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ABSTRACT
Performance and scalability of Parallel Discrete Event Simu-
lation (PDES) is often limited by fine-grain communication,
especially in execution environments with high communica-
tion cost. However, the low cost of on-chip communication
in emerging many-core processors offers a promise to sub-
stantially alleviate conventional PDES bottlenecks. In this
paper, we present a detailed evaluation and characteriza-
tion of multi-threaded ROSS simulator on Intel’s Knights
Landing (KNL) processor. KNL is the second generation of
the Intel Xeon Phi family of processors offering significant
architecture improvements including 64 out-of-order multi-
threaded cores, sharing of some levels of the cache hierarchy
among the cores, fast 2D mesh interconnect network and
the ability to reconfigure the processor to support various
clustering modes.

We analyze the performance and scalability of ROSS sim-
ulator on KNL processor under different thread counts, com-
munication patterns, event processing granularities, syn-
chronization periods, thread placement policies, and work-
load partitioning schemes. We conclude that within a single
KNL processor, up to 2X performance improvement can be
achieved compared to commodity Xeon multicore proces-
sors. We show that in most cases the performance of ROSS
scales well with the best results achieved when thread affin-
ity is assigned, CPU cores are evenly loaded, cache sharing
is exploited and communication is limited to small clusters
of cores.
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1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) is a fine-grain

communication-dominated application that has been diffi-
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cult to scale beyond a modest number of computing nodes,
despite the presence of abundant parallelism in many mod-
els. Earlier efforts to scale PDES were limited by high com-
munication latencies in traditional cluster computing envi-
ronments [1, 2, 3]. The advent of multi-core and many-core
processors and systems that use these processors as build-
ing blocks led to several more recent research efforts to ac-
celerate PDES on these emerging platforms. For example,
Bauer et al. demonstrated scalable PDES on IBM Blue-
Gene’s supercomputer [4]. Recent work also investigated
PDES performance and scalability on multi-core systems
such as Intel’s Core i7, AMD Magny-cours [5, 6], and the
Tilera architecture [7].

A recent trend in computer architecture is the emergence
of many-core processors that feature several tens of simple
cores integrated on the same chip. A prominent example of
such architecture is the Intel Xeon Phi family of processors
[8]. Unlike other specialized accelerators, such as the Tilera
processor [9] or General Purpose Graphical Processing Units
(GPGPUs), the Xeon Phi is similar in the core architecture
to standard x86 processors, allowing the use of the rich tool
chains and programming environments developed for x86
ecosystem, thus facilitating faster design and deployment of
applications.

The first generation of Xeon Phi, called the Knights Cor-
ner (KC) microarchitecture, was implemented as an acceler-
ator card interfaced to the rest of the system using PCIe
interconnect. To run applications on KC, they have to
be explicitly moved to the accelerator and the amount of
available memory is limited to what is provisioned on the
card - typically 8 or 16GB. The study of [10] investigated
performance and scalability of PDES (using multi-threaded
ROSS simulator as a vehicle) on KC-based platform. Given
the limitations of the KC architecture, the results reported
in [10] showed comparable performance to commodity sys-
tems. This is true for most simulation scenarios includ-
ing the ones with a small percentage of events generated
remotely. The performance advantage of KC was demon-
strated only when the vector units were fully utilized. The
reasons for the lack of scalability are the memory limitations,
slow in-order individual cores, and the absence of shared
caches, requiring memory access for every cross-core com-
munication.

At the end of 2016, Intel released the second generation
of the Xeon Phi family, called Knights Landing (KNL). The
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KNL microarchitecture and organization are significantly
different and more advanced than the KC microarchitecture.
First, the KNL processor is implemented as the main CPU
in the system and programs executing on it have access to
the entire system memory, including the disk. Second, the
out-of-order execution capability with branch prediction was
added to individual cores, thus alleviating the computational
bottleneck of slow in-order cores of KC. Third, neighboring
cores in KNL share their L2 cache (which acts as the last-
level cache in this system), thus allowing threads executing
on these ”buddy cores” to access their shared data through
the L2 cache and avoid expensive memory accesses.

These important new features of KNL make it impera-
tive to investigate, characterize and understand PDES per-
formance and behavior on this architecture and contrast it
with the earlier results obtained for KC processors. Our
goal in this paper is to understand how the new features of
KNL impact PDES performance under different conditions,
execution scenarios and parameter settings.

We pursue these investigations via experiments running
ROSS parallel discrete event simulation kernel [11] on KNL
processor. For our experiments, we use a multithreaded
version of ROSS [5], where the simulation processes have
been replaced with threads communicating directly through
shared memory without relying on MPI-based communica-
tion. Previous studies demonstrated that this variant of
ROSS is more efficient compared to the MPI-based version
as it reduced the amount of data copying in the course of
communication and takes more direct advantages of avail-
able shared cache hierarchy (the L2 caches shared by the
buddy cores in the case of KNL). Our goal in this paper
is to determine conditions under which PDES performance
can scale up with the number of cores on a single KNL node,
which is capable of executing up to 256 threads in total - 4
threads on each of the 64 cores. We also aim to understand
performance bottlenecks and consider possible approaches
for future work that can address these bottlenecks.

The main contributions and the key conclusions of this
paper are:

• KNL offers significant performance gains for
PDES: Our study represents only the first look at us-
ing KNL architecture for executing PDES applications,
yet we demonstrated promising results. If the issues
of core loading, model partitioning and thread place-
ment are carefully considered in concert with the ar-
chitecture details, significant performance advantages
can be realized compared to an unoptimized simu-
lation, and also compared to simulation running on
commodity Xeon multicore systems. We note that
it is not just the sheer power of the cores, but also
the new architecture design features that make sim-
ulations on KNL substantially faster and more scal-
able compared to commodity Xeon processors. We ex-
pect that the results of our work will motivate future
research into more architecture-specific optimizations
to further boost PDES performance on KNL systems.
Future research needs to also consider expanding this
work across multiple KNL nodes.

• Affinity should be controlled: We show that in
most scenarios, the best results in terms of committed

event rate of simulation are achieved when affinity is
used to pin threads to CPU cores.

• Balanced core loading matters: We show that in
most scenarios, the best results in terms of committed
event rate of simulation are achieved when each CPU
core is evenly loaded with modest number of threads
- typically 1 or 2 threads per core provides the best
performance. Filling the chip to capacity by execut-
ing 4 threads per core often results in core oversatura-
tion, worse cache performance and overall slowdown.
Furthermore, balanced loading results in better perfor-
mance over round-robin core assignment scheme even if
some cores remain completely unused - this is because
synchronous progress of simulation threads promoted
by even loading is critical for PDES.

• Communication patterns matter: We demon-
strate that specific thread-to-core placement for the
same number of threads per core and the same amount
of remote communication significantly impact perfor-
mance in many cases. In addition, we demonstrate
that the message flow needs to be considered as it also
has a noticeable impact on simulation performance.

• Communication-aware partitioning is critical:
We demonstrate that it is critical to properly partition
the simulation model to minimize the number of differ-
ent cores with which a thread communicates. Several-
fold performance improvement can be realized if most
communications are limited to only a cluster of cores.

• Detailed performance characterization: We per-
form a detailed evaluation of multithreaded ROSS on
an Intel KNL processor. We investigate the perfor-
mance sensitivity to a number of simulator parame-
ters, including percentage of remote events, synchro-
nization period, event processing granularity, thread
placement and workload distribution policies. We also
compare simulation on KNL against KC and commod-
ity Xeon processors and show that KNL significantly
outperforms them.

The rest of the paper is organized as follows. Section 2
provides the background on Intel’s Knights Landing archi-
tecture and describes our evaluation and experimentation
methodology. The results of our experiments are presented
and discussed in Section 3. Section 4 reviews the related
work and we offer our concluding remarks in Section 5.

2. BACKGROUND AND EXPERIMENTAL
SETUP

In this section, we overview ROSS simulator, review the
Intel Knights Landing architecture and describe our exper-
imental setup.

2.1 Overview of ROSS Simulator
PDES is a parallel implementation of DES [12], extend-

ing the performance and capacity advantages of parallel pro-
cessing to this important application. The key idea behind
PDES is to break the simulation model into multiple Logical
Processes (LPs) and allow these LPs to execute in parallel
on multiple processing cores. The LPs communicate with
each other by exchanging time-stamped event messages [12,

2



13]. The LPs have their own local event queues and pro-
cess the events from these queues in time-stamped order.
Some events are generated locally within the LP, while other
events are generated remotely and the timing of the event
arrival to a destination LP depends on the physical delays
that the message encounters while traversing the on-chip in-
terconnects (for core-to-core communication within a chip)
or network links (for cluster-level communication).

Due to the event dependencies between the LPs and phys-
ical delays in the system, a PDES simulation engine needs to
use synchronization mechanism to ensure that events are ex-
ecuted at different LPs in correct time-stamped order. Two
types of synchronization algorithms are used in PDES sys-
tems: conservative and optimistic. To support recovery to a
safe state upon a rollback in an optimistic simulator, state
checkpoints during simulation run have to be created. These
event histories can grow large over time and the ones that
are no longer needed must be garbage collected. To achieve
this, the Global Virtual Time (GVT) is periodically com-
puted to compute the global progress of the simulation.

For the experiments in this paper, we use ROSS [11] op-
timistic PDES simulator. To effectively exploit the shared
memory available on Knights Landing processors, we use
multi-threaded implementation of ROSS [5], where the sim-
ulation processes are implemented as threads, as opposed
to processes, requiring no expensive MPI-based communica-
tions and directly exploiting shared memory hierarchy.

PDES simulations have to be driven by benchmarks. The
most popular and versatile benchmark for evaluating PDES
is the classical Phold model. Phold is a synthetic, but ver-
satile benchmark that allows characterization of the perfor-
mance of applications under different scenarios. For exam-
ple, it allows control of the percentage of events generated lo-
cally to the same core and the percentage of events generated
for the other cores (thus, requiring inter-core communication
and delays). One can also alter the event processing gran-
ularity (EPC) to control how much CPU processing is re-
quired for each event. As a result, this allows us to evaluate
systems with different computation/communication balance
(by varying the EPC) and with different execution locality
patterns (by varying the percentage of remote events).

2.2 Overview of the Intel Knights Landing
Architecture

The Intel Knights Landing [8, 14] is the second generation
of the Many Integrated Core (MIC) architecture designed to
be used as both a standalone processor and a co-processor
for High Performance Computing (HPC) applications.

Knights Landing processors [15] feature up to 72 cores,
each capable of executing 4 simultaneous threads. The cores
run at a maximum frequency of 1.3 GHz and can achieve
better than 6000 Gflops/s single precision and 3000 Gflop-
s/s double precision when the vector processing units are
utilized fully.

A major upgrade to the Knights Corner architecture,
Knights Landing adds branch prediction and out-of-order
execution logic to each core. Vector Processing Units (VPU)
have been increased to 2 per core. Also, a 1 Mbyte L2 cache
is now shared between every core pair, forming a tile. Fi-
nally, KNL systems are augmented with 16 GB on-package
MCDRAM memory module. In its default mode, it acts

as the L3 cache to the DDR4 memory. Our version of the
Knights Landing processor has 64 cores and 96 GB of DDR4
memory. The high-level diagram of the Knights Landing
architecture used for this study (not including the DDR4
memory) is shown in Figure 1.

Figure 1: Intel Knights Landing Architecture

KNL processor is commonly socketed and utilized as a
standalone CPU as is the case in our experimental system.
KNL runs standard Linux distributions as a full host com-
puter thus eliminating the idiosyncrasies of accelerator in-
terfacing.

2.3 Experimental Setup and Metrics
Table 1 summarizes the configurations and hardware de-

tails of the host Xeon processor and the Xeon Phi Knights
Corner (KC) and Knights Landing (KL) processors. Note
that Xeon and Knights Corner systems are only used for
comparison purposes in the results presented in Section 3.8.

For all presented experiments, we execute the multi-
threaded version of ROSS simulator driven by the Phold
benchmark. In the Phold benchmark, we vary the thread
count, the percentage of remotely generated events, the
GVT interval, the event processing granularity (EPC), and
the thread placement and assignment policies. Our goal is to
understand the behavior and scaling trends of the ROSS sim-
ulator while executing on a single Knights Landing node. We
also directly compare performance against a 12-core Xeon
processor and a Knights Corner system (the previous gen-
eration of Xeon Phi).
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Platform Xeon KC KL

Model E5-2620 5110p 7230

Frequency 2.40GHz 1.053GHz 1.3GHz

# of Cores 12 60 64

Memory Type DDR4 2133 GDDR5 DDR4 2400

Memory Size 60G 8G 96GB + 16GB

OS CentOS 6.6 uOS CentOS 7.2

Compiler Intel Parallel Intel Parallel Intel Parallel

Studio Cluster Studio Cluster Studio Cluster

V 2017 V 2017 V 2017

Table 1: Details of Experimental Platforms

We report the performance results in terms of committed
events per second. As we increase the number of process-
ing nodes, we maintain the number of starting events per
node, thus proportionately increasing the total number of
events generated by the simulator. If the underlying system
is capable of efficiently keeping up with this load without
incurring additional delays, we can expect the committed
event rate to also show improvements commensurate with
the increase in the number of nodes. This is known as weak
scaling [4]. Our results and scaling trends clearly indicate
the potential for using Knights Landing processors as effi-
cient engines for running parallel simulations. A summary
of the simulation parameters is shown in Table 2.

Variable Value Description
Remote % 0 - 100 Proportion of Events

Local vs Remote
EPC 0, 100, 500 Event Processing

Time
Initial Events 128 * # Threads Number of events

to start simulation
GVT Period 32, 128, 512 Synchronization

frequency

Table 2: Simulation Parameters

3. EXPERIMENTAL RESULTS AND DIS-
CUSSION

We present our analysis along multiple dimensions. First,
we analyze in detail the scaling trends and the impact of mul-
tiple simulation parameters (such as the percentage of re-
mote events, the event processing granularity, and the GVT
period) on the performance of ROSS simulator on KNL. We
first perform these studies assuming the round-robin assign-
ment of threads to cores, and then study different thread
assignment and placement policies. We first consider simple
scaling where at most one thread is placed on a core, and
then we investigate the impact of multithreading support by
executing multiple threads per core, up to 256 threads total.

3.1 Performance under Round-Robin
Scheduling

We first analyze ROSS performance under the Round-
robin assignment of threads to cores. While this assignment
scheme is the most natural, it can create uneven loading
of the individual cores at large thread counts in situations
where multiple threads are placed on some cores. We quan-

tify the performance problems arising from that effect in
this section. The issue of uneven core loading on the same
chip becomes especially important in many-core architec-
tures where both the likelihood of such scenario and its im-
pact on performance increase. We also analyze the impact
of thread affinity on the performance.

3.1.1 Single Thread per Core: Impact of Thread
Affinity

In our first experiment, we analyze the committed event
rate of ROSS executed on KNL for different percentages of
events that are generated remotely. For this experiment, we
assume a fairly large GVT interval of 512 (a parameter in
ROSS) and the event processing granularity (EPC) of zero.
A large GVT interval reduces the overhead of GVT compu-
tation (which is significant on many-core architecture such
as KNL, as we demonstrate later), but increases the roll-
back cost. The low EPC value implies that event processing
does not consume any CPU time, other than generating a
new event and sending it to a random destination LP. This
represents an extreme case of a communication-dominated
model. In our experiments, we used a weak scaling model,
where the number of simulation events increases proportion-
ately with the number of threads. The metric of interest in
this case is the total number of committed events per sec-
ond. In a scalable execution scenario, the addition of extra
cores/threads will translate into commensurate increases in
this metric.

We present the results for two cases. In the first case, we
scale the simulation up to the available number of cores by
placing at most one simulation thread on each core. In the
second case, we exploit the presence of simultaneous mul-
tithreading support within each core and scale simulation
upto the maximum number of threads supported by the core
(up to 4 threads per core). Since the trends and observations
from these experiments are quite different, we present these
results using separate figures and analyze them separately.

The results for simulations upto 64 threads are presented
in Figure 2. The total committed event rate is depicted
as a function of the number of threads for different remote
percentages. In this experiment, we used the model with
zero percent remote events (that is, all events are generated
locally and the cross-core communication is only needed for
computing GVT), and another model with 5% remote events
to gauge the impact of remote communication. The results
are presented for each case with and without thread affinity
setting. When thread affinity is set, each simulation thread
is pinned to a particular core throughout its execution, thus
promoting the exploitation of caches and locality of refer-
ences. When thread affinity is not set, threads can bounce
across different cores following context switches and CPU
yielding events.

For executions up to 64 cores, the simulation performance
scales well for both 0% and even 5% remote events, although
better scaling and substantially higher performance is ob-
served for 0% remote events, as expected. Specifically, for
models with affinity set, we observed a 34X speedup com-
pared to sequential simulation for 0% remote event case,
and only 20X speedup for 5% case. In terms of direct com-
parison, the case with 0% remote is roughly twice as fast
as the case with 5% remote for 64-way simulations. It is
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Figure 2: Committed Event Rate with and without affinity,
0% & 5% Remote

still impressive to observe that even simulations with 5% re-
mote events enjoy solid scaling on KNL architecture up to
64 cores, which is in sharp contrast to the results obtained
for similar scale on multi-chip systems [1].

Another important observation from the results presented
in Figure 2 is that thread affinity matters and it significantly
improves performance for simulation models with and with-
out remote events at larger thread counts. For the case with
no remote events, there is virtually no performance differ-
ence between the runs with and without affinity for thread
count below 16. As the simulation thread count increases
above 16, the system with thread affinity starts to outper-
form the one without it, and the performance gap widens
as the number of simulation threads increases. For 64-way
simulation, we observed 35% performance benefits of affin-
ity. The reason behind such behavior is that the increase in
the number of simulation threads and utilized cores leaves
fewer cores idle and increases the likelihood that a particular
thread will be reassigned to a different core upon a context
switch or a CPU yielding event. We observe similar trends
for the simulation model with 5% remote events, but this
time the divergence starts at a lower point (about 8 cores),
performance with no affinity flattens much earlier, and the
relative advantage of affinity is even higher at large core
counts (for example, the difference is 88% for 64-way simu-
lations). Therefore, in the rest of the paper we assume fixed
thread affinity, unless indicated otherwise.

3.1.2 Single Thread per Core: Impact of Remote
Communication

Figure 3 compares the scaling of fixed-affinity models for
different values of remote percentages when the number of
threads is varied from 2 to 64, with at most one simula-
tion thread per physical core. The simulation performance
scales linearly all the way to 64 cores for the fraction of re-
mote communications up to 10% - this is quite an impressive
result showing better scalability than on multi-chip systems
of similar scale. Of course, as seen from the figure, the
slope of the performance graphs decreases with higher re-
mote percentages, because cross-core communication starts
to become a more dominant factor. At 25% remote events,
the simulation scales to about 32 cores, at which point the
performance curve flattens. For the models with 50% re-
mote communications and above, there is no scalability and

adding more cores/threads does not result in higher perfor-
mance. In summary, results presented in Figures 2 and 3
lead to the following key observations:

Observation 1: If a simulation model can be properly
partitioned so that the percentage of remotely generated
events is kept at 10% or below (for the parameters used in
this study), almost linear performance increases of as much
as 34X can be realized on a KNL system as the simulation
scales to 64 threads when at most one thread is placed per
core. As the simulation scales to 128 threads, performance
continues to increase to as much as 44X as shown in the
following section. If partitioning can not achieve this level
of locality, then performance tapers off earlier or the model
does not scale at all.

Observation 2: Thread affinity is an important feature
for achieving higher performance of ROSS on a KNL system.
Specifically, when threads are pinned to the individual cores,
performance improvements in the range of 35% to 88% are
realized for 64-way simulation. Furthermore, the advantages
of set affinity increase with larger thread counts and larger
fraction of remote communication.

Figure 3: Committed Event Rate For Different Remote Per-
centages

3.1.3 Scaling with Multiple Threads per Core
The results presented above demonstrate scaling trends

for up to the number of available cores. Next, we investi-
gate the opportunities to extract further performance from
a KNL chip by increasing the number of threads placed on
each core, thus exploiting SMT support available within
each core. Figure 4 extends the results of Figure 2 by
increasing the number of simulation threads to 256 (four
threads for each core) in a round-robin assignment of threads
to cores.

As seen from the results, even a small remote percentage
has a dramatic impact on the simulation event rate. With
zero percent remote events (i.e. all generated events are
targeting the same LP), the simulation event rate first grows
linearly with the number of cores up to the point where
the number of simulation threads exceeds the number of
cores (which happens at 64 cores). For simulations with no
remote events, as the number of threads exceeds the number
of physical cores, the simulation commit event rate drops
because of the imbalanced core loading, and the simulation
progress is limited by slow threads. Eventually, performance
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Figure 4: Committed Event Rate with and without affinity,
0% & 5% Remote

recovers as more threads are added, but the nature of this
recovery depends on weather or not thread affinity is used.

With thread affinity control, the simulation threads that
are pinned in a way that they share physical cores become
slower. As a result, they consistently lag in performance and
impede the simulation progress, because all threads have to
be periodically synchronized to compute GVT. As can be
observed from the graph with thread affinity, as we move
from 64-way to 65-way simulation, performance drops by
14%, which roughly matches the performance drop that a
single thread experiences when it simultaneously executes
on a core with another thread. As we add more simulation
threads, less cores are being wasted waiting at GVT interval
for slower threads and the overall simulation performance
gradually improves. It takes 24 more cores to match per-
formance of a 64-thread simulation, and the performance
peak is reached at 128 threads (two threads per physical
core). After that, performance again drops sharply due to
further core imbalance and slowly recovers. Performance
never reaches the level recorded at 128 threads due to over
utilization of cores beyond that point.

It is also interesting to compare this case with simulation
results where thread affinity is not set and threads can mi-
grate among the physical cores across context switches. In
this case, performance grows more gradually and there is
only a very small drop from 64 to 65 cores that is quickly
recovered. This is because no single simulation thread be-
comes a constant bottleneck and threads are not tied up by
slower cores. However, due to poorer exploitation of caches
in simulation with no thread affinity, the absolute perfor-
mance is always below the case where affinity is used. Sim-
ilar trends can be observed for the case with 5% remote
events, although unbalanced execution creates additional
rollbacks in this case, which degrades performance further
and makes recovery from performance dips more challeng-
ing. In this case, the best performance is observed with 64
threads, the case with 128 threads almost matches it.

For simulation models with non-zero remote percentage,
the additional problem due to uneven progress of the simu-
lation threads is the increased probability of straggler events
and rollbacks. Despite much lower values of committed
event rates at non-zero remote percentages, those simula-

tions also show slower performance increases with the in-
crease in thread count.

3.2 Impact of Balanced Loading
To address performance problems of round-robin thread

assignment, we studied alternative thread placement
schemes that preserve balanced core loading when the num-
ber of threads exceeds the number of available physical
cores. Figure 5 and Figure 6 show the impact of these
schemes on performance. Specifically, we implemented two
such schemes, called linear and balanced. Linear assignment
assigns threads to cores in a way that consecutively satu-
rates individual cores. For example, the first four threads
are placed on core 0, the next four threads are placed on
core 1 and so on. Balanced assignment scheme evenly dis-
tributes all simulation threads across all cores, such that the
number of threads per core depends on the total number of
threads in simulation. For example, for a 96-way simula-
tion, 48 cores (cores numbered 0 through 47) will execute
two threads each, and the other 16 cores will remain idle.

We present the results for the scenario with no remote
events (Figure 5) and 10% remote events (Figure 6). In
the case of no remote events, the performance dip due to im-
balanced core loading is encountered only because of GVT
computation cycle. The impact is modest, only about 10%
of performance is lost with round-robin assignment when
we start exceeding the number of cores. Note that bal-
anced and round-robin assignments perform about the same,
but linear assignment exhibits smoother growth with lower
performance at smaller thread counts. This is because at
smaller thread counts, a few CPU cores remain over utilized
(executing 4 threads each) while others remain idle. For
the execution scenario with 10% remote events (Figure 6),
the performance drop after 64 cores is much more signifi-
cant - about 50% of performance is lost with round-robin
after we reach 64 and then 128 simulation threads. This
is because a non-trivial amount of remote communications
causes straggler events, increases the number of rollbacks
due to asynchrony in simulation progress, and decreases
the simulation efficiency. Balanced execution matches the
round-robin performance peaks at multiples of 64 threads,
but provides better performance at all intermediate points.
As in the case with no remote communication, performance
of linear scheme lags behind the other two, but the graph is
more smooth without rigid peaks and valleys. At very large
thread counts, all three schemes converge to the same values.
From these results, we make the following observation:

Observation 3: To avoid potential performance prob-
lems, it is important to balance the core usage and assign
each core the same number of threads. While the perfor-
mance peaks at discrete points match the performance of a
round-robin scheme, balanced loading provides significantly
better performance for the intermediate points, and the per-
formance difference increases with higher percentage of re-
mote events.

From all performance results presented up to this point,
the following observation can be made in terms of optimal
core loading for the models considered so far:

Observation 4: When the percentage of remote events
is significant (e.g. above 10%), it is counter-productive to
place more than one thread to a physical core. With lower
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Figure 5: Committed Event Rate for KNL for Different
Placement Schemes, 0% Remote

Figure 6: Committed Event Rate for KNL for Different
Placement Schemes, 10% Remote

remote percentage, a higher performance can be achieved
with two threads per core, but the thread-to-core assignment
has to be balanced. No model with small event processing
granularity (EPC of 0) features performance improvements
beyond two threads per core.

3.3 Impact of Event Processing Granularity
Figure 7 shows the impact of the event processing granu-

larity (EPC) on the simulation commit event rate for differ-
ent number of threads with no remote events. The results
are shown for the large GVT value of 512. Three different
EPC values are compared - 0, 100 and 500. Larger EPC
values add longer processing loops inside each event. In all
three cases, we used balanced assignment of threads to cores,
as described previously.

As expected, the event processing rate decreases as
the EPC increases and the simulation becomes more
computationally-bound. However, the performance scala-
bility curves exhibit quite different behavior depending on
the EPC value. For the EPC value of zero, the maximum
performance is achieved with 2 threads per core and fur-
ther increase in the number of threads does not increase the
event commit rate. In contrast, as the EPC value increases
and simulation becomes more computationally bound, plac-
ing additional threads on the cores results in further per-

formance gains - the highest performance is observed for
256-way simulation for both 100 and 500 EPC values.

Figure 7: Committed Event Rate for EPC values of 0, 100
& 500 with no Remote Communication

Figure 8 shows the event commit rate for different EPC
values (0, 100 and 500) for the situation where 10% of
events are generated remotely. In this case of 10% remote
events, the balance between computation and communica-
tion is tilted towards communication for the EPC of 0. Con-
sequently, as seen from the results of Figure 8, the scenario
with EPC of 0 and 10% remote events produces more roll-
backs, lower efficiency and lower event commit rate at larger
thread counts; the performance is highest at 64 threads in
this case and drops continuously after that. In contrast,
even with 10% remote events, simulations with 100 and
500 EPC continue to scale up to the maximum number of
threads, although the performance increases at larger thread
counts are lower than in the case with no remote communi-
cation. A somewhat counterintuitive result demonstrating
the complex nature and the inter-dependencies of simula-
tion parameters is that after about 150 threads the absolute
performance of simulation with EPC of 100 exceeds that of
simulation with EPC of 0, despite the former requiring 100
times longer processing time for each event compared to the
latter. The reason is that longer processing delays provide
more opportunities for the remote events to be generated
on time, thus decreasing rollbacks and increasing simulation
efficiency — the execution progresses more predictably and
steady in this case.

In summary, our experiments with various EPC values
and remote communication frequencies lead to the following
observation:

Observation 5: As event processing time increases and
simulation becomes more computation-bound, the commit
event rate scales with the number of threads all the way to
the maximum number of threads that can be executed on
a KNL chip (256). More surprisingly, the absolute perfor-
mance of simulations with higher EPC can be higher than
simulation with lower EPC at large thread counts for models
with substantial remote communication.

3.4 Impact of GVT Period
Next, we analyze the impact of the GVT period on the

simulation performance. Figures 9 and 10 depict the simu-
lation event rate for three different GVT intervals: 512, 128
and 32. Results are presented for the remote percentages
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Figure 8: Committed Event Rate for KNL for EPC values
of 0, 100 & 500 for the Remote Percentage of 10%

of 0% and 10% and the EPC value of 0. Larger GVT val-
ues reduce the frequency of checkpoint creation and GVT
update cycles, but increase the memory pressure (because
larger amount of state needs to be maintained between con-
secutive checkpoints) and make individual rollbacks more
expensive. On the other hand, smaller GVT intervals re-
quire less state information to be maintained for rollback
recovery, but increase the overhead of GVT maintenance
because GVT iterations are needed more frequently.

As seen from the presented results, in all cases that we
evaluated, larger GVT periods resulted in significantly bet-
ter performance, indicating that GVT maintenance is an
expensive operation. For example, according to Figure 9,
there is almost 5X performance improvement between the
GVT periods of 32 and 512 for 256-way simulation. There
is also about 2X performance difference between the GVT
periods of 128 and 256. The reason for such drastic impact
is that GVT updates in ROSS rely on expensive all-reduce
operations that involves full group communication and syn-
chronization across simulation threads to agree on the min-
imal value of their local virtual times. At the low level,
this involves chip-wide cache coherence traffic and OS inter-
vention, leading to significant slowdowns. While more effi-
cient asynchronous implementations of the GVT algorithm
are possible [16, 17], their exploration and adaptation for
ROSS framework running on KNL is left for future work.
The results shown in Figures 9 and 10 lead to the following
observation.

Observation 6: Synchronous GVT updates on the KNL
architecture are relatively expensive. At the same time,
memory capacity is not a limitation since the KNL processor
has access to the entire system memory. Therefore, larger
GVT intervals provide better performance.

3.5 Impact of Cache Sharing
Next, we investigate the impact on cache sharing between

threads on performance. The Knights Landing processor has
a two-level cache hierarchy. Each core has its own private
Level 1 (L1) cache but shares its Level 2 (L2) cache with a
neighboring core as part of a tile. To investigate the perfor-
mance impact of this cache architecture, we evaluated three
communication schemes that we call same node, same tile
and tile pairs. In same node mode, each thread communi-
cates with another thread running on the same core — this

Figure 9: Committed Event Rate for Different GVT Periods,
no Remote Events

Figure 10: Committed Event Rate for Different GVT Peri-
ods, 10% Remote Events

model maximizes the exploitation of the L1 cache. In same
tile pattern, each thread communicates with a thread run-
ning on an adjacent (buddy) core — in this case the data can
come from the shared L2 cache. With tile Pairs, each thread
communicates with a thread running on a core in the next
tile, requiring communication beyond the local L1 and L2
caches. We note that to realize same node pattern, multiple
threads have to be placed on the same core. For example,
for a 64-way simulation, 32 cores will have two threads each
and the other 32 cores will be unused. Therefore, the posi-
tive effect of L1 cache sharing is offset by overutilization of
cores and reduced processing throughout in general.

Figure 11 shows the performance of our three communi-
cation schemes scaling with at most one thread per core up
to 64 cores. All events are generated remotely in this model.
As one would expect, communication in tile pairs mode is
slower than communication that exploits the L1 or L2 cache.
However, there is negligible difference between communica-
tion utilizing the L1 cache (same node) and the L2 cache
(same tile) — in this case exploitation of L1 caches for faster
communication is offset by the extra processing load on the
cores. At the same time, the same tile model allows for the
low-latency communication through L2 caches without core
overloading.

Figure 12 extends the data to 256 simulation threads in-
troducing additional core loading. The trends seen above are
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Figure 11: Committed Event Rate for Communication Pat-
terns Using Same Node, Same Tile and Tile Pairs Policies
at 100% Remote Percentage and EPC of 0 up to 64 Threads

Figure 12: Committed Event Rate for Communication using
Same Node, Same Tile, Tile Pairs and Next Tile Policies
upto 256 Threads

preserved until thread count reaches 128, after that point a
different behavior is observed. First, there is a precipitous
drop in performance of same node pattern (Figure 12). The
reason for the drop is that the pressure on a small L1 cache
further increases with more co-located threads, resulting in
more cache misses and less advantages due to cache shar-
ing. Furthermore, we observe that same tile and tile pairs
converge in performance as the number of threads increases.
The following observation summarizes our cache-related ex-
periments.

Observation 7: For simulations up to 64 threads, at-
tempting to exploit L1 cache for low-latency communication
by collocating communicating threads on the same core does
not result in performance gains due to the extra core loading.
However, limiting communication to the same tile without
increasing core loading (thus exploiting the L2 cache) im-
proves the performance by almost 50% compared to the case
when communications cross the tile boundary. As the thread
count further increases and L2 cache capacity is exceeded,
the advantages of tile-level communication are lost.

3.6 Impact of Partitioning, Clustering and
Message Flow

As demonstrated in previous sections, remote communi-
cation can have a significant impact on performance. One
of the approaches to minimize amount of remote communi-
cations is model partitioning that localizes communication
to small cluster of nodes [18]. In this section, we evaluate
the impact of such partitioning on performance. We varied
our simulated configurations from 128 2-node clusters to a
single 256-node cluster, the latter being equivalent to non-
clustered operation considered in previous sections. We eval-
uated three message flow algorithms within these clusters -
a directional flow pattern, a random message flow pattern,
and a bidirectional flow pattern.

The directional pattern sends all message traffic to the
next node in the cluster with the final node in the cluster
wrapping messages back to the first. In the phold model, af-
ter a message is sent at initialization, messages are only sent
after being received. Thus, this represents a very balanced
and uniform message flow pattern.

Conversely, the random message flow pattern has an equal
chance of the message destination being any node within
the cluster. Should the destination end up being the source
node, a different node in the cluster is picked using the direc-
tion pattern outlined above. This is done to ensure message
traffic is to a different core and is thus exercising the same
communication path.

The bidirectional pattern alternates message traffic be-
tween previous and subsequent nodes in the cluster with the
destinations decrementing and incrementing respectively.
The destinations are wrapped around to remain within the
cluster. Similar to directional flow, this represents a very
balanced and uniform message flow pattern, but also uti-
lizes more communication channels.

As seen from the results of Figure 13, clustering offers
as much as 3.5X speedup when compared with random non-
clustered communication. We also observe that message flow
has an impact on communication performance, although less
than the effects of cluster size. At the point of 2 nodes per
cluster, the destination is the same regardless of the algo-
rithm as there is only one valid destination. Interestingly,
directional flow is the slowest of the three at this cluster size
due again to increased GVT all reduce processing. However,
as the node size increases beyond 4 nodes per cluster, di-
rectional communication provides a performance advantage
over random and bidirectional communication, resulting in
a 25% gain even at 256 node cluster size (this point rep-
resents non-clustered communication). In summary, these
results lead to the following observation:

Observation 8: Simulation model partitioning and lim-
iting communication to a small number of adjacent cores
can lead to significant improvement in simulation perfor-
mance, especially for small cluster sizes, upto 3.5X in some
scenarios. This is achieved by only limiting the size of com-
municating clusters, and not reducing the remote percentage
(which still remains at 100% for these results).

3.7 Impact of Communication Distance with
at Most One Thread per Core

Additionally, for the scenarios with at most one thread
per core, we implemented two policies for placing threads
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Figure 13: Committed Event Rate for KNL for Different
Message Traffic Patterns Within Clusters of Varying Sizes

among the cores: distant placement and nearby placement.
In the distant policy, the communicating threads are placed
as far from each other as possible thus requiring the longest
number of links to be traversed on the mesh interconnect
for communication. Conversely, in the nearby policy, the
threads are placed as close as possible to each other to min-
imize the number of link traversals in the mesh. The intent
of these experiments is to gauge the impact of thread place-
ment on the interconnect performance.

Figure 14: Committed Event Rate for KNL for Nearby and
Distant Placement at 100% Remote Communication and
EPC of 0

We compared the performance of two placement policies
at 100% remote events, as this provides the highest com-
munication intensity between threads and stress-tests our
scenarios. As seen from the results of Figure 14, thread
placement has little effect on the committed event rate. We
observe that even when communication between threads has
to traverse the entire length of the interconnect, there is no
change in performance. This alludes to the high perfor-
mance nature of the Knights Landing interconnect design.
Similar conclusions were made in the study of [7] for the
Tilera processor.

Observation 9: The mesh interconnect is not the limit-
ing factor in performance and is not saturated during PDES
execution even under stress-testing experiments with distant
placement described above. This also corroborates previ-
ously reported conclusions for Tilera many-core chip [7].

3.8 Performance Comparison with Knights
Corner and 12-core Xeon

Intel Xeon Phi architectures provide interesting opportu-
nities to partition, map, and execute PDES simulations on
many cores within the same chip. However, while demon-
strating impressive speedups against own sequential execu-
tion, some previous manycore architectures failed to match
the raw performance achieved on a commodity Xeon proces-
sor. In this section, we directly compare the performance of
PDES on a Xeon dual socket 12-core system with Knights
Corner and Knights Landing Xeon Phi architectures.

Figure 15: Performance Comparison of KNL, KC and 12-
core Xeon for 0% Remote Events

Figure 16: Performance Comparison of KNL, KC and 12-
core Xeon for 10% Remote Events

Figures 15 and 16 show the performance of PDES on the
three processors for 0% and 10% remote communication re-
spectively. These results are shown for up to 64 threads,
we expand to more threads later. As expected, the Xeon
peaks at 12 nodes and begins a steeper decline at 24 threads
when its hardware thread count is exceeded (Xeon supports
2-way hyperthreading). KNL, as reported earlier in this pa-
per, scales almost linearly to 64 threads. KC, though linear,
fails to achieve the peak event rate of Xeon resulting in 40%
lower performance for the 10% remote case. Conversely,
KNL achieves a 32% performance increase over Xeon for
the 10% remote communication case and 51% increase for
simulations with no remote events.
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Figure 17: Performance Comparison of KNL, KC and 12-
core Xeon

As we scale past 64 nodes, shown in Figure 17, KC and
KNL continue to provide performance increases up to 128
threads. It is only at this point that KC matches the perfor-
mance of the 12-core Xeon. At 128 threads, KNL expands
its performance gain over the Xeon to 84%, and the per-
formance of KNL stays about the same as the number of
threads grows beyond 128. These results are summarized
by the following observation.

Observation 10: Xeon Phi architectures are well suited
to PDES simulation. Though Knights Corner processor ex-
hibits at best equal performance to commodity Xeon pro-
cessors, Knights Landing provides almost a 2X performance
increase and retains scalability to high number of threads.

4. RELATED WORK
The works of [5, 6] investigated several optimizations

within multithreaded PDES simulator to achieve scalability
on relatively smaller-scale platforms such as Intel’s Core-
i7 and AMD’s Magny-cours. The work of [7] investigated
PDES performance on the Tilera processor, whose archi-
tecture is close in spirit to the KNL design studied in this
paper. While the results of [7] demonstrate excellent scala-
bility of the simulation and the capability of the interconnec-
tion network to sustain high throughput even under heavy
pressure, no comparison against the simulation results on
a traditional high-frequency multicore processor were pro-
vided. Therefore, it is difficult to gauge the practicality of
using the Tilera system for running PDES based on these
results and relatively low performance of Tilera cores. Our
study corroborated some of the results achieved on Tilera,
specifically that longer communication distance on the in-
terconnect do not impact ROSS performance.

In the supercomputing domain, Bauer et al. designed scal-
able PDES for IBM’s Blue Gene supercomputer [4]. To
achieve almost linear speed-up, they rely on reverse com-
putation - a mechanism that replaces state saving that is
built into ROSS simulator. Reverse computation essentially
undoes the computations that need to be rolled back by
performing reverse operations (for example, to roll back ad-
dition, subtraction is performed). If the rollbacks are infre-
quent (as in the case of the models considered in [4]), reverse
computation is more efficient than state saving, because the
overhead of computing GVTs and creating checkpoints is

eliminated. In this paper we evaluate a range of models,
including the ones with high remote percentage rate, high
rollbacks and low efficiency. Consequently, we do not use
reverse computation, but rely on traditional state saving
mechanism which is implemented in ROSS.

The work of [19] is the follow-up to [4], reporting impres-
sive event processing rates on Sequoia BlueGene/Q super-
computer. The recent effort of [10] evaluated PDES perfor-
mance on Knights Corner processor. The main conclusion
of [10] is that Knights Corner does not outperform the host
Xeon processor in terms of event rate unless vector units are
fully utilized, and increasing the number of threads does not
alter that trend - this is corroborated by our comparison re-
sults shown in Section 3.8. The reasons behind such subpar
performance are slower in-order cores and limited amount of
physical memory on the accelerator card.

Several other studies investigated the performance of vari-
ous parallel applications on Xeon Phi (Knights Corner) plat-
forms [20, 21, 22, 23, 24, 25]. However, all of these applica-
tions are very different from PDES and in general offer more
parallelization opportunities. Evaluating PDES on KNL
provides an insight of how similar fine-grain communication-
dominated applications will be expected to perform on these
platforms.

5. CONCLUDING REMARKS
In this paper, we performed a comprehensive characteriza-

tion of PDES performance on the Intel Knights Landing pro-
cessor in an effort to understand whether this architecture
is an attractive hardware platform for running distributed
simulations. Specifically, we studied performance sensitiv-
ity of PDES to many key simulation parameters, including
percentage of remote events, event processing granularity,
GVT period, thread placement strategies and communica-
tion patterns. In general, the results of our evaluations are
very promising demonstrating significant speedup compared
to sequential execution (up to 44X) and also performance
improvements compared to both Knights Corner and com-
modity Xeon processors (up to 2X).

Our results indicate that the best performance on KNL
processors is achieved when thread affinity control is used,
at most two threads are placed on each core and physical
cores are evenly balanced. We showed that simulation scales
well even in the presence of significant fraction of events that
are generated remotely and that scaling continues for larger
thread counts with increased event processing granularity.
We quantified the benefits of localizing communication to
smaller clusters of cores and showed that a performance im-
provement of up to 3.5X can be achieved compared to all-
to-all communication models. We also demonstrated that
GVT computation on a KNL system is expensive thus fa-
voring simulation setups with larger GVT periods.

Our future work will consider extension of this study to
clusters of KNL processors and exploitation of the specifics
of memory organization and clustering modes.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the

AFOSR under Award No. FA9550-15-1-0384 and DURIP
award FA9550-15-1-0376.

11



7. REFERENCES
[1] S. Das, R. Fujimoto, K. Panesar, D. Allison, and

M. Hybinette, “GTW: a Time Warp system for shared
memory multiprocessors,” in Proceedings of the 1994
Winter Simulation Conference (J. D. Tew,
S. Manivannan, D. A. Sadowski, and A. F. Seila, eds.),
pp. 1332–1339, Dec. 1994.

[2] R. M. Fujimoto and M. Hybinette, “Computing global
virtual time in shared-memory multiprocessors,” ACM
Transactions on Modeling and Computer Simulation,
vol. 7, no. 4, pp. 425–446, 1997.

[3] R. Fujimoto and K. Panesar, “Buffer management in
shared-memory Time Warp system,” in Proceedings of
the 9th Workshop on Parallel and Distributed
Simulation (PADS 95), pp. 149–156, June 1995.

[4] D. Bauer, C. Carothers, and A. Holder, “Scalable time
warp on bluegene supercomputer,” in Proc. of the
ACM/IEEE/SCS Workshop on Principles of
Advanced and Distributed Simulation (PADS), 2009.

[5] D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev,
“Optimization of parallel discrete event simulator for
multi-core systems,” in International Parallel and
Distributed Processing Symposium, May 2012.

[6] J. Wang, D. Jagtap, N. Abu-Ghazaleh, and
D. Ponomarev, “Parallel discrete event simulation for
multi-core systems: Analysis and optimization,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1574–1584, 2014.

[7] D. Jagtap, K. Bahulkar, D. Ponomarev, and
N. Abu-Ghazaleh, “Characterizing and understanding
pdes behavior on tilera architecture,” in Workshop on
Principles of Advanced and Distributed Simulation
(PADS 12), July 2012.

[8] G.Chrysos, “Intel xeon phi x100 family coprocessor -
the architecture,” in Intel white paper, 2012.

[9] “Tilera TILE64 processor,” 2008. Documentation from
Tilera Website http://www.tilera.com.

[10] H. Chen, Y.Yao, and W. Tang, “Can mic find its place
in the world of pdes?,” in Proceedings of International
Symposium on Distributed Simulation and Real Time
Systems (DS-RT), 2015.

[11] C. Carothers, D. Bauer, and S. Pearce, “ROSS: A
high-performance, low memory, modular time warp
system,” in Proc of the 11th Workshop on Parallel and
Distributed Simulation (PADS), 2000.

[12] R. Fujimoto, “Parallel discrete event simulation,”
Communications of the ACM, vol. 33, pp. 30–53, Oct.
1990.

[13] D. Jefferson, “Virtual time,” ACM Transactions on
Programming Languages and Systems, vol. 7,
pp. 405–425, July 1985.

[14] A. S. amd R. Gramunt, J. Corbal, H. Kim, K. Vinod,
S. Chinthamani, S. HUtsell, R. Agarwal, and Y. Liu,
“Knights landing: Second-generation intel xeon phi
product,” in IEEE Micro, 2016.

[15] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim,
K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal,
and Y.-C. Liu, “Knights landing: Second-generation
intel xeon phi product,” IEEE Micro, vol. 36, no. 2,
pp. 34–46, 2016.

[16] S. Srinivasan and P. F. Reynolds Jr, “Non-interfering
gvt computation via asynchronous global reductions,”
in Proceedings of the 25th conference on Winter
simulation, pp. 740–749, ACM, 1993.

[17] G. Chen and B. K. Szymanski, “Dsim: scaling time
warp to 1,033 processors,” in Proceedings of the 37th
conference on Winter simulation, pp. 346–355, Winter
Simulation Conference, 2005.

[18] K. Bahulkar, J. Wang, N. Abu-Ghazaleh, and
D. Ponomarev, “Partitioning on dynamic bahavior for
parallel discrete event simulation,” in 26th
IEEE/ACM/SCS Workshop on Principles of Advanced
and Distributed Simulations (PADS), July 2012.

[19] P. D. Barnes Jr, C. D. Carothers, D. R. Jefferson, and
J. M. LaPre, “Warp speed: executing time warp on
1,966,080 cores,” in Proceedings of the 1st ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation, pp. 327–336, ACM, 2013.

[20] A. Ramachandran, J. Vienne, R. Wijmgaart,
L. Koesterke, and I. Sharapov, “Performance
evaluation of nas parallel benchmarks on intel xeon
phi,” in Proceedings of International Conference on
Parallel Processing (ICPP), 2013.

[21] G. Misra, N. Kurkure, A. Das, M.Valmiki, S. Das, and
A. Gupta, “Evaluation of rodinia codes on intel xeon
phi,” in Proceedings of the 4th International
Conference on Intelligent Systems, Modelling and
Simulation, 2013.

[22] A. Heinecke, K. Vaidanathan, M. Smelianskiy,
A. Kobutov, R. Dubtsov, G. Henri, A. Shet,
G. Chrysos, and P. Dubey, “Design and
implementation of the linpack benchmark for single
and multi-node systems based on intel xeon phi
coprocessor,” in Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS), 2013.

[23] S. Pennycook, C. Hughes, M. Smelianskiy, and
S. Jarvis, “Exploring simd for molecular dynamics
using intel xeon processor and intel xeon phi
coprocessors,” in Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS), 2013.

[24] M. Lu, L. Zhang, H. Hyunh, Z. Ong, Y. Liang, B. He,
R. Goh, and R. Huynh, “Optimizing the mapreduce
framework on intel xeon phi coprocessor,” in
Proceedings of International Conference on Big Data,
2013.

[25] B. Xie, X. Liu, J. Zhan, Z. Jia, Y. Zhu, L. Wang, and
L. Zhang, “Characterizing data analytics workloads on
intel xeon phi,” in Workload Characterization
(IISWC), 2015 IEEE International Symposium on,
pp. 114–115, IEEE, 2015.

12

http://www.tilera.com

	Introduction
	Background and Experimental Setup
	Overview of ROSS Simulator
	Overview of the Intel Knights Landing Architecture
	Experimental Setup and Metrics

	Experimental Results and Discussion
	Performance under Round-Robin Scheduling
	Single Thread per Core: Impact of Thread Affinity
	Single Thread per Core: Impact of Remote Communication
	Scaling with Multiple Threads per Core

	Impact of Balanced Loading
	Impact of Event Processing Granularity
	Impact of GVT Period
	Impact of Cache Sharing
	Impact of Partitioning, Clustering and Message Flow
	Impact of Communication Distance with at Most One Thread per Core
	Performance Comparison with Knights Corner and 12-core Xeon

	Related Work
	Concluding Remarks
	Acknowledgments
	References

