that system software layers
including the hypervisor and the OS may be compromised, and these layers are not
part of the TCB. The only software that is part of NIMP’s TCB is a new module to
ensure that the application binaries themselves can not be tampered with while they
are being loaded from disk by the OS/hypervisor. This module is very simple and is
described in detail in Section 7.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:3

Hypervisor

1

AppApp App

2

= Malicious Supervisor/Page Remapping Attacks

= Memory Escalation Attacks

ret-2-user

ret-2-VM

Higher
Privilege

Lower
Privilege

3

4Guest OS Guest OS

5

Fig. 1: Cross-Layer Attacks

We assume that hardware attacks (such as snooping on the memory bus or probing
physical memory) are not part of the threat model. We make this assumption for two
reasons. First, it is more difficult to probe physical hardware than to perform software
attacks. Second, if the proposed architecture is deployed in a cloud environment, then
it is reasonable to assume that a cloud operator will offer physical security of the
system to protect its reputation.

We are concerned with cross-layer memory attacks, where one system software layer
attempts to compromise the confidentiality or integrity of memory in a different layer.
Specific attack categories that our proposed architecture protects against are the fol-
lowing.

— Memory Escalation Attacks. In this case, a lower-privilege level application at-
tempts to alter or add to the memory footprint of a high-privilege level application.
As an example of this, consider ret-2-user attacks. In this attack, an application
writes malicious code into a page located in user-space and then exploits a vulner-
ability in the OS in order to overwrite the instruction pointer to cause a return to
the code in user space with OS-level privileges [Kemerlis et al. 2012]. These attacks
have affected all major operating systems and also targeted x86, ARM, DEC and
PowerPC architectures [CVE-2009-1897 2009; CVE-2009-3527 2009; CVE-2010-4258
2010; de C Valle 2009; edb1 2009; edb2 2011; Security Focus 2009]. A guest OS can
perform a (ret-2-VM) attack against a hypervisor [CVE-2012-5513 2012].

— Malicious Supervisor Attacks. In this case, a compromised higher-privilege soft-
ware layer can read and/or modify data belonging to lower privilege-level software.
For example, a hypervisor can use its unlimited memory access rights to steal a VM’s
private data. Similarly, the OS can access user-level applications. Inclusive memory
permissions used in conventional designs naturally allow such attacks.

— Page Remapping Attacks. Here, the OS or the Hypervisor leverages its control
over memory mappings/permissions to either map a private page into the address
space of a possibly malicious process, or change permissions to allow itself malicious
access. NIMP successfully defends against these types remapping attacks. However,
rather than mapping private data outside of a process or changing the permissions
in place, a malicious OS can also inject new code into a running process to intention-
ally leak the private data to an OS-readable location. The current implementation
of NIMP mitigates these attacks using a validation based scheme described in Sec-
tion 3.2.

— Load-Time Attacks Defeating the above listed attacks implies that the application
is protected once it has been loaded into memory. However, the loading process it-
self presents attackers a potential opportunity to tamper with the application’s code
and/or static data to influence its execution. To protect against these load-time at-
tacks, the NIMP incorporates a new module called the Key Permission and Integrity
Module (KPIM), which is described in Section 7.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Jesse Elwell et al.

Memory
Permission
Manager

Memory Permission Change Requests

Permission Store
Permission
Reference
Monitor

Memory Access Requests

Memory Access Decision

Fig. 2: NIMP Design Overview

The NIMP system also protects applications against DMA-based memory attacks as
described in Section 4.5

We do not protect against side-channels and covert channels; many previous works
have addressed these issues [Wang and Lee 2007; Wang and Lee 2008; Domnitser et al.
2012]. We also do not protect against Denial-of-Service attacks initiated by higher priv-
ilege levels against lower levels, as higher levels can always deny service by preventing
lower levels from executing.

3. NIMP DESIGN OVERVIEW
The main idea behind the design of the NIMP architecture is to make memory permis-
sions non-inclusive. However, if privileged software layers were in charge of setting
these permissions, they could simply allow themselves arbitrary access to any page,
thus defeating security benefits of NIMP. To address this problem, NIMP restricts the
ability to change page permissions only to the components that are part of the hard-
ware TCB. To support complete system functionality and to allow the operating system
and the hypervisor to manage the system’s resources without the ability to directly ma-
nipulate page permissions, the NIMP design offers these system layers an interface to
request these changes through a new ISA instruction. As a result, the NIMP system
effectively decouples the tasks of memory access control (which is performed using a
new instruction) and memory management (which is still performed by the OS and the
hypervisor as in traditional designs).

Non-inclusive Memory Permissions are a lightweight form of mandatory access con-
trol [DOD 1985] enforced through hardware on the different layers of a virtualized
system. An overview of the system is shown in Figure 2. NIMP makes permissions
non-inclusive and enforces hardware validation of permission changes to close cross-
layer attacks. Permissions are maintained at the physical memory page granularity
in the permission store: a secure memory region inaccessible directly by software. To
allow a layer (e.g., the OS) to manage another (e.g. user processes), permission changes
are necessary as pages are allocated and assigned. Legal permission changes are spec-
ified by a set of rules that are stored in the memory permission manager and checked
when page permission change requests are made. Permissions are enforced during
run-time by the permission reference monitor which verifies that each memory access
does not violate the permissions on the page it is accessing.

3.1. Description of Permissions
Under NIMP, access permissions for a physical page are expanded to include read,
write, and execute permissions at each privilege level supported by the processor. Per-
missions are maintained with physical pages, rather than virtual pages, to prevent
remapping attacks (where access to a page is accomplished by remapping it to a new
virtual page with different permissions). Non-inclusive permissions support situations
where a page is readable by a user-level process, but not by the OS managing that
process. NIMP allows fine-grained access control for pages in a manner that supports
non-inclusive access rights by various software layers in the system. In addition, two
additional permissions are included: the Shared (S) bit and the Page Table (PT) bit.
The S bit indicates whether a physical page is allowed to be mapped by the OS or the
hypervisor into multiple page tables. The PT bit specifies that a page is part of the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:5

Page
Other
Bits

(S/PT)
Hypervisor OS User

S P R W X R W X R W X
1 - - - - - - - - - - -
2 S - R W - R W - R W -
3 - - - - - - - - R W -
4 - - - - - - - - - - X

Table I: Example Page Permissions

page tables (PT), and is used to identify writes to them so that page mapping and un-
mapping events can be detected. Finally each entry contains a map count field to track
the number of page table entries that map a physical page. The map count field and
the PT bit are used in conjunction with the S bit to regulate sharing of physical pages,
which is described in Section 4.4. Note that a 2-bit map count field, resulting in a total
of 16 bits for a PS entry, will only allow up to 4 entities to share a physical page by
having them mapped simultaneously. To support a higher number of entities each PS
entry could be expanded to 32 bits, leaving 18 bits for the map count field and support-
ing about 250K simultaneous mappings. Finally if it is necessary to support sharing
a page among every entity in the system, the PS entry can be expanded to include a
map count field that is as large as the PIDs used by system software. For example, in
modern OS kernels PIDs are usually 32-bit integers, so a 64-bit PS entry with a 32-bit
map count field would allow every entity running on this system to map each page.
Alternatively the OS can make due with a smaller mapping limit by unmapping the
shared page from the process that least recently used it to provide a new mapping for
another process. The performance implications of increasing the size of PS entries is
explored in Section 8.

Table I shows some example permission sets. Page 1 in this table has no permissions
available for any level. This state is the default state for a page that is not in use. Page
2 has read and write permissions for all privilege levels and is a shared page. This
page could be used as a buffer to share data between various levels of the system. Page
3 allows user-level reading and writing from a page, but does not allow any access by
higher levels. Such a page is used to store application data that is protected from both
the hypervisor and operating system. Page 4 allows user-level execution, but no privi-
leges at other levels. A page such as this could be used to store application code, while
preventing against an attack such as ret-2-user, where the OS executes application
code.

3.2. MPM and Assignment of Permissions
The rules for permission setting and changing are controlled in NIMP by the Memory
Permission Manager (MPM). In this section, we describe its high-level functionality.

In existing systems, a higher-privileged layer not only inherits all permissions of
the layers it manages, it is also empowered with the ability to set permissions itself.
Thus, in addition to limiting the permissions of lower layers, a NIMP design must
also restrict the responsibility of managing permissions to the trusted computing base;
otherwise, a malicious layer can simply overwrite permissions to enable its attack. As
such, assigning and altering a page’s permissions is controlled using a set of rules
enforced by the processor.

Table II shows a functional set of rules for the NIMP system. The * and # symbols
have special meanings in this table. A star, which may appear on either side of the
rule (current or requested permissions), matches either a zero or one and is known
as a ”don’t care” bit. The hash symbol may only appear in the requested permissions
and denotes that this permission bit cannot change during this transition. It should
be noted that the Key Permission and Integrity Monitor (KPIM) is the component in

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Jesse Elwell et al.

Initial Permissions New Permissions
S/PT KPIM Hyp. OS User S/PT KPIM Hyp. OS User

Rule Requester S P R W X R W X R W X R W X S P R W X R W X R W X R W X Action
1 Hypervisor - - - - - - - - - - - - - - * - - - - * * - * * - * * - None
2 Hypervisor * * - - - * * * * * * * * * - - - - - - - - - - - - - - Wipe Page
3 OS - - - - - - - - - - - - - - * - - - - - - - * * - * * - None
4 OS * * - - - - - - * * * * * * - - - - - - - - - - - - - - Wipe Page
5 Hypervisor - - - - - - W - - - - - - - - - - - - - - X - - - - - - None
6 OS - - - - - - - - - W - - - - - - - - - - - - - - X - - - None
7 OS - - - - - - - - - W - - - - - - - - - - - - - - - - - X None
8 Hypervisor * - - - - * * * * * * * * * * P - - - R W - * - - * - - Wipe Page
9 OS * - - - - - - - * * * * * * * P - - - * * - R W - * - - Wipe Page
10 Hypervisor * - * * * * * * * * * * * * # - # # # - - - # # # # # # None
11 OS * - * * * * * * * * * * * * # - # # # # # # - - - # # # None
12 KPIM * - * * * * * * * * * * * * # - - - - # # # # # # # # # None

Table II: Permission Assignment Rules to Mitigate Cross-Layer Attacks

a NIMP system responsible for verifying the permissions and integrity of applications
when code pages are loaded. It is described in detail in Section 7.

The rules are built around two assumptions. The first assumption is that once a page
has its permissions assigned, those permissions should not change for the lifetime of
that page. For example, Rule 1 says that the hypervisor is permitted to take any page
with no permissions set (the null-state) and assign it any set of permissions. This
operation would be performed right after a currently unused page is mapped into a
page table and before it is put to use. Rule 2 dictates that the hypervisor can return
any page to the null-state, but the hardware will automatically wipe the page and fill
it with random data when this occurs. This operation is performed when a page is
being removed from a page table, and ensures that no confidential information from
the page can be leaked. However, under certain circumstances this could be used by an
attacker to perform a non-control data attack [Chen et al. 2005]. To protect against the
possibility that even random page contents could be exploited for an attack, NIMP can
be extended to ensure that an application accepts a remapped page after the system
remaps it. In particular, a remapped page is marked as invalid, causing a trap the first
time it is accessed by the application, which can then abort if the remap event was not
requested.

The second assumption is that a given privilege level can only assign permissions for
itself and lower. This means, for example, that the OS can grant permissions for itself
and user-level code to a page, but it cannot grant permissions to the hypervisor. This
prevents a compromised OS from loading code onto a page, granting the hypervisor
execute permissions, and then exploiting a hypervisor bug to execute the code with
escalated privileges. Rules 3 and 4 capture this assumption by specifying the same
intentions of rules 1 and 2, but for the OS. If the OS requires a page that has hypervisor
permissions, then it asks the hypervisor to set it up and then verifies those permissions
using the methodology described in Section 3.3.

For code pages, special care has to be taken to prevent pages from being both
writable and executable at the same time to avoid code injection attacks. In conven-
tional modern systems, this is provided by the NX bit.

Rules 5, 6 and 7 shown in Table II allow a page to transition from writable to ex-
ecutable modes while retaining the contents of the pages. Rules 8 and 9 allow the
hypervisor and/or OS to allocate pages to be used as page table pages while ensuring
that the PT bit is set. In addition these rules specify that the page should be wiped dur-
ing this transition (zeroing out the page is fine here). This is used to protect against
page table entry ”injections” that would otherwise bypass NIMP checks. These checks
are described in Section 4.4. Finally, rules 10, 11, and 12 allow a given layer to drop
its own permissions on a given page while leaving the contents and remaining permis-
sions intact. This is used to allow the OS to load code and/or data from the disk and
write it to a page, and then give up its write permissions when it is finished.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:7

All other transitions are either disallowed, or the contents of a page are wiped out
during the permission change, as dictated by Rules 2 and 4. In addition, the transition
from writable to executable mode is only allowed once for a page without wiping out
its contents. This restriction is allowed because our permission transition rules do not
allow a page to transition from executable back to writable, unless the page is first
brought into a null-state and its contents are wiped out.

Please note the following two aspects of the design.

— NIMP rules do not permit user-level code to assign any permissions. Applications
request permission changes from the OS.

— Page tables are still managed as they currently are: the OS manages them for appli-
cations, and the hypervisor (depending on its implementation) manages them for the
OS.

3.3. PRM and Verification of Permissions
The Permission Reference Monitor (PRM) has two responsibilities: (1) it ensures that
a given memory access is allowed against the permissions of the physical page. This
component is only a minor extension of the permission check performed by existing
memory management units; and (2) conversely, it ensures that the permission speci-
fied for a given physical page is allowed by the requested memory access. To better un-
derstand this check, consider a potential attack against the NIMP permission system
that may allow a compromised OS to violate the confidentiality of a user-level page.
Assume a page has permissions - - - | - - - | R W -. An application may plan to
use this page to store confidential information. During the application’s run-time, sup-
pose that the OS returns the page to the null-state using rule 4 (wiping the page in the
process) and then uses rule 3 to set the page’s permissions to - - - | R - - | R W -,
hence allowing itself read access. Although existing confidential data on the page was
wiped, any future data written by the application could now be read by the OS.

One solution to this problem would be to simply not permit the OS to alter the per-
missions of the page, and instead make that the sole responsibility of the application.
The problem, however, is that then the OS cannot reclaim memory from a killed or
misbehaving application, which is an unacceptable outcome. A better solution is for
the application to be able to verify the permissions of the page prior to accessing it.
Then, if the permissions have changed, the write should not occur. This check needs to
be atomic with the write in order to prevent any sort of time-of-check race condition

In order to support this check, a new register is added for various software layers
to specify what permissions they expect other software layers to have for all loads and
stores executed. When a memory instruction is executed, this register is read then the
PRM performs verification and either allows or denies the request. This is described
in more detail in Section 4.3.

4. NIMP IMPLEMENTATION DETAILS
The section is organized into the three main components of the design: (1) the per-
mission store; (2) the memory permission manager; and (3) the permission reference
monitor.

4.1. Permission Store
Permissions for each physical page are stored in a special area of memory called the
permission store consisting of a set of individual page permissions each stored in a
Permission Structure (PS). The PS entry for each physical page specifies the currently
active permissions for this page, such that separate “read”, “write” and “execute” bits
are provided for each of the privilege layers (KPIM, hypervisor, OS and user-level).
In addition, the shared (S) bit, page table (PT) bit, and the map count field are also
included. We assume that 2 bytes are needed in memory to store each of the PS entries,
although this can be increased with negligible impact. Figure 3a shows the PS layout
for a single physical page. The permission store memory region is accessible only by
hardware. Neither the OS nor the hypervisor have a direct access to this memory

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Jesse Elwell et al.

(a) Format of a PS Entry

(b) Format of a RD Entry

New PermissionsCurrent PermissionsAction

UserOSP

T
S

XWRXWR

map

count

0124 3567891011121314N

141422

Hyper.

XWR

KPIM

XWR

...

R

Fig. 3: Format of RD and PS Entries

and every request to set up or change the permissions has to go through the NIMP
hardware.

Physical memory demand for storing the PS bits is modest: for a system with 16GB of
physical memory, 4KB pages and 2 byte PS entries, the PS entries for all pages require
only 8MB of memory (2 bytes for each of the 4M pages in the system), which represents
0.0005% of the total memory space. Even with 64-bit PS entries only 0.002% of the total
memory space is used. Additionally, the PS bits are also cached in the instruction and
data TLB entries, just like regular permission bits are cached in traditional systems.
Therefore, the access to PS data in memory is only needed following a TLB miss. The
PS data is also stored in regular caches as it is accessed, similar to other system-level
data, such as the page tables.

It is important to observe that the permission bits are not modified directly by any
software layer. All changes must be approved by the MPM; we add a new instruction
called PERM SET to the ISA to perform the validity check against the Rule Database
and setup the page permission. This new instruction is described in detail below.

4.2. Memory Permission Manager
In this section, we describe the MPM implementation.

4.2.1. Rule Database and Secure System Boot. To modify permissions in NIMP, we rely
on the use of securely stored permission modification rules — only the transitions
specified by the rules are allowed, and this is directly controlled by the MPM hardware.
All transitions not specified in the Rule Database are disallowed. These modification
rules are stored in a dedicated Rule Database (RD), which is located inside a processor
in a small TCAM structure. Once loaded at boot time, the contents of the RD never
change. Initially, the rules are stored as part of the system BIOS. At system boot time,
the integrity of the BIOS is measured by the TPM [TPM 2013] and then the rules are
loaded into the RD.

Each RD entry has the following fields, shown in Figure 3b:

— Current permissions: which store the currently active permissions for a physical
page, as specified by its PS entry.

— New permissions: this field has the same format as the current permissions field,
but it specifies requested new permissions. The RD entry dictates whether or not the
transition from the current set to the requested set of permissions is allowed.

— The requester of the permission change: knowledge of the requester allows
NIMP to distinguish between hypervisor, OS kernel or a user-level process. Two bits
(we call them the R bits) are needed to differentiate between these three entities.

— Action bits: which specify any special actions that need to be performed on the page
for the rule to be upheld, such as wiping out the contents of the page, or encrypting
it.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:9

CPU Physical

MemoryCore 1Core 0

MMU

Reg.

File
DTLB

ITLB

DTLB

ITLB

Hypervisor

OS

Reg.

File

(a) Traditional Hardware and System Software

PS

Table

CPU Physical

MemoryCore 1

DTLB

P
er

m
s

P
er

m
s

ITLB

P
er

m
s

P
er

m
s

Core 0

PS_Base
Register

Rule Database

MMU

MPM

R
eg

u
la

r

M
em

o
ry

P
ro

te
ct

ed

M
em

o
ry

Hypervisor OS

PERM_SET

Reg.

File
DTLB

ITLB

Reg.

File

EP Reg. EP Reg.

KPIM

(b) NIMP Hardware and System Software

Fig. 4: Traditional Hardware vs. NIMP Hardware

4.2.2. Hardware Support for NIMP. We now describe the hardware support required to
realize the MPM. The modified processor is depicted in Figure 4b. First, the processor
is augmented with the cache-like structure that implements the RD. The RD is a fully-
associative cache that is implemented as a TCAM (associatively-addressed memory
that supports “don’t care” bits in the search key: this takes care of the “don’t care” bits
in the rules) and its search key is composed of the tuple <Requester, Current PS, New
PS>. Each RD entry is 4 bytes long. For a system with 12 rules (that we use in our
evaluation and that are shown in Table II), the RD requires 48 bytes of storage plus
the logic to implement a fully-associative search in TCAM. We show in the evaluation
section that the access delay of such a TCAM is below that of an integer ALU.

In addition, the new hardware includes a 64-bit register (called PS Base) that points
to the beginning address of the PS table stored in memory. This register is protected
from all software layers and is securely setup at boot time, along with the initialization
of the RD. The index into the PS table to access the permissions associated with a
physical page is computed in the following manner:
Index = PS Base+ (phys page number ∗ sizeof(PS))
Another register, whose size must be at least that of a PS entry (16-bits), is added

to the architectural register file. This register, known as the EP register, is used to
specify the Expected Permissions of any memory operation that is executed.

Finally, existing TLB entries (for both instruction and data) need to be augmented
with PS entries for each page stored in the TLB, so that the PS bits can be read out
directly from the TLB without requiring a memory access on a TLB hit. Since existing
TLB entries already have 16 bytes (8 bytes each for virtual and physical page number
cached), then the addition of 2 extra bytes of PS data results in an overhead of about
9% in terms of the TLB area (peripheral logic does not get impacted). Note that the PS
bits are added as an extra field to each TLB entry, leaving the traditional protection
bits unchanged. If the system uses the traditional way of managing permissions, these
permissions bits are still available in the TLB and in the page tables and can be used
by the processor and the OS.

4.2.3. Initial Page Permission Setup. When an application requests a dynamic page al-
location (for example, using sbrk system call via malloc()), the OS or the hypervisor
would locate a free physical page and establish a corresponding page table entry. Once
this step has completed the OS or hypervisor will use the new PERM SET instruction
to assign permissions in a controlled way.

The PERM SET instruction has the following format:

PERM SET <virtual page address, new PS entry>

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Jesse Elwell et al.

The activities triggered by this instruction are as follows. First, it performs an ad-
dress translation using the virtual page address, TLBs and page tables. Since this
page has been recently setup by the OS, the translation will be found in the TLB. If
a translation is not found in the TLB, a hardware page-walk is performed and the
corresponding PS bits are fetched. After that, the current set of permissions for the
corresponding physical page (obtained from its PS entry) are read from the TLB entry.
The combination of the selected current PS entry and the new PS entry as specified
in the instruction are then used along with the current privilege level of the processor,
to identify the requester, as a key to search through the RD. On a match in the RD
rules, the hardware first takes any action specified in the actions field of the matched
RD entry (such as wiping the physical page) and then sets up the new permission
bits both in the TLB and in the Permission Store. If no match in the RD occurs for
this type of transition, then the transition is disallowed and a permission violation
exception is raised. All these activities are performed by the MPM. The execution of
the PERM SET instruction is illustrated in Figure 5a, and the process of accessing
the RD is depicted in Figure 5b. It is worth noting that no matter who executes the
PERM SET instruction it is handled directly by hardware, specifically the MPM, so
it cannot be trappable. However the Rule Database can be used to essentially limit
who can use the instruction. For example, given the Rule Database in Figure II, since
there are no rules that specify that the user-level can change permissions, user-level
code will never be able to successfully use the PERM SET instruction. The rules could
easily be changed to allow user-level code to use PERM SET instruction, which may
increase security at the cost of more changes to user-level applications.

For the initial setup of permissions for static memory pages, such as code and static
data, a similar approach is used. On a system call such as exec() or CreateProcess(),
the OS first sets up the necessary amount of memory by creating virtual to physical
mappings. Next, the OS uses the PERM SET instruction to assign the initial set of
permissions which allow writing to the page by the OS. The OS would then load the
program by reading from the disk and placing it in memory. Finally the OS would re-
linquish its own permissions on any private user-level pages. This process represents
a prime opportunity for a compromised OS to change the code and/or data of the appli-
cation, and the mitigation of these types of attacks is described in detail in Section 7.

4.2.4. Permission Changes During Execution. There are situations during the normal exe-
cution of a system that the permissions of a page may need to be changed, for example,
to support copy-on-write semantics. To request changes to the existing page permis-
sions, any software layer requesting such a change does so through the hardware in-
terface provided by the PERM SET instruction described above. Regardless of what
layer is invoking this instruction, it directly communicates with the MPM hardware.
Notice that because neither the hypervisor nor the OS directly set the actual PS bits,
the PERM SET instruction should not be trappable or emulatable by the hypervisor.

We now describe the means by which the PERM SET instruction is initiated by the
various software layers. To enable the OS kernel to use the page permission change
interface using the PERM SET instruction, the implementation of the paging mech-
anism is slightly modified to call this new instruction after setting up the page table
entry. Note that the existing kernel implementation of managing the protection bits
(which stores them as part of the page table entries) can still remain intact. When the
processor executes in the mode, then these page table entry bits can be ignored. Al-
ternatively, they can still be consulted and the most restrictive of the two permissions
(traditional and NIMP) will be enforced.

For the hypervisor, the permission changing process is similar to that of the OS
kernel described above. Specifically, after the (nested) page table entry is setup, the
call to PERM SET instruction is initiated with appropriate operands. The hypervisor
only needs to perform this activity for its own pages, as the pages belonging to the OS
or the user-level processes are handled separately, as described above. The addition of
the PERM SET instruction to the paging implementation is the only modification to
the hypervisor/OS code required by NIMP.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:11

Access TLB

Access Rule Database

Perform
Action

Exception

Virtual
Address

New
Permissions

Write PS +
TLB

PERM_SET %eax, %ebx

HitMiss

Access Page Tables

Read PS Entry

Match No Match

Current
Permissions

Requester
(Current Privilege Level)

(a) Memory Data flow of the PERM SET Instruction

.

.

.
.
.
.

=

=

=

=

Current

Permissions

New

Permissions
Action

14 14

30

2

...

...

Current Permission Input New Permission Input

Action

Output

2

Requester Input

Requester

(b) Accessing the Rule Database

Fig. 5: Activities Generated by the PERM SET Instruction

In the NIMP design, there is currently no distinction between various user-level
programs from the standpoint of managing page permissions. In traditional systems,
software PIDs managed by the OS play this role. However, since the OS is untrusted
in our threat model, we cannot rely on these software PIDs because they can be easily
forged by a compromised OS. In our design, some level of protection is already pre-
sented by the S bit, which is a part of every PS entry. Specifically, if this bit is not
set for a page, then this page cannot be mapped in more than one page table at a
time, ensuring that it cannot be shared with any other application. It is reasonable to
assume that if security is needed for some pages, then the application owning those
pages would not set the S bit to avoid potentially exposing critical data. However, if a
more flexible design is desired where several applications can securely share data in
a controlled fashion, NIMP can easily adapt to them by adding hardware-generated
PIDs [Chhabra et al. 2011; Suh et al. 2003] in place of software-maintained ones.

4.3. Permission Reference Monitor
We now describe how the last component of the NIMP system – the Permission Refer-
ence Monitor (PRM) – is implemented. The PRM’s purpose is to enforce (in hardware)
the new permissions, while also allowing the lower-privilege level software to verify
that these permissions have not been tampered with. The PRM’s permission enforce-
ment responsibilities are similar to that of a traditional MMU, but some additional
actions are also required to support permission verification.

In the NIMP system each load and store specifies the permissions that other soft-
ware layers are expected to have for the targeted physical page, these are known as
the Expected Permissions (EP). During the execution of each memory instruction, the
EPs are compared against the actual permissions of the corresponding physical page
and the result of the comparison determines whether the instruction completes suc-
cessfully. This allows lower-privileged software layers to atomically check the page’s
permissions before writing any secrets to the page, avoiding any time-of-check to time-
of-use issues.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Jesse Elwell et al.

To implement the specification of the EPs, the processor is augmented with a new
register that holds the EPs in the same format as a PS entry. This register represents
the EPs that are checked by all memory instructions. This new register is freely ac-
cessible by any layer of software and reads/writes to this register are not trappable or
emulatable.

When a LOAD or a STORE instruction enters the memory access stage of the
pipeline, the PRM unit extracts the EPs and compares them with the PS bits related
to the physical page. On a match, the memory access is allowed, and on a mismatch,
the access is not performed and an exception is raised. The exception handling actions
depend on the specifics of the mismatch. The details of this process for a user-level
verified memory access are shown in Figure 6. Note that the regular permission check
(i.e. the user-level permission check in this case) is not depicted since it is similar to
traditional checking.

4.4. Page Sharing in NIMP
Sharing pages between multiple applications in the NIMP framework is accomplished
through the use of the S bit of each PS entry. The S bit in each PS entry denotes
whether or not the corresponding physical page is allowed to be mapped into multiple
page tables simultaneously by the OS. In addition to the S bit, the NIMP hardware uti-
lizes the PT bit to capture all writes to page tables and the map count field to identify
the different cases and act accordingly during an attempted mapping.

To enforce the S bit’s shared property the NIMP hardware must be able to intercept
every page table write to allow checking (and updating) of the map count field and S
bit to deny a mapping if the property is being violated. To intercept every write to page
tables, the NIMP system leverages the PT bit to identify physical pages that are being
used as page table frames. Only pages with the PT bit set will be considered valid page
table frames and thus used by the hardware during page table walks. To ensure that
malicious mappings are not written to a page before the PT is set, Rules 7 and 8 in
Table II are the only rules that allow the PT bit to be set and the associated action
requires the page to be wiped, thus eliminating any entries that existed prior to the
PT bit being set.

When the NIMP system intercepts a page table write it must check the correspond-
ing PS entry. The state and associated action taken can be broken down into the fol-
lowing three cases:

— map count == 0: Since this physical page is being mapped for the first time, it doesn’t
matter if the S bit is set or not, the mapping is allowed.

— map count == 1, S bit unset: The shared bit is not set, so the page should only be
mapped once. Since it has already been mapped once (map count == 1) this mapping
is denied.

— map count ≥ 1, S bit set: The page has already been mapped at least once, but since
the S bit is set it can be mapped again.

Once a shared page has been successfully mapped into a process, the process will ac-
cess it just like an other memory page. This means that after the initial setup a shared
page will incur no additional overheads while it is being utilized by the process(es).

4.5. Other Considerations
To complete the NIMP implementation, a few additional system-level considerations
have to be taken into account.
Secure Context Switches and Interrupts: During context switches and interrupts,
the registers of a running entity may be exposed. In order to prevent such an exposure,
register contents need to be saved in protected memory by the NIMP hardware, and
then wiped before control is transferred to a higher-privilege interrupt handler. The
NIMP hardware will then have to be involved in restoring the register state from
the protected memory when the process is resumed. This can be accomplished, for
example, by allocating a page for each process and mapping it at an implementation-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:13

Load/Store Instruction Bits

=

TLB/Permission Store

Access Decision

PS BitsN

Opcode Address

N

EP Register

EP Bits

Fig. 6: Permission Verification by the PRM

specific virtual address (for example the first virtual page) with only user-level read
and write permissions. The NIMP hardware could then use this page to store and
restore registers.
Secure Page Swapping: While NIMP prevents malicious supervisor software from
getting access to the application memory pages, this same functionality also prevents
that software from reading pages in order to swap them to disk. In order to support
swap-out, the rules can be extended to allow a supervisor to add read permission for
itself on a page, but the associated action encrypts the page using a key derived from
a hash of the application’s code space, a random nonce generated by the hardware
and stored in the application’s memory space, and the page’s current permissions. In
addition, for every swapped page, the hardware computes an HMAC to be sent along
with the encrypted page to the disk and back. The supervisor is unable to determine
the encryption key without knowing the nonce, and including a hash of the code in its
derivation ensures that the page can only be swapped back into the same application.
Furthermore the HMAC protects against malicious modification of the encrypted page
while it is on disk. During a swap-in, the encrypted data can be read back from disk
into memory, the correct permissions restored to the page, the HMAC verified and the
decryption performed by the hardware. The random nonce can be stored in the virtual
address space of a process similar to the register context, as described above.
Supporting DMA: To handle DMA operations, the NIMP system uses the same set of
permissions as those assigned for the software privilege level responsible for initiating
DMA requests. It would be possible to assign DMA its own set of permissions under
the NIMP framework, but the security benefits of this are not clear.

4.6. Software Changes to Support NIMP
To secure running systems, NIMP requires a number of changes to the software layers.
First, the hypervisor and the OS must be modified to make use of the PERM SET
instruction in order to manipulate the newly added PS entries. This task is simplified
by the fact that these layers are already equipped with capabilities to modify page table
entries. Specifically, the functions that modify the page table entries must be extended
to use the PERM SET instruction. In addition, systems software layers usually have
their own architecture-independent memory permissions, which are translated to the
permissions that a given architecture actually supports. NIMP support will therefore
require translating these permissions to the NIMP system for use with the PERM SET
instruction.

Applications running at the user level must be adapted to manipulate the register
that holds the EP bits. An existing application can be quickly configured to run al-
most unmodified by simply configuring the register such that any permission setup
is allowed. This will not provide any additional security, but will get the application
running. From there, it can be modified in phases by slowly adding the correct register
settings for various parts of the code. There are a number of ways that changes to EP
register can be incorporated into the software. In some cases it may be sufficient to
allow the standard libraries to set the register to a reasonable default value. As an

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Jesse Elwell et al.

example, before the main() function is called, the register could be set to allow read
and write permission by any layer. When a library is used to perform a sensitive task,
such as encryption, it can set the register to a more restricted value such as allowing
read and write operations only for user-level code. For restricting the permissions spec-
ified by EP register in non-library code, compiler support (for example, in the form of
annotations) could be leveraged to allow developers to mark the data structures that
contain sensitive data. When these data structures are accessed, the register can be
configured appropriately.

Finally, the system software must be augmented to invoke the Key Permission and
Integrity Module (KPIM, described in Section 7), after it has finished loading an appli-
cation or a VM. Overall, the NIMP system requires rather modest changes to system
and application-level software.

5. SECURITY ANALYSIS OF NIMP
The NIMP design was partially motivated by the concept of capabilities. The key differ-
ence between the implementation of NIMP and the classical definition of capabilities
is that the capabilities in NIMP (i.e. the memory permissions stored in PS entries) are
stored in a central location rather than stored by the entities themselves. However,
from a security standpoint the two are quite similar. Entities in the NIMP system re-
quest the capability to access memory, either directly or indirectly through another
software layer, and the NIMP hardware either grants or denies the request. Capabil-
ities are then checked implicitly when an entity issues a memory operation. While a
formal proof of NIMP security is left for future work, the security properties achieved
by NIMP are comparable to those that are offered by capability-based architectures. A
more detailed comparison between these two approaches can be found in Section 9.

We now summarize how the NIMP architecture mitigates cross-layer attacks con-
sidered in our threat model and compare it to Intel’s SMEP/SMAP technology.

5.1. Mitigating Malicious Supervisor Attacks
To protect against malicious supervisor attacks, most user-level pages will be set up
with permissions that match those of Page 3 shown in Table I (with the exception of
OS communication buffers). Such pages are configured to be readable and writable
only by the application layer and do not have the shared bit set. The OS cannot access
such a page directly, due to the absence of any OS permissions in the corresponding
PS entry, and neither can it create any new mappings to the physical page due to the
shared bit being cleared. The only way a malicious OS could attempt to compromise
data residing on such a page is by changing the corresponding PS entry to include OS
read/write permissions (or to set the shared bit). However, there is no single rule in the
RD that allows the OS to grant itself these permissions, and any attempt to perform
such an unspecified page permission change will result in the generation of a security
exception by the MPM hardware, as shown in Figure 5a. Alternatively, the OS may
attempt to use more than one permission transition to grant itself read/write access.
These types of attacks are classified as Page Remapping Attacks which are addressed
in the following subsection.

In contrast, Intel’s SMEP/SMAP technology must offer a way for the OS to tem-
porarily disable SMAP protection for the purposes of handling user-level data during
system calls. This is done via the STAC and CLAC instructions which can be used by a
malicious OS to grant itself complete access to all of the user-level pages. This means
that SMEP/SMAP cannot be used to protect a user-level application’s memory from a
malicious OS. Furthermore, unlike NIMP, SMEP/SMAP does not generalize to include
the hypervisor and thus cannot protect virtual machines from a malicious hypervisor.

5.2. Mitigating Page Remapping Attacks
Page Remapping Attacks can be performed in two ways. In the first attack variation,
a target page is remapped within the same address space, but with a different set of
permissions. For this example we will again assume that the page in question initially

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:15

has permissions that match those of Page 3 from Table I. The OS could use Rule 4
from Table II to remove all permissions from the physical page, and then use Rule
3 to re-initialize its PS entry with both OS and user-level permissions. In this case,
the OS must utilize Rule 4, since it is the only rule whose initial permissions would
match and as a consequence any existing content on the page would be wiped off,
thus preserving its confidentiality. However, any new data written to this page by an
unsuspecting application would subsequently be accessible to the OS. The permission
verification mechanism described in Section 4.3, however, prevents this. In this case,
the application would detect the new permissions upon its first attempt to write, as
the permission verification would fail before any data was written to the page.

The second variation of remapping attacks involves remapping a page to a different
address space, such as that of another process. To prevent this type of attack, NIMP
ensures that when a non-shared page is unmapped, its contents are zeroed out before
a new mapping can be established. Mapping and unmapping events are detected when
write accesses occur to pages marked with the PT bit, which is stored in each PS entry.
For example, if the OS unmaps a private page from a process, the NIMP hardware
would be alerted of this change, at which point the physical page will be zeroed out
and the map count field of the corresponding PS entry will be set to zero. Only after
the map count field has been set to zero (and thus, the content of the page wiped) could
a new mapping to the same physical page be created.

In contrast, Intel’s SMEP/SMAP mechanism does not protect either the page tables
or the underlying physical pages that are mapped by them, so a malicious OS has
opportunities to launch a page remapping attack. For example, nothing prohibits the
OS from creating a new mapping in its own address space with completely different
permissions that allow it to read or write any data placed on the remapped page.

5.3. Mitigating Memory Escalation Attacks
In current systems, these types of attacks leverage the fact that a page marked as ex-
ecutable by a user-level application can also be executed in a hypervisor/OS context.
Under NIMP, it is theoretically possible to use Rules 1 and 3 in Table II to create a
page where a higher privilege level has “execute” permission, while some lower priv-
ilege level has “write” permission, thus creating an environment for these attacks.
However, the only way that such a combination of permissions is possible is when the
victim layer itself gives the “write” permission to the lower privileged layer that ini-
tiates the attack. It is not possible for the attacking (lower-privileged) layer to set up
the “execute” permission for a higher-privileged layer. This is guaranteed by the fact
that the transitions in the Rule Database that are usable by the OS cannot be used to
grant any hypervisor permissions. Similarly, there are no transition rules that are us-
able by user-level code that grant any hypervisor or OS permissions. This means that
to successfully perform such an attack, the attacker must minimally be able to exe-
cute a PERM SET instruction in the context of the victim. To reuse an existing page,
the attacker requires two PERM SET instructions, the first to clear the permissions
and the second to re-initialize them with the desired value. Alternatively the attacker
could create a new mapping to a previously unused page and use a single PERM SET
instruction to set the permissions. Intel’s SMEP/SMAP is designed specifically to stop
these types of attacks (SMEP in particular). Similarly to NIMP, this protection can the-
oretically be broken if the attacker can disable SMEP, which is done via clearing a bit
in the CR4 control register. Since writing to CR4 is a privileged operation, it requires
the attacker to be able to minimally execute an instruction to write CR4 in the context
of the OS. However, since SMEP/SMAP does not generalize to the hypervisor, it can
only be used to mitigate attacks against the OS in a non-virtualized system whereas
NIMP can protect the hypervisor as well.

5.4. Mitigating Load-Time Attacks
In an environment where an application is protected once it has been loaded into mem-
ory, the loading process itself presents attackers a potential opportunity to tamper with
the application’s code and/or static data to influence its execution. In the NIMP sys-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Jesse Elwell et al.

tem, the Key Permission and Integrity Module (described in Section 7) is designed
specifically to thwart such attacks. This new module, which is invoked after the OS
has loaded the program, cryptographically measures the application’s code and read-
only data sections. If this measurement succeeds, the module releases an encryption
key to the application to encrypt and decrypt sensitive data, thus protecting it from a
possibly malicious loader/OS. This allows developers of applications to ship sensitive
data in encrypted form. The data can only be decrypted and subsequently accessed if
the application is loaded properly without modification.

6. IMPLEMENTING SMEP/SMAP IN NIMP
The NIMP approach to managing memory permissions provides a general framework
that can be used to implement or emulate a number of previously proposed memory
protection schemes. In this section, we demonstrate the generality of NIMP by us-
ing the permission change rules to implement Intel’s SMEP/SMAP mechanism [Intel
2014]. While the emulation of SMEP/SMAP in NIMP wouldn’t offer any security ben-
efits over SMEP/SMAP, it shows the flexibility of NIMP in terms of “backwards com-
patability”. A NIMP system could be configured this way and run nearly unmodified
code and then gradually move to a set of rules more like those in Table II.

SMEP (Supervisor Mode Execution Prevention) and SMAP (Supervisor Mode Access
Prevention) are new security mechanisms available in recent Intel processors that
protect user-level pages from being executed and/or accessed by supervisor mode code.
Essentially, SMEP/SMAP alter the semantics of the User/Supervisor bit of a page table
entry. Whenever that bit is set to user mode and an OS access to the page takes place
in SMEP/SMAP mode, a page fault is generated by the hardware indicating an access
violation. Table III shows the required NIMP permission change rules to implement
functionality similar to SMEP/SMAP.

The first two rules from this table (rules 1 and 2) are used to create the OS-level
pages. These pages are not accessible by user-level code. Similarly, the next two rules
(rules 3 and 4) are used to create user-level pages. However, for functionality reasons
the OS must be sometimes allowed to access user pages. To accommodate this, SMAP-
capable processors provide two instructions to temporarily allow such accesses. The
CLAC instruction clears a flag in the processor which then allows the OS to access
user-level pages. In the NIMP framework, this instruction would rely on Rule 5, which
allows the OS to give itself either read or write permission for a user-level page. The
corresponding STAC instruction sets the SMAP flag once again, denying the OS access
to a user-level page. This instruction is emulated by Rule 6. It should be noted that un-
like SMAP, SMEP does not need to be toggled at runtime for correct functionality, since
the OS should never execute code from a user-level page. This property is embedded
into Rule 5, which explicitly states that the OS may give itself read or write, but not
execute permissions for a user-level page. Note that the hypervisor permissions have
been left out of this table, since it is unclear how SMAP interacts with the hypervi-
sor. Furthermore, since no additional actions need to be performed by SMEP/SMAP
hardware, the action column has also been omitted.

In comparison to SMEP/SMAP, the NIMP system has some significant advantages.
First the NIMP implementation of SMEP/SMAP can be trivially extended to support
a hypervisor simply by adding more rules to the rule database, which highlights it’s
programmability. Second, SMAP relies on the OS to toggle the enforcement of the it’s
policy for correct functionality, this means that SMAP cannot be used to defend against
a malicious and/or compromised layer of supervisor software since it can simply turn
off SMAP’s enforcement temporarily, or change the permissions associated with the
page. Finally, SMEP/SMAP cannot protect against remapping attacks of any kind,
since the OS remains in full control over both mappings and permissions.

Other memory protection schemes, such as that proposed in HyperWall [Szefer and
Lee 2012] can also be implemented within the NIMP framework by adjusting the rules
accordingly.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:17

Initial Permissions New Permissions
S/PT OS User S/PT OS User

Rule Requester S P R W X R W X S P R W X R W X Note
1 OS - - - - - - - - - * * * - - - - OS data page
2 OS - - - W - - - - - - - - X - - - OS code page
3 OS - - - - - - - - * - - - - * * - User-level data page
4 OS - - - - - - W - - - - - - - - X User-level code page
5 OS * - - - - * * * * - * * - * * * CLAC
6 OS * - * * - * * * * - - - - * * * STAC
7 OS * * * * * * * * - - - - - - - - Revoke Page

Table III: Permission Assignment Rules to Emulate SMEP/SMAP

7. SECURE DEPLOYMENT AND LOADING
The NIMP architecture protects an application from a compromised hypervisor and
OS once its code and data have been loaded into memory. In this section, we examine
approaches to preventing malicious accesses before the application reaches memory.
We accomplish this by making use of a secure module known as the Key Permission
and Integrity Module (KPIM). The Key Permission and Integrity Module is loaded into
memory by the OS, but runs in a NIMP-protected memory space and is verified by the
hardware itself. It has special privileges because it is part of the TCB.

Trustworthy loading of applications is not a new technique, however the KPIM has a
somewhat specific and unique set of requirements that must be met and features that
it must support. The KPIM, being the only trusted software in the NIMP system, must
be as simple as possible so that it can be implemented in a trustworthy manner. The
KPIM cannot depend on privileged software layers to perform any of it’s tasks, such
as using a driver to access hardware external to the CPU to aid it. In contrast to other
works that provide trustworthy loading of applications, the KPIM is designed specifi-
cally for use in the NIMP system so it can be simpler and more light-weight than other
solutions. For example, the Trusted Platform Module (TPM) [TPM 2013] supports re-
mote attestation of applications, a feature that would go unused in the NIMP system as
the integrity of the application’s code needs only to be proven to the application itself.
Furthermore, if the TPM were used by the KPIM then it would require direct access
to the TPM to communicate with it. The KPIM would also need to include any drivers
necessary to do so to avoid trusting the OS. This bloats the size and complexity of the
KPIM which reduces its trustworthiness. Other solutions such as binary encryption as
proposed in [Cappaert et al. 2006] offer more protection than is required in the NIMP
system at the cost of run-time performance due to the dynamic nature of decrypting
binaries on-the-fly. Finally, some works in this area have a significantly different goal
or threat model than the NIMP system, for example [Payer et al. 2012] aims to use
a trusted loader to prevent the host system from being compromised by an untrusted
application that is being loaded.

In developing the KPIM, we make the following assumptions: 1) There is an external
party, the client, who is interested in securely running an application on a NIMP sys-
tem. 2) Each CPU has a public/private key pair (CPU pub, CPU priv) embedded within
it during manufacturing. 3) Each CPU manufacturer has a public/private key pair
(MAN pub, MAN priv). The manufacturer’s public key is embedded in every CPU during
manufacturing.

7.1. KPIM Bootstrap
The KPIM is part of the TCB. To this end, we assume that a range of physical pages
is reserved in the NIMP architecture for use by the KPIM. To ensure that it has not
been tampered with, the KPIM is signed by the processor manufacturer using the
manufacturer’s private key (MAN priv). This signature will be used to provide integrity
verification for the KPIM during each boot. During boot, the OS will place the KPIM
and the manufacturer’s signature of the KPIM into the reserved memory range. The
first time control jumps to the KPIM, the NIMP hardware will hash the KPIM’s re-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Jesse Elwell et al.

served memory region and verify its signature using the embedded public key of the
manufacturer (MAN pub). If this check succeeds then the KPIM is enabled by first cor-
rectly setting the NIMP permissions for the KPIM’s pages and then setting a CPU
status bit to denote that the KPIM is secure. This flag will be used during run time to
allow the hardware to decide whether or not to decrypt data on behalf of the KPIM.
The client is assured that this verification is successful by the availability of key ke,
which is described below.

7.2. Application Deployment
The deployment of the application binaries and of its initial data offers a prime oppor-
tunity for a compromised hypervisor/OS to pry on confidential data and to alter data
and/or code before it even reaches the file system.

The code and data of an application are typically loaded from disk. In a typical sce-
nario, the data is sensitive but the application itself is not (for example, the application
may be a commercial DBMS, whose binaries are easily obtained, with valuable data
held in databases). We must therefore protect both the confidentiality and integrity of
the data files, but ensuring only the integrity of the application files is sufficient. Confi-
dentiality of data is guaranteed by encrypting it while in the file system. The data can
be decrypted by the application itself using a key passed to it by the hardware as it is
needed. This key could be ke itself or a key that is encrypted using ke to provide flexi-
bility in encryption algorithms. To ensure integrity, the KPIM relies on a keyed hash to
verify that the application has not been tampered with (details below). This approach
is quite general: sensitive binaries could be kept encrypted on disk if the application
comes with a decryption wrapper; at the other end of the spectrum, public data can be
left in the clear on disk; configuration files are encrypted if deemed sensitive.

To deploy an application on NIMP-protected hardware, the client begins by generat-
ing two symmetric keys, ke that will be used to encrypt sensitive data files, and kh that
will be used to compute a hash of the non-sensitive binaries — both could be derived
from a single master key using one-way functions. The client then encrypts each sensi-
tive file of the application using ke and computes a keyed hash of each binary using kh.
The client then uses the CPU’s public key (CPU pub) to encrypt ke, kh, and the keyed
hash. This is known as the load credential. Next, the client sends all application files
and the load credential to the provider — this does not need to take place over a secure
channel as sensitive files are either encrypted or hashed (or both).

7.3. Loading an Application
When asked to load an application, the OS puts the application into memory, just
like any other application. In addition, the load credential is also placed in memory
at a predetermined virtual address where the KPIM will find it. Once the OS has
placed them into memory, it calls the KPIM. The KPIM asks the CPU to decrypt the
load credential using its private key (CPU priv), which only succeeds if the KPIM is
executing. The KPIM then verifies the integrity of the application using the keyed
hash from the decrypted load credential. If this check is successful the KPIM will
place ke and kh at an implementation defined virtual address for the application to
use. Finally, the KPIM verifies any permissions (including verifying access rights to
the page(s) containing ke and kh), and transfers control to the application.

In the above design, the application is responsible for ensuring the confidentiality
and/or integrity of its files. It will perform hashing and/or decryption itself using keys
supplied by the KPIM, except for the binaries whose integrity is handled by the KPIM.
Applications designed for in-house use rarely take such precautions, but we believe
this is prudent engineering for deployment in an untrusted environment such as the
cloud systems NIMP seeks to secure. Were this unacceptable, our design can easily be
modified so that the KPIM (or a companion module) handles the decryption of sensitive
files and more extensive integrity checks. Batch applications, where the client supplies
(encrypted) input and later retrieves (encrypted) results could then run without mod-
ifications. Further engineering would be needed, however, for applications that need

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:19

Parameter Configuration
Window Size 8-way issue, 128-entry ROB, 32-entry Issue Queue, 48-entry LSQ
Data TLB 128-entry, 4-way
Instruction TLB 64-entry, 4-way
L1 I-Cache 32 KB, 2-way, 64B line, 1 cycle hit
L1 D-Cache 32 KB, 4-way, 64B line, 1 cycle hit
L2 Unified Cache 256 KB, 16-way, 64B line, 10 cycle hit
L3 Unified Cache 8 MB, 32-way, 64B line, 30 cycle hit
Memory latency 300 cycles

Table IV: Configuration of the Simulated Processor

0

2

4

6

8

10
16-Bit 32-Bit 64-Bit

IP
C

 L
o

s
s

 (
%

)

Fig. 7: IPC Overhead of Caching Permissions

to communicate with the external world, as some system-bound data would need to be
encrypted (databases for example) while other should not (e.g., web pages to be sent to
a user, or files used to communicate with other applications).

8. PERFORMANCE AND COMPLEXITY
In this section we evaluate the performance impact and hardware complexity of NIMP.

8.1. Performance Evaluation
For estimating the impact of the extra delays due to accessing the new permission bits,
we used MARSSx86 [MARSS 2013] — a full-system x86-64 simulator. Our processor
configuration is shown in Table IV.

Figure 7 shows the decrease in IPC for each of the simulated benchmarks due to the
delays of accessing permission bits on the TLB misses for three different PS entry sizes.
The largest performance loss of 9.7% was observed for hmmer benchmark, followed
by 7.5% for omnetpp using 64-bit PS entries. The majority (68%) of the benchmarks
experience less than 1.5% degradation, with the average being about 2%.

Figure 8a shows the hit rates to the various levels of caches for the PS data. On the
average, 91% of the requests for PS data are satisfied from the L1 cache, and 74% of
the L1 misses are satisfied from the L2 cache, thus keeping the number of accesses to
the L3 cache and main memory very small.

Finally, Figure 8b shows the impact of the PS bits on the cache hit rate of the regular
accesses using 64-bit PS entries. As seen from the figure, there is no noticeable impact
for all levels of caches for all benchmarks that we simulated.

Next, we conservatively estimate the performance overhead of zeroing out the page
contents in hardware, if this is dictated by the permission change rules. To access the
frequency of operations requiring page permission changes, we profiled the Linux ker-
nel using the built-in ftrace utility. Specifically, we collected the information about all
system calls and filtered out the ones that resulted in a request to a page permission
change by calling appropriate kernel functions. We then evaluated how often permis-
sion change requests occur on a variety of applications. We studied both client-side and
server-side applications. For client-side applications, we evaluated the Chromium web
browser, the process of booting a VM with VirtualBox, and opening a spreadsheet in
LibreOffice.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Jesse Elwell et al.

0

20

40

60

80

100
DL1 Hit Rate UL2 Hit Rate UL3 Hit Rate

H
it

R
a

te
 (

%
)

(a) Cache Hit Rate for PS Bits

0

20

40

60

80

100
L1 Hit Rate L1 Hit Rate (w /Perms) L2 Hit Rate L2 Hit Rate (w /Perms) L3 Hit Rate L3 Hit Rate (w /Perms)

H
it

R
a

te
 (

%
)

(b) Impact on the Cache Hit Rate for Regular Data

Fig. 8: Impact of NIMP on Caches

For these three client-side applications, we conservatively assumed that the most
expensive action (e.g., zeroing out a page) is required on every such permission change
request, and evaluated the combined overhead of this operation. We then also conser-
vatively assumed a latency of 8 CPU cycles for writing 64 bits to memory. Since a 4KB
page contains 512 such lines, 4096 cycles are needed to wipe off the entire page (for
comparison, HyperWall assumed 512 cycles to wipe off the entire page; under those
assumptions our overheads will be even smaller). It should be noted that while our la-
tency is very conservative (1 cycle/byte) we did not model the impact that caching such
pages would have on other applications. As seen in Table V, performance overheads
are very small. Even combined with additional overhead due to the PS bit accesses,
the overall loss does not exceed 1% in most cases.

Next, we examined a number of server-side applications. These applications include
a MySQL database server daemon, an Apache webserver daemon, and an OpenSSH
server daemon. Since these applications tend to go through different phases of ex-
ecution, especially in terms of memory management, we measured these different
phases separately. For MySQL the phases we measured included daemon initializa-
tion, database preparation, handling a series of queries serially with the database in
read-only mode, and cleaning up a database. For Apache, only two phases were mea-
sured: daemon initialization and handling a series of requests for a 10MB file from
a number of clients simultaneously. For OpenSSH, we measured only a secure copy
operation (i.e. using scp) of a larger file (roughly 540MB) from the host machine to a
remote machine.

Table VI shows the results obtained for the server-side workloads. In general, all of
these applications generate a majority of their permission change requests during the
initialization phase of their daemon in a relatively short amount of time. Once their
execution reaches a more steady state, they tend to request far less changes.

We also estimated the overhead that is added by the KPIM when it cryptographi-
cally hashes binaries during the loading process. The results of these experiments are
shown in the “KPIM Cycles” columns of Tables V and VI. For each program, the re-
ported number represents the average of 50 measurements of the given binary. These
experiments were performed on a machine with 2.8GHz CPU with Nehalem microar-
chitecture running Debian Linux. The binaries measured by KPIM were obtained from
the standard Debian repositories and were not custom-compiled. The measurement

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:21

Application
Changes

Per
Second

Zeroing
Cycle

Overhead
KPIM
Cycles

VirtualBox 2765 0.4% 39M
Chromium 2973 0.4% 1.1B
LibreOffice 8608 1.2% 77K

Table V: Initialization Overhead
(Client Workloads)

Application
Changes

Per
Second

Zeroing
Cycle

Overhead
KPIM
Cycles

MySqld Initialization 9648 1.3%
102MMySql Preparation 816 0.1%

MySql Queries 0.2 2.7e-5%
MySql Cleanup 43 5.9e-3%

Apache Initialization 7639 1.0% 6.6MApache Benchmark 1289 0.2%
sshd scp 125 0.02% 13.1M

Table VI: Initialization Overhead(Server Workloads)

results are reported for only the code and read-only data sections, dynamically linked
libraries were not measured.

The exact overhead of KPIM depends on the size of the applications being loaded. In
some cases, notably LibreOffice, the application binary is essentially just a launcher
that is responsible for loading the rest of the required modules. LibreOffice loads this
small launcher to determine the type of file being operated on (text document, spread-
sheet, presentation), and subsequently loads the specific modules to handle that type
of file. In this case, the overhead of KPIM is very small - just 77K cycles. On the
other hand, large applications incur significantly longer KPIM delay. For example, for
Chromium the delay is 1.1B cycles. However, even in this case it is below half a second,
and this delay is only incurred once during the loading of the application. On newer
CPUs that feature special instructions to accelerate hashing, the delays of KPIM would
be further reduced.

8.2. Evaluating NIMP Hardware Complexity
To evaluate the delay and area overhead of the additional hardware required by NIMP,
we implemented the NIMP logic in Verilog HDL using Xilinx ISE WebPACK 14.6 [Xil-
inx 2013]. Because the absolute timing on the target FPGA platform is slow, for com-
parison purposes we also implemented other basic CPU logic, such as a 64-bit integer
ALU. Assuming that this basic operation is implemented in a single cycle on a typical
CPU, we compared the delays of the NIMP logic with the ALU delay and the results
showed that the access to the Rule Database can be performed within a cycle, even if
the Rule Database was extended to 16 entries. Due to the small size (48 bytes to im-
plement the policy specified in Section 3) and infrequent access of the Rule Database,
the power and area overheads of such a structure are negligible.

Finally, we evaluated the impact of slightly widening TLB entries to support storing
of the new permission bits inside the TLB. This results in 9% increase in the TLB
area, and 1% increase in the TLB access delay. This is because only the word select
delay increases slightly, while the delays of associative search, bitline delays, and the
delays of sense amplifiers and other peripheral logic for reading out the data are not
impacted.

9. RELATED WORK
We subdivide previous solutions into two categories: software-only and hardware-
supported schemes.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Jesse Elwell et al.

9.1. Software Approaches
A limitation of many software security schemes that do not include OS or hypervisors
in the TCB is that they rely on some other trusted layer. Unless this layer is formally
verified, it is not impossible to devise attacks on it. sHype [Sailer et al. 2004] proposes
a hypervisor to secure VM interactions. VMGuard [Fang et al. 2010] is a technique
for protecting the management VM in Xen. A number of efforts use introspection to
identify the presence of malicious code [Azab et al. 2009; Sharif et al. 2009; Litty et al.
2008; Garfinkel and Rosenblum 2003; Jiang et al. 2007; Jiang and Wang 2007; Payne
et al. 2007; Payne et al. 2008]. Other works use the hypervisor to protect the guest
OSes [Seshadri et al. 2007; Klein et al. 2009; Riley et al. 2008].

Overshadow [Chen et al. 2008] protects applications from the compromised OS by
presenting the OS with an encrypted view of physical memory, while NoHype [Sze-
fer et al. 2011] eliminates the hypervisor layer altogether. Cloudvisor [Zhang et al.
2011] uses a small security monitor below the hypervisor, using nested virtualization.
Inktag [Hofmann et al. 2013] introduces paraverification mechanisms, forcing an OS
to do additional computations to make it less complex for the hypervisor to verify its
behavior.

9.2. Hardware-Supported Approaches
To address the limitations of software approaches, several hardware-supported
schemes have been recently proposed. HyperWall[Szefer and Lee 2012] protects guest
VMs from a malicious hypervisor. Unlike NIMP, HyperWall’s threat model only as-
sumes untrusted hypervisor, but the guest operating systems running inside the VMs
are assumed to be trusted. Moreover, instead of checking for the validity of page per-
missions, NIMP hardware checks for the validity of permission transition rules, which
are expressed with the purpose of disallowing the most common attacks, but without
inhibiting normal functionality of programs.

Also similar to NIMP, H-SVM [S.Jin et al. 2011] reduces the trusted computing base
only to hardware. Nested page tables are stored in a protected memory region, which is
only accessible to the H-SVM hardware. The H-SVM hardware validates all page table
updates initiated by the hypervisor through a series of microcode routines. While H-
SVM focuses on the integrity of page tables (that are themselves stored in the protected
space), NIMP only protects the page permission bits, which are decoupled from the
main page table structures and are indexed by the physical page number.

HyperCoffer [Xia et al. 2013] is built on the idea of placing a new layer — VM-Shim
— in-between a VM and the hypervisor. Each VM-Shim instance executes in a sepa-
rate protected context and only declassifies necessary information designated by the
VM to the hypervisor and external environments. Some hardware modifications are
also needed. The Bastion architecture [Champagne and Lee 2010] provides hardware-
supported compartments to support secure execution environment for software mod-
ules.

Capability-based addressing (or capability machines) [Woodruff et al. 2014; Carter
et al. 1994; Fabry 1974] are similar in spirit to NIMP and aim to protect memory
by forcing applications to use capabilities to access regions of virtual memory. Some
capability-based architectures went unused due to the amount of work involved in
porting operating systems and applications to run on these architectures [Carter
et al. 1994]. However, in other cases where more backward compatability is offered
([Woodruff et al. 2014]) the scheme trusts the OS to perform some critical operations,
such as saving and restoring capability state on context switching which means that
they could be vulnerable to malicious supervisor attacks. Furthermore, in works such
as [Woodruff et al. 2014] capabilities are layered on top of virtual memory which means
that a malicious supervisor can potentially violate security guarantees by manipu-
lating virtual to physical translations (i.e. a page remapping attack). This leads to a
significantly different threat model than NIMP, where various different modules (for
example libraries) that make up an application are mutually untrusted and must be
protected from one another.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:23

A related industry development is the recent introduction by Intel of its
SMEP/SMAP mechanism to protect some user-level pages from being executed and/or
accessed by supervisor mode code [Intel 2014]. However, to support proper function-
ality, SMAP has to be toggled on and off to allow the OS to access user-space buffers.
Trusting the OS to toggle SMAP removes any protection against a malicious OS, which
is at the core of our threat model. We demonstrate in this paper that SMEP/SMAP can
be implemented within NIMP framework.

There are a number of other works that provide isolated environments for trusted
software modules [Lie et al. 2000; Suh et al. 2003; Lee et al. 2005; Dwoskin and Lee
2007; McKeen et al. 2013; Anati et al. 2013; Hoekstra et al. 2013; Boivie 2012; Owusu
et al. 2013; Evtyushkin et al. 2014]. Haven [Baumann et al. 2014] demonstrated a sys-
tem to achieve protected execution on unmodified binaries using SGX hardware sup-
port [McKeen et al. 2013]. Although the end result of these schemes may be similar to
solutions such as NIMP, HyperWall and H-SVM, the threat models, TCB assumptions,
as well as techniques and mechanisms for achieving security are different.

Mondrian memory protection [Witchel et al. 2002] is another work whose goals are
similar to those of the NIMP architecture. In the Mondrian memory protection (MMP)
architecture, permissions are stored in memory in a permissions table which is con-
trolled by a priveleged supervisor domain. The supervisor then offers entities an API
through which they can change permissions. One of the key differences between MMP
and NIMP is the presense of this new supervisor domain in MMP. The goal of NIMP
is to remove ambient authority from any supervisor-level software. Also, similarly to
capability-based architectures, if MMP is layered on top of virtual memory then MMP
cannot protect against page remapping attacks.

10. CONCLUSIONS
In this paper, we proposed NIMP — a new architecture to support non-inclusive per-
missions for the physical memory pages across different privilege levels of software.
In contrast to the traditional designs where a higher-privileged software layer has all
access rights to the pages of a lower-privileged layer, NIMP gives each layer its own
minimal set of permissions sufficient to carry out its functionality. Changes to the page
permissions are controlled by a set of rules and are enforced by the hardware — the
OS and the hypervisor cannot change the page permissions if this request is not ap-
proved by the NIMP hardware. This essentially removes both the hypervisor and the
guest OSes from the TCB and limits the TCB only to hardware and the loader. We
demonstrate that such a permission management scheme retains all system function-
ality, while at the same time stopping many types of recent attacks that are due to the
vulnerabilities either in the OS or in the hypervisor. We demonstrate that such pro-
tection is achieved with minimal performance loss, modest additional hardware and
small changes to the OS and hypervisor code.

REFERENCES
I. Anati, S. Gueron, S. Johnson, and V. Scarlata. 2013. Innovative Technology for CPU Based Attestation

and Sealing. In Wkshp. on Hardware and Architectural Support for Security and Privacy, with ISCA’13.
A. Azab, P. Ning, E. Sezer, and X. Zhang. 2009. HIMA: A Hypervisor-Based Integrity Measurement Agent.

In Proc. Annual Computer Security Applications Conference (ACSAC). 461–470.
A. Baumann, M. Peinado, and G. Hunt. 2014. Shielding Applications from an Untrusted Cloud with Haven.

In Symposium on Operating Systems Design and Implementation.
R. Boivie. 2012. SecureBlue++: CPU Support for Secure Execution. (2012).
Jan Cappaert, Nessim Kisserli, Dries Schellekens, and Bart Preneel. 2006. Self-encrypting code to protect

against analysis and tampering. In 1st Benelux Workshop Inf. Syst. Security.
Nicholas P Carter, Stephen W Keckler, and William J Dally. 1994. Hardware support for fast capability-

based addressing. In ACM SIGPLAN Notices, Vol. 29. ACM, 319–327.
D. Champagne and R. Lee. 2010. Scalable Architectural Support for Trusted Software. In Proceedings of

HPCA.
Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. 2005. Non-control-data At-

tacks Are Realistic Threats. In Proceedings of the 14th Conference on USENIX Security Symposium.
USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=1251398.1251410

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dl.acm.org/citation.cfm?id=1251398.1251410

A:24 Jesse Elwell et al.

X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, D. Boneh, J. Dwoskin Dan, and R. Ports. 2008. Over-
shadow: A Virtualization-Based Approach to Retrofitting Protection in Commodity Operating Systems.
In Proceedings of ASPLOS.

S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. 2011. SecureME: A Hardware-Software Approach to
Full System Security. In Proc. International Conference on Supercomputing (ICS).

CVE-2009-1897 2009. CVE-2009-1897: NULL dereference and mmap of /dev/net/tun in Linux kernel
allows privilege escalation. (2009). Available online: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-3527.

CVE-2009-3527 2009. CVE-2009-3527: Race condition in Pipe (IPC) close in FreeBSD allows privilege esca-
lation. (2009). Available online: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897.

CVE-2010-4258 2010. CVE-2010-4258: do exit does not properly handle a KERNEL DS value al-
lowing privilege escalation. (2010). Available online: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-4258.

CVE-2012-5513 2012. CVE-2012-5513: XENMEM exchange handler does not properly check the memory
address allowing privilege escalation. (2012). Available online: http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-5513.

CVE Details 2015. CVE Details: The Ultimate Security Vulnerability Datasource. (2015). Accessed May
2015 at http://www.cvedetails.com/.

Ramon de C Valle. 2009. Linux sock sendpage() NULL Pointer Dereference. (2009). Available online: http:
//packetstormsecurity.com/files/81212/Linux-sock sendpage-NULL-Pointer-Dereference.html.

DOD 1985. Trusted computer system evaluation criteria. Technical Report 5200.28-STD. US Department of
Defense. http://csrc.nist.gov/publications/history/dod85.pdf

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Non-monopolizable Caches:
Low-complexity Mitigation of Cache Side Channel Attacks. ACM Transactions on Architecture and Code
Optimization 8, 4 (Jan. 2012).

J. Dwoskin and R. Lee. 2007. Hardware-rooted Trust for Secure Key Management and Transient Trust. In
Proceedings of CCS.

edb1 2009. EDB-9477: sock sendpage() Local Root Exploit in Linux. (2009). Available online: http://www.
exploit-db.com/exploits/9477/.

edb2 2011. EDB-17391: DEC Alpha Linux ¡= 3.0 Local Root Exploit. (2011). Available online: http://www.
exploit-db.com/exploits/17391/.

J. Elwell, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev. 2014. A Non-Inclusive Memory Permissions Archi-
tecture for Protecting Against Cross-Layer Attacks. In Proc. International Symposium on High Perfor-
mamce Computer Architecture (HPCA).

D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and R. Riley. 2014. Iso-X: A Flexible
Architecture for Hardware-Managed Isolated Execution. In Proc. International Symposium on Microar-
chitecture (MICRO).

Robert S. Fabry. 1974. Capability-based addressing. Commun. ACM 17, 7 (1974), 403–412.
H. Fang, Y. Zhao, H. Zang, H. Huang, Y. Song, Y. Sun, and Z. Liu. 2010. VMGuard: An Integrity Moni-

toring System for Management Virtual Machines. In Proc. of International Conference on Parallel and
Distributed Systems (ICPADS).

T. Garfinkel and M. Rosenblum. 2003. A Virtual Machine Intersopection Based Architecture for Intrusion
Detection. In Proc. Network and Distributed Systems Security Symposium. 191–206.

M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, and V. Phegade. 2013. Using Innovative Instructions to Create
Trustworthy Software Solutions. In Wkshp. on Hardware and Architectural Support for Security and
Privacy, with ISCA’13.

O. Hofmann, S. Kim, A. Dunn, M. Lee, and E. Witchel. 2013. InkTag: Secure Applications on an Untrusted
Operating System. In Proceedings of ASPLOS.

Intel. 2014. Intel 64 and IA32 Architectures Software Developer’s Manual. (2014). Ac-
cessed Feb. 2014 at http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

X. Jiang and X. Wang. 2007. Out-of-the-box Monitoring of VM-based High-Interaction Honeypots. In Recent
Advances in Intrusion Detection (RAID). 198–218.

X. Jiang, X. Wang, and D. Xu. 2007. Stealthy Malware Detection through VMM-based out-of-the-box Se-
mantic View Reconstruction. In Proc. of ACM Conference on Computer and Communications Security
(CCS).

V.P. Kemerlis, G. Portokalidis, and A.D. Keromytis. 2012. kGuard: lightweight kernel protection against
return-to-user attacks. In Proceedings of the 21st USENIX conference on Security symposium. USENIX
Association, 39–39.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Si-
mon Winwood. 2009. seL4: formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
DOI:http://dx.doi.org/10.1145/1629575.1629596

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://www.cvedetails.com/
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.exploit-db.com/exploits/9477/
http://www.exploit-db.com/exploits/9477/
http://www.exploit-db.com/exploits/17391/
http://www.exploit-db.com/exploits/17391/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://dx.doi.org/10.1145/1629575.1629596

Rethinking Memory Permissions for Protection Against Cross-Layer Attacks A:25

Ruby B Lee, Peter CS Kwan, John P McGregor, Jeffrey Dwoskin, and Zhenghong Wang. 2005. Architecture
for protecting critical secrets in microprocessors. In Computer Architecture, 2005. ISCA’05. Proceedings.
32nd International Symposium on. IEEE, 2–13.

D. Lie, M. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz. 2000. Architectural
Support for Copy and Tamper Resistant Software. In Proceedings of ASPLOS.

L. Litty, H. Lagar-Cavilla, and D. Lie. 2008. Hypervisor Support for Identifying Covertly Executing Binaries.
In Proc. 17th Usenix Security Symposium.

MARSS 2013. MARSSx86: Micro-ARchitectural and System Simulator for x86-based Systems. (2013). http:
//marss86.org. Simulator source code and documentation.

F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi, V. Shanbhogue, and U. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution. In Wkshp. on Hardware and Archi-
tectural Support for Security and Privacy, with ISCA’13.

E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Vadudevan. 2013. OASIS: On Achieving a
Sanctuary for Integrity and Secrecy on Untrusted Platforms. In Proceedings of CCS.

Mathias Payer, Thomas Hartmann, and Thomas R Gross. 2012. Safe loading-a foundation for secure execu-
tion of untrusted programs. In Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 18–32.

B. Payne, M. Carbone, and W. Lee. 2007. Secure and Flexible Monitoring of Virtual Machines. In Proc. of the
Annual Computer Security Applications Conference.

B. Payne, M. Carbone, M. Sharif, and W. Lee. 2008. Lares: An architecture for secure active monitoring
using virtualization. In Proc. IEEE Symposium on Security and Privacy.

Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In Recent Advances in Intrusion Detection (RAID). 1–20.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. 2004. Design and Implementation of a TCG-based Integrity
Measurement Architecture. In Proc. of the 13th Usenix Security Symposium.

Security Focus 2009. BID-36939: Microsoft Windows Kernel NULL Pointer Dereference Local Privilege Es-
calation Vulnerability. (2009). Available online: http://www.securityfocus.com/bid/36939.

Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: a tiny hypervisor to pro-
vide lifetime kernel code integrity for commodity OSes. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP ’07). ACM, New York, NY, USA, 335–350.
DOI:http://dx.doi.org/10.1145/1294261.1294294

M. Sharif, W. Lee, W. Cui, and A. Lanzi. 2009. Secure In-VM Monitoring using Hardware Virtualization. In
Proc. of ACM Conference on Computer and Communications Security (CCS).

S.Jin, J.Ahn, S.Cha, and J.Huh. 2011. Architectural Support for Secure Virtualization under a Vulnerable
Hypervisor. In Proceedings of MICRO.

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. 2003. AEGIS: Architecture for Tamper-Evident
and Tamper-Resistant Processing. In Proceedings of International Conference on Supercomputing.

J. Szefer, E. Keller, R. Lee, and J. Rexford. 2011. Eliminating the Hypervisor Attack Surface for a More
Secure Cloud. In Proceedings of CCS.

J. Szefer and R. Lee. 2012. Architectural Support for Hypervisor-Secure Virtualization. In Proceedings of
ASPLOS.

TPM 2013. TPM Main Specification. (2013). Available online: http://www.trustedcomputinggroup.org/
resources/tpm main specification visited Sept. 2013.

Z. Wang and R. Lee. 2007. New Cache Designs for Thwarting Software Cache-based Side Channel Attacks.
In Proc. International Symposium on Computer Architecture (ISCA).

Z. Wang and R. Lee. 2008. A Novel Cache Architecture with Enhanced Performance and Security. In Proc.
International Symposium on Microarchitecture (MICRO).

E. Witchel, J. Cates, and K. Asanović. 2002. Mondrian Memory Protection. In Proceedings of the 10th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS X). ACM, 304–316.

Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore, Jonathan Anderson, Brooks Davis,
Ben Laurie, Peter G Neumann, Robert Norton, and Michael Roe. 2014. The CHERI capability model:
Revisiting RISC in an age of risk. In Proceeding of the 41st annual international symposium on Com-
puter architecuture. IEEE Press, 457–468.

Y. Xia, Y. Lin, and H. Chen. 2013. Architecture Support for Guest-Transparent VM Protection from Un-
trusted Hypervisor and Physical Attacks. In Proceedings of HPCA.

Xilinx 2013. Xilinx 7 Series FPGAs Overview. (2013). Available online: http://www.xilinx.com/support/
documentation/data sheets/ds180 7Series Overview.pdf visited Sept. 2013.

F. Zhang, J. Chen, H. Chen, and B.Zang. 2011. Cloudvisor: Retrofitting Protection of Virtual Machines in
Multi-Tenant Cloud with Nested Virtualization. In Proceedings of SOSP.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

http://marss86.org
http://marss86.org
http://www.securityfocus.com/bid/36939
http://dx.doi.org/10.1145/1294261.1294294
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

	Introduction
	Threat Model & Assumptions
	NIMP Design Overview
	Description of Permissions
	MPM and Assignment of Permissions
	PRM and Verification of Permissions

	NIMP Implementation Details
	Permission Store
	Memory Permission Manager
	Rule Database and Secure System Boot
	Hardware Support for NIMP
	Initial Page Permission Setup
	Permission Changes During Execution

	Permission Reference Monitor
	Page Sharing in NIMP
	Other Considerations
	Software Changes to Support NIMP

	Security Analysis of NIMP
	Mitigating Malicious Supervisor Attacks
	Mitigating Page Remapping Attacks
	Mitigating Memory Escalation Attacks
	Mitigating Load-Time Attacks

	Implementing SMEP/SMAP in NIMP
	Secure Deployment and Loading
	KPIM Bootstrap
	Application Deployment
	Loading an Application

	Performance and Complexity
	Performance Evaluation
	Evaluating NIMP Hardware Complexity

	Related Work
	Software Approaches
	Hardware-Supported Approaches

	Conclusions

