
BOW: Breathing Operand Windows to Exploit
Bypassing in GPUs

Hodjat Asghari Esfeden∗, Amirali Abdolrashidi∗, Shafiur Rahman∗, Daniel Wong†, Nael Abu-Ghazaleh∗†
∗ Department of Computer Science and Engineering
† Department of Electrical and Computer Engineering

University of California Riverside
{hasgh001,aabdo001,mrahm008,danwong,naelag}@ucr.edu

Abstract—The Register File (RF) is a critical structure in
Graphics Processing Units (GPUs) responsible for a large portion
of the area and power. To simplify the architecture of the
RF, it is organized in a multi-bank configuration with a single
port for each bank. Not surprisingly, the frequent accesses
to the register file during kernel execution incur a sizeable
overhead in GPU power consumption, and introduce delays as
accesses are serialized when port conflicts occur. In this paper,
we observe that there is a high degree of temporal locality in
accesses to the registers: within short instruction windows, the
same registers are often accessed repeatedly. We characterize
the opportunities to reduce register accesses as a function of
the size of the instruction window considered, and establish
that there are many recurring reads and updates of the same
register operands in most GPU computations. To exploit this
opportunity, we propose Breathing Operand Windows (BOW),
an enhanced GPU pipeline and operand collector organization
that supports bypassing register file accesses and instead passes
values directly between instructions within the same window. Our
baseline design can only bypass register reads; we introduce an
improved design capable of also bypassing unnecessary write
operations to the RF. We introduce compiler optimizations to
help guide the write-back destination of operands depending on
whether they will be reused to further reduce the write traffic.
To reduce the storage overhead, we analyze the occupancy of the
bypass buffers and discover that we can significantly down size
them without losing performance. BOW along with optimizations
reduces dynamic energy consumption of the register file by 55%
and increases the performance by 11%, with a modest overhead
of 12KB increase in the size of the operand collectors (4% of the
register file size).

Index Terms—operand bypassing, GPU, register file, microar-
chitecture, compiler

I. INTRODUCTION

Graphics Processing Units (GPUs) have emerged as an
important computational platform for data-intensive applica-
tions in a plethora of application domains. They are com-
monly integrated in computing platforms at all scales, from
mobile devices and embedded systems, to high-performance
enterprise-level cloud servers. GPUs use a massively multi-
threaded architecture that exploits fine-grained switching be-
tween executing groups of threads to hide the latency of data
accesses. In order to support this fast context switching at
scale, GPUs invest in large Register Files (RF) to allow each
thread to maintain its context in hardware. The amount of
parallelism available on a GPU (e.g., number of streaming
multiprocessors, or SMs) has been steadily increasing as GPUs

0

5

10

15

20

25

30

35

FERMI (2010) KEPLER (2012) MAXWELL (2014) PASCAL (2016) VOLTA (2018)

O
n

-c
h

ip
 M

em
o

ry
 S

iz
e

(M
B

)

L1D Cache + Shared Memory L2 Cache Register File

Fig. 1: On-chip memory components size in NVIDIA GPUs
(from 2010–2018).

continue to grow in performance and size, which in turn
increases the number of concurrent thread contexts needed to
keep these units utilized [1]–[8].

The large register file accounts for an increasingly larger
fraction of on-chip storage, as shown in Figure 1. For example,
in NVIDIA Pascal GPU, register file size is 14 MB, which
accounts for around 63% of the on-chip storage area. Due to
frequent accesses to the RF, it is a crucial microarchitectural
component whose architecture substantially impacts the per-
formance and energy-efficiency of GPUs. For example, port
conflicts (in register file banks as well as operand collector
units that collect the register operands) cause delays in issuing
instructions as register values are read in preparation for
execution. In addition, the RF has a large energy consumption
footprint, since it is the largest SRAM structure that serves
a large number of data accesses from the working threads.
Earlier studies estimate that the register file is responsible for
18% of the total power consumption on a GPU chip [9], a
percentage that has most likely increased as the size of RFs
has continued to grow.

We propose a new GPU architecture technique, Breathing
Operand Windows (BOW), exploits the temporal locality of
the register accesses to improve both the access latency and
power consumption of the register file. More specifically, we
observe that registers are often accessed multiple times in
a short window of instructions, as values are incrementally
computed or updated and subsequently used. As a result, a
substantial fraction of register read and register write accesses
can bypass the register file if mechanisms exist to forward
them directly from one instruction to the next. This operand
bypassing reduces dynamic access energy by eliminating regis-

ter accesses (both reads and writes) from the RF, and improves
overall performance by reducing port contention and other
access delays to the register file banks.

BOW re-architects the GPU execution pipeline to take
advantage of operand bypassing opportunities. Specifically,
in the baseline design we consider operands reused within
an instruction window: a key to increasing bypassing op-
portunities is to select the instruction window size carefully
to capture register temporal reuse opportunities while main-
taining acceptable overheads for the forwarding. To facilitate
bypassing we dedicate an operand collector to each warp
so that it can hold the set of active registers for that warp
in a simple high performance buffering structure dedicated
for each warp. Whenever a register operand is needed by
an instruction, BOW first checks if the operand is already
buffered so it can use it directly without the need to load
it from the RF banks. If the operand is not present in the
operand collector unit, a read request will be generated to
the RF, which is sent to the arbitrator unit. In the baseline
BOW, after an instruction finishes execution, the computed
result is written back to both the operand collector unit as well
as the register file (i.e., a write through configuration). This
organization supports reuse of operand reads and avoids the
need for an additional pathway to enable writing back values
from the operand collector to the RF when they slide out of the
window. Based on our experiments, BOW with a window size
of 3 instructions reduces the physical register read accesses
by 59% across all of our benchmarks. However, it does not
support write bypassing since every write is still written to the
RF; in fact, it increases the overhead for writes which are now
written to both Operand Collector and RF.

In order to be able to capitalize on the opportunities for write
bypassing, we introduce BOW-WR, an improved design that
uses a write-back philosophy to overcome the redundant writes
present in BOW. Specifically, the improved design writes any
updated register values back to the operand collector only.
When an instruction slides outside of the active bypass window
its updated register value is written back to the RF only if it
has not been updated again by a subsequent instruction in the
window (in which case that first write has been bypassed since
the update was transient). As described, BOW-WR shields the
RF from some of the write traffic, but does not capture all write
bypassing opportunities, and preserves some redundant and
inefficient write behavior. Consider the following two cases:
(1) Unnecessary OC writes: When a value will no longer
be reused, writing it to the OC first, and then to the RF
causes a redundant update. We are better off writing such
value directly to the RF; (2) Unnecessary RF writes: When
an updated register value is no longer live (i.e., it will not be
read again before it is updated), it will be written back to the
RF unnecessarily when the instruction slides out of the active
window. In this case, we are better off not writing the value
back to the RF.

Unfortunately, it is difficult to capture either of these op-
portunities directly in the architecture because they depend on
the subsequent behavior of the program. Thus, to exploit the

opportunity to eliminate these redundant write backs in BOW-
WR, we task the compiler to do liveness analysis and classify
each destination register to one of these three groups: those
that will be written back only to the register file banks (to
handle case 1 above); operands that will be written back
only to the operand collectors (to handle case 2); and finally
operands that first need to reside in operand collector and then
due to their longer lifetime need to be written back to the
register file banks for later use (this was the default behavior of
BOW-WR before the compiler hints). We pass these compiler
hints to the architecture by encoding the writeback policy for
each instruction using two bits in the instruction. This compiler
optimization not only substantially minimizes the amount of
write accesses to the register file and fixes the redundant write-
back issue, but also reduces the effective size of the register file
as a significant portion of register operands are transient, not
needed outside the instruction windows (52% with a window
size of 3): we avoid allocating registers altogether in the RF
for such values.

With respect to implementation, a primary cost incurred by
the baseline BOW(and BOW-WR) is the cost of increasing the
number of operand collectors (so that there is one dedicated
per warp) as well as the size of each operand collector to
enable it to hold the register values active in a window. With
respect to increasing the number of OCs, we believe that
this is in line with current trends in GPUs: While earlier
Nvidia GPUs had a smaller number of operand collector units,
starting from the Kepler series, the number of their operand
collector units have increased. For example, NVIDIA TITAN
X GPU (Pascal architecture) has 32 operand collectors which
matches the maximum number of in-flight warps on an SM.
With respect to the size of each OC, the baseline implemen-
tation adds additional entries to each operand collector to
hold the operands within the active window (4 registers per
instruction in the window). In the baseline implementation,
this adds around 36KB of temporary storage for a window
size of 3 across all OCs, which is significant (but still only
around 14% of the RF size of modern GPUs). In order to
reduce this overhead, we observe experimentally that this
worst case sizing substantially exceeds the mean effective
occupancy of the bypassing buffers. Thus, we provision BOW-
WR with smaller buffering structures. However, since the
available buffering can be exceeded under the worst case
scenarios, we have to redesign the OCs to allow eviction
of values when necessary. We also restrict the window size
to the predetermined fixed window size and do not bypass
instructions beyond the window size even if there is sufficient
buffer space in the buffering structure. The reason behind
this conservative choice is to facilitate the compiler analysis
and tag the writeback target in BOW-WR correctly in the
compiler taking into account the available buffer size. Without
this simplifying assumption, an entry which is tagged by the
compiler for no writeback to the RF may need to be saved
if it is evicted before all its reuses happen. We are able to
reduce the storage size by 50% with a performance reduction
of less than 2% of the baseline BOW-WR. Considering other

overheads (such as modified interconnect), BOW requires an
area increase of 0.17% of total on-chip area.

Because of the importance of the RF structure on GPUs, a
number of prior studies have explored optimizations primarily
to reduce its energy footprint. A number of works have
explored different approaches to reduce the effective size of
the register file [3], [10]–[12]. The effect of reducing the
register file size is to improve the static energy consumption
of the RF, but it does not impact the performance or the
dynamic energy consumption of the RF. Most similar to our
work, RF caching [13] adds a register file cache to keep
the most commonly used data for each active warp, saving
dynamic RF energy. This cache is organized like the original
RF, but only smaller, and therefore there it improves energy
but unlike BOW it does not improve performance.

We compare our work with register file caching and other
related works in more detail in Section VI.

In summary, the paper makes the following contributions:
1) Introduces Operand Bypassing, a new technique in the

context of GPU microarchitecture that capitalizes on the
high temporal reuse of GPU register operands to sub-
stantially reduce accesses to the register file, improving
performance and energy.

2) We leverage compiler liveness analysis to guide destina-
tion selection of the write-back register values, substan-
tially reducing unnecessary write traffic. Bypassed tran-
sient values are also never allocated in the RF reducing
the effective RF size.

3) We carry out occupancy analysis of the forwarding
buffers and discover that their utilization is low. We pro-
pose to provisioning the operand collectors with smaller
buffer structures to substantially reduce storage overhead.

Overall, BOW-WR improves IPC by 11%, and reduces dy-
namic energy of the RF by 55%, at a modest overhead of
0.17% increase in the total chip area, and 4% increase in
storage (compared to the RF size). Section VII summarizes
our conclusions and discusses potential future work.

II. BACKGROUND

In this section, we overview the organization of modern
GPU architecture, with a focus on the register file unit, to
provide the necessary background for BOW. In the GPU
execution model, a kernel is the unit of work issued typically
from the CPU (or directly from another kernel if dynamic
parallelism is supported). A kernel is a GPU application
function, decomposed by the programmer into a grid of blocks
mapped each to a portion of the computation applied to a
corresponding portion of a typically large data in parallel.
Specifically, the kernel is decomposed into Thread Blocks
(TBs, also Cooperative Thread Arrays or CTAs), with each
being assigned to process a portion of the data. These TBs
are then mapped to streaming multiprocessors (SMs) for
execution. The threads executing on an SM are then grouped
together into warps (or wavefronts in AMD terminology) for
the purposes of scheduling their issuance and execution. Warp
instructions are selected and issued for execution by warp

Sub-bank 0 Sub-bank 1 ... Sub-bank 7

128 bit Write In 128 bit Read

64 Entries
each 128 bit

Bank0

Bank1

Bank31

C
ro

ss
ba

r w
ith

 1
02

4-
bi

t
lin

ks

B
an

k
A

rb
itr

at
or

Issue

SI
M

D
 E

xe
cu

tio
n

U
ni

ts

...
OCU31

OCU1

OCU0

Read requests

Write requests

W
ar

p
ID

Valid

Valid

Valid

Reg ID

Reg ID

Reg ID

Ready

Ready

Ready

src1 data

src2 data

src3 data

...

Fig. 2: Conventional GPU register file architecture (OCU0-
OCU31 are Operand Collector Units).

schedulers in the SM (typically 2 or 4 schedulers, depending
on the GPU generation). Warps that are assigned to the
same warp scheduler compete for the issue bandwidth of that
scheduler. In our baseline GPU (NVIDIA Titan X Pascal),
there are four schedulers per SM, each able to issue two
instructions per cycle to available GPU cores.

All the threads in a warp execute instructions in a lock-
step manner (Single Instruction Multiple Thread, or SIMT
model). Most GPU instructions use registers as their source
and/or destination operands. Therefore, an instruction will
access the Register File (RF) to load the source operands
for all of its threads, and will write back any destination
operand after the execution to the RF. The RF in each SM is
typically organized into multiple single-ported register banks
so as to support a large memory bandwidth without the cost
and complexity of a large multi-ported structure. A banked
design allows multiple concurrent operations, provided that
they target different banks. When multiple operations target
registers in the same bank, a bank conflict occurs and the
operations are serialized, affecting performance.

Figure 2 shows the baseline register file organization for the
Pascal generation of NVIDIA GPUs, with a size of 256 KB
per SM split across 32 banks. A bank is made up of 8 sub-
banks that are 128 bits wide each. All 32 registers belonging
to the 32 threads in the same warp are statically allocated to
consecutive sub-banks (in a single bank) with the same entry
index. Thus, a full register for all the threads within a warp
can be striped using one entry of one bank, allowing it to be
operated on in a single cycle. Each bank can store up to 64
warp-registers.

When a warp instruction is issued for execution, an Operand
Collector Unit (OCU) is assigned to it to collect its source
operands values. Assuming 32-thread warps, each source
operand (i.e., warp register) is 32 thread × 32 bits = 128B
in size. A warp’s source operands are read from the RF banks
and then buffered in the OCU. The operand collector units
are not used to eliminate name dependencies through register
renaming, but rather are used as a way to space register
operand accesses out in time so that no more than one access

0%

20%

40%

60%

80%

100%
P
er
ce
n
ta
ge

0%

20%

40%

60%

80%

100%

P
er
ce
n
ta
ge

IW2 IW3 IW4 IW5 IW6 IW7

Fig. 3: Eliminated read (top) and write (bottom) requests through operand bypassing.

to a bank occurs in a single cycle. To reduce the interconnect
network complexity, operand collectors are designed as single-
ported buffers. An OCU fetches the register operands from
the register banks they reside in, bound by the two follow-
ing constraints: (1) OCU port serialization: Each OCU has
only one port and therefore has to serialize reads when an
instruction has multiple operands (NVIDIA GPU’s use SASS
whose instructions have up to 3 source operands); and (2)
Register bank conflicts: While operands from different banks
may be concurrently read from different OCUs, operands that
access the same bank cause bank conflicts and cannot be
issued together. The port constraints causing these conflicts
are difficult to bypass by increasing the number of ports: the
cost of a port is extremely high when considering the width
of a warp register (128 Bytes).

Once all the source operands for a warp instruction are
collected, it is ready for execution. Since each instruction
may have up to three source operands [14], each OCU has
three entries, each 128B to hold these operands. After the
warp completes the execution, its results are written back to
the RF, also competing for bank access with read operations.
When this set of operations is performed repeatedly, it will
generate many accesses to the large register file, and will
incur a significant portion of the power consumed by the GPU.
The RF also impacts performance due to the serialization that
occurs due to port contention (in both register file banks as
well as operand collector units).

III. MOTIVATION

In this section, we motivate operand bypassing by studying
register reuse patterns within different instruction window
sizes. We use the GPGPU-Sim simulator [15], modeling a
Pascal GPU. Given the in-order execution of GPUs, repeated
accesses on operands within a small window of consecutive
instructions are inevitable. Although we show results only for
the Pascal architecture configuration, we repeated the results
for Fermi and Volta configurations, which exhibit almost
identical reuse statistics confirming that operand reuse patterns
are computational properties rather than architecture depen-
dent [16], [17]. Experiments in this paper use benchmarks

from Rodinia [18], Parboil [19], NVIDIA CUDA SDK [14],
and the Tango DNN Benchmark Suite [20].

Temporal locality in register operand accesses: In a
conventional GPU Register File, each operand collector unit
sends read requests for the source operands of one instruction
(the one which currently resides in the operand collector
unit). This read request process repeats independently for each
individual instruction, with all register operands fetched from
or written to the register file independently for each instruction.
Our work is motivated by the observation that there is high
temporal locality in the accesses of registers: in other words,
the same register values are read and updated by nearby
instructions, within a short window of instructions. If this is
indeed the case, the traditional execution pattern where these
operands are read and written repeatedly through the register
file causes redundant expensive operations to the RF increasing
both the power consumption of this large structure, as well as
the access time due to the increased pressure on the limited
ports of the RF.

To characterize the temporal reuse opportunity [21]–[23],
we show in Figure 3 all bypassing opportunities for read (top)
and write (bottom) requests to the register file, for different
window instruction sizes and across 15 different benchmarks.
An instruction window (IW) refers to a number of consecutive
instructions from the same warp: an IW of 2 considers a sliding
window of two instructions at a time and examines whether the
operands of the first instruction are also needed by the second
one. Note that a value that is reused in three consecutive
instruction can continue to be bypassed even with an IW
of 2 since the instruction window for bypassing is a sliding
window. While we can bypass 45% of total read accesses and
35% of total write accesses to the register file with a window
of just two instructions, a window of three instructions would
eliminate substantially more accesses: 59% of total reads, and
52% of total writes on average. Beyond a window size of
three instructions, the reuse opportunities continue to increase
slowly, reaching over 70% with an instruction window of 7.
Clearly, if we save this portion of register file accesses, we can
substantially improve the dynamic energy consumption of the
register file (by reducing the number of RF accesses) as well

Fig. 4: Average time taken by operand collection stage for
memory vs. non-memory instructions.

as performance (by reducing access time and port contentions
in register �le banks). A larger window size increases reuse
opportunities, but comes at the price of wider (bigger) operand
collectors which increase the area and energy consumption
within those components. An effective BOW con�guration
balances these competing considerations.

Impact of operand collection stage latency on perfor-
mance: The operand collection stage of the GPU pipeline
holds issued instructions until their operands can be collected,
typically from the register �le. Figure 4 shows a breakdown of
the percentage of cycles taken on average for memory instruc-
tions versus non-memory instructions within the operand col-
lection stage of the pipeline. In our experiments, we excluded
the amount of time spent for an instruction to be fetched;
total execution time assumed to be from the moment that an
instruction is scheduled by one of the warp schedulers until it
�nishes execution. Overall, about a quarter of the instruction
execution time (and up to 47% for benchmarks such as STO)
is spent in the operand collector unit. We note that this per-
centage is skewed by memory access instructions which have
long execution times as well as a fewer number of operands
(especiallyglobal load andglobal store instructions
with cache misses). The operand collector unit consumes a
substantial percentage of the execution time of non-memory
instructions, as depicted in Figure 4. The primary delays in the
OC occur while registers are read from the RF and are being
collected in the single-ported operand collectors. As discussed
previously, register reads for each OC are serialized since it is
a single-ported buffer-like structure. Moreover, some reads are
delayed due to register bank con�icts. With bypassing, as we
decrease RF traf�c, and with more operands already available
in the OC, we expect the time spent in the OC to signi�cantly
decrease, improving overall performance.

IV. B REATHING OPERAND WINDOWS

In this section, we overview the design of BOW, the
proposed architecture which exploits high temporal operand
reuse to bypass having to read and write reused operands
to the register �le. We also introduce a number of com-
piler and microarchitectural optimizations to improve reuse
opportunities, as well as to reduce overheads. BOW consists
of 3 primary components. (1) Bypassing Operand Collector
(BOC) augmented with storage for active register operands to

(a)

(b)

Fig. 5: (a) An overview of BOW. BOCX is Bypassing Operand
Collector assigned to Warp X; (b) Baseline operand collector
unit (left) compared to the proposed wider Bypassing Operand
Collector (BOC) unit with forwarding logic support (right).

enable bypassing among instructions. Each BOC is dedicated
to a single warp; this restriction simpli�es buffering space
management since each buffer is accessed only by a single
warp. The sizing of the BOC is determined by the instruction
window size within which bypassing is possible; (2) Modi�ed
operand collector logic that considers the available register
operands and bypasses register reads for available operands
(whereas baseline operand collectors fetch all operands from
the RF); and (3) Modi�ed write-back pathways and logic
which enable directing values produced by the execution units
or loaded from memory to the BOCs (to enable future data
forwarding from one instruction to another) as well as to the
register �le (for further uses out of the current active window)
in the baseline design. The writeback logic is further optimized
with compiler-assisted hints in the improved BOW-WR.

A. BOW Architecture Overview

Figure 5 overviews the proposed architecture highlighting
the primary changes and additions. The design centers around
new operand collector unit additions, called the Bypassing
Operand Collectors (BOC) in our design, that will allow the
GPU to bypass RF accesses. Each BOC is assigned to a
single warp (BOC0-BOC31) in Figure 5(a). While the operand
collectors in our baseline architecture have three entries to
hold the data of the source operands of a single instruction
(Figure 5(b), left), BOW widens the operand collectors to
enable the storage of source and destination register values
for the usage of subsequent instructions (Figure 5(b), right). In
addition, the forwarding logic in the BOC will check whether
the requested operands are already in the BOC so will be

sent to the next instruction. Similar to the baseline architec-
ture, and to avoid making the interconnection network more
complicated, BOCs have a single port to receive operands
coming from the register �le banks. However, the forwarding
logic within the BOCs allows forwarding multiple operands
available in the forwarding buffers when an instruction is
issued. In the baseline design, we conservatively reserve four
entries per each instruction in the BOC to match the maximum
possible number of operands which is three source operands
plus one destination. Later we show that such conservative
sizing is rarely needed, enabling us to provision the BOC with
substantially smaller storage.

Instructions for the same warp are scheduled to the assigned
BOC in program order as the instruction window slides
through the instructions. When instructionx at the end of the
window is inserted into the BOC, the Forwarding Logic checks
if any of the required operands by instructionx is already
available in the current window, then the oldest instruction
(�rst instruction in the current window) with its operands are
evicted from the window to make room for the next instruction,
which will become available when the window moves. It is
important to note that the instruction window is sliding; every
time an operand is used by an instruction it remains active for
window size instructions after that. If it is accessed again in
this window, its presence in the BOC is extended in what we
refer to as theExtended Instruction Window.When a branch
occurs, the BOC waits until the next instruction is determined.

Instructions fromdifferentBOCs are issued to the execution
units in a round-robin manner. As soon as all the source
operands for an instruction are ready (which potentially have
been forwarded directly within the active window and without
sending read requests to the register �le), the instruction is
dispatched and sent to the execution unit. When the execution
of an instruction ends, its computed result is written back
to the assigned BOC (to be used later by next instructions
in the window). In the baseline BOW, this value is also
written back to the register �le (for potential later uses, if
any, by an instruction out of the current window). It is worth
mentioning that only the pathway from execution units to the
BOCs has been added in our design thusfar, as the pathway
from execution units to the register �le is already established
in the baseline architecture. While such simple write-through
policy minimizes the complexity, it suffers substantial of
redundant write backs (to the BOCs as well as register �le);
an inef�ciency which will be addressed in BOW-WR.

Please note thattwo dependent instructions(where there
is a RAW or WAW dependency between them) can never be
among the ready to issue instructions within the same BOC.
The scoreboard logic checks for this kind of dependencies
prior to issue instructions to the operand collection stage
(this is actually done when a warp scheduler schedules an
instruction). Having an instruction in one of the BOCs means
that it has already passed the dependency checks and its
register operands exist either in the BOC or the register �le.
For independent instructions, there is no delay for bypassing:
both can start executing, and even �nish out-of-order.

Fig. 6: Code snippet from BTREE application illustrating
bypassing operation in BOW.

B. BOW-WR: Compiler-guided writeback

BOW exploits read bypassing opportunities, but is not
able to bypass any of the possible write operations as every
computed value is written not only to the RF, but also to
the BOC, following a write-through policy for simplicity.
However, write bypassing opportunities are important: often
a value is updated repeatedly within a single window. For
example, consider$r1 being updated by the instructions in
lines 4, 5, and 6 of Figure 6; it only needs to be updated in
the RF after the �nal write.

BOW-WR approaches bypassing using a write-back phi-
losophy to enable write bypassing. In the simplest cast, it
writes the computed results always to the BOC to provide
opportunities for both read and write bypassing. When an
updated operand slides out of the current active window, the
forwarding logic checks if it has been updated again by a
subsequent instruction within the active window. If so, the
write operation will be bypassed, allowing the consolidation
of multiple writes happening within the same window. In our
prior example (Figure 6), when instructions 4 and 5 slide
out of the active window, their updated$r1 is discarded
since in each case$r1 is updated again within the window.
When instruction 6 slides out, the value is written back (since
neither instruction 7 nor 8 update$r1). The primary cost of
BOW-WR (write-back instead of write-through) is that a new
pathway needs to be established from BOCs to the RF.

Although using a write-back philosophy [24] signi�cantly
reduces the amount of redundant writes to the register �le
(Table I), it is not able to bypass all such write operations; in
many instances, as an operand slides out of an active window,
it is written back from the BOC to the register �le while it
is not actually going to be used again by later instructions
(the operand is no longer live). Another source of inef�ciency
arises since computed operands are always written back to the
BOC; if these operands are not needed again in the active

window, they could have been written directly to the RF,
eliminating the write to the BOC.

In either of these situations, unfortunately, the microarchi-
tecture does not have suf�cient information to identify the
optimal target of the writeback, since it depends on the future
behavior of the program which is generally not visible at
the point where the writeback decisions are made, leading
to the redundant writes. Thus, to enable elimination of these
redundant writes, we rely on the compiler to analyze the
program and guide with the selection of the write back
target. Speci�cally, the compiler performs liveness analysis
and dependency checks to determine if the output data from an
instruction should be written back only to the register �le bank
(when it will not be used again in the instruction window),
only to the bypassing operand collector (for transient values
that will be consumed completely in the window and no longer
live after it), or both (which is the default behavior without
the compiler hint). When we avoid writing values back to the
RF, we reduce the pressure on the RF and avoid the cost of
unnecessary writes for operands that are still in use. Similarly,
when we write data to the BOC which is not going to be
used, we pay the extra cost of this write only to later have to
save the value again to the RF. An interesting opportunity also
occurs in that transient values that are produced and consumed
completely within a window, no longer need to be allocated
a register in the RF. We discover that many operands are
transient, leading to a substantial opportunity to reduce the
effective RF size. Compiler-guided optimizations will allow
us to avoid unnecessary writes and minimize energy usage.
Table I shows the needed number of write accesses to the RF
for the code in Figure 6 in the different versions of BOW(note
that BOW write-through is identical to the unmodi�ed GPU).

Destination
Operand

of write accesses to the Register �le in:
BOW

(write-through)
BOW

(write-back)
BOW-WR

(compiler Opt.)
$r0 3 1 0
$r1 4 2 1
$r2 2 1 0
$r3 1 1 1

Total 10 5 2

TABLE I: Number of write operations to the register �le for
code snippet shown in Figure 6.

There are three possible actions which can be taken after an
instruction's output value is generated, which we explain using
a piece of code from BTREE kernel as shown in Figure 6.
Please note that in the following explanation, we assume the
instruction window sizeis 3 (each sliding window contains
three consecutive instructions).

1) Reuse outside of instruction window: The �rst in-
struction in Figure 6 (ld.global in line 2) loads the data
from the global memory into$r3 . Reuse of$r3 occurs
in the set.ne instruction in line 14. Since the �rst use
of $r3 is outside of the instruction window (please recall
that window size is 3), the compiler liveness analysis marks
$r3 to be written back directly to the register �le as there

Fig. 7: Distribution of write destinations in BOW-WR

is no bypassing opportunity within the window containing
ld.glonal instruction.1 In this case, where the �rst reuse
distance is greater than the window size, there is no need
to write this value back to the bypassing operand collector.
Figure 7 shows the breakdown of the instruction writes into
the three categories that we are in the process of explaining.
The leftmost bar represents this case where reuse is outside
the instruction window, and occurs on average, in 21% of the
computed operands. In this case, writing these operands to the
BOC is unecessary.

2) Reuse inside of instruction window: Operand reuse
occurs in this case as a produced value is consumed again
in the window. For example,mov instruction in line 3 of
Figure 6 writes into$r2 , where the immediate reuse of$r2
happens in the next instruction (mul instruction in line 4).
$r2 will be used one more time in this window by the
third (last) instruction of this window (mad in line 5). In this
scenario, by writing$r2 into the bypassing operand collector,
we can directly forward it to the next instructions. Later on,
the mad instruction in line 7 will also read$r2 , which can
be forwarded from previousmad instruction (in line 5) as
they fall within the same window. As another example, the
add instruction in line 10 writes into$r1 . Later on, this
register will be accessed by the next instruction (ld.global
in line 11) as a source operand. We can directly forward the
value fromadd to ld.global by storing it in the bypassing
operand collector. However, this is not the end of lifetime for
$r1 since it will be used later inset.ne instruction in line
14 (please note that the value could not be forwarded from
ld.global to set.ne as they do not belong to the same
instruction window)

In the case where there is reuse of the value in the active
window, we obviously would like to write it to the BOC to
enable this reuse. However, these reusable cases break into
two categories based on whether we will eventually need to
save the register back to the RF or not (avoiding the write
altogether). We describe these two cases next.
(a) Reuse of a transient operand: In some instances, a value
produced by an instruction will be reused only while it resides
in the bypassing operand collector. As a result, the value's
lifetime does not exceed the instruction window, meaning that

1Further compiler optimizations to reorder instructions to increase bypass-
ing opportunities are possible but we did not pursue this opportunity in the
current version of our implementation.

there is no need for write backs to the register �le bank once
the instruction slides out of the instruction window. Lines 3,
4, 5, and 7 of Figure 6 show a case where an output value
(register$r2 in line 3) should be written back only to the
BOC, because it is only used by future instructionsalready
within the same window(or within the window of neighboring
instructions). In this case, the write-back to the RF is bypassed
since the$r2 is a transient register value. In some cases,
if this value came directly from memory or was produced
by another instruction, we do not need to allocate a physical
register in the register �le for it. In this case, the immediate
reuse distance across all the accesses is always less thanIW .
Figure 7 shows that these kinds of writes account for 52%
of all operands. If indeed we can avoid allocating registers
in many of these instances, we can further gain ef�ciency
by reducing the effective size of the register �le, allowing
us for example to provision the GPU with smaller RF for the
same performance, or gain performance by allowing additional
Thread blocks for the same register �le size.
(b) Reuse of a persistent operand:When a value is reused
in the window, but continues to be live and will be reused
later in the program, it must be saved back to the RF when
it is evicted from the BOC. Lines 10, 11, and 14 of Figure 6
show such a case where the output value of theadd ($r1) is
going to be used within the same window (by theld.global
instruction), so it has to be written back to the corresponding
BOC to take advantage of this bypassing opportunity. How-
ever, when theadd operand is evicted from the BOC (to be
replaced with the instructions in the next window), we need to
write back$r1 to the register �le banks as well, as it is going
to be used later by another instruction outside of the current
window (which isset.ne in this example). More speci�cally,
�rst read operation on register$r1 will be simply bypassed
within the BOC (as the value is being used immediately in
the ld.global instruction). After this point,$r1 is still
alive but it is not going to be used within the same instruction
window (distance is more than Instruction Window Size), so
it has to be written back to the register �le bank at the time of
eviction for later use by the very bottom instruction. Figure 7
shows that 27% of all values fall in this category with window
size of 3.

Identifying which of the three cases above to implement the
most effective writeback option requires the ability to predict
of how a register will be reused within and even outside the
active register window. We elected to use compiler analysis to
identify the type of each instruction writeback to provide hints
to the architecture to identify the correct action for register
writes. We use two additional �ags in every instruction with a
destination register, to indicate where the output data should
be written. One bit is to enable writing to the BOCs, while the
other bit is to enable writing back to the RF. Table I showcases
the effectiveness of such compiler optimizations on the number
of write operations on the register �le. BOW with write-back
policy is able to bypass a fraction of write operations. For
example, the two consecutive writes into$r1 in lines 4 and 5
of �gure 6 could be bypassed as there$r1 is being updated

Fig. 8: Operand collector units' occupancy.

immediately by the next instruction. However, operands such
as$r2 in line 3 has to be written back to the register �le as
they slide out of the window, as there is no information on
their future uses. Such redundant writes are avoided by the
compiler annotations as$r2 immediate reuse distance across
all the accesses is always less thanIW . Moreover, with the
proposed compiler optimization, useless writes to the BOCs
(about 21% of all write operations according to Figure 7) are
avoided (for example,$r3 in line 2 where it is not going to
be used within the active window).

C. Reducing the Bypassing Storage Space

Thusfar, we have assumed that we provision each BOC
conservatively with 4 registers for each instruction in an IW
to account for the maximum possible storage required. The
total size of a single bypassing operand collector will be
4 � 128B � 3, or 1:5KB which is four times larger than
an operand collector in our baseline architecture (which is
3� 128B = 384B). However, we believe that these structures'
occupancy likely to be low for the following three reasons.

� There are substantial bypassing opportunities within a
window (nearly 60% with IW 3 as we saw in Figure 3).
Only a single value of a reused register is stored and
shared as it is forwarded to reusing insturctions.

� In the NVIDIA ISA, most instructions do not require
three source registers. As shown in Figure 8, on aver-
age only 2% of the instructions need all three entries
in the operand collector unit. For some applications
such as BFS, BTREE, and LPS, no instructions with
three register source operands are used. Please note that
OCUoccupancy = 0 corresponds to those instructions
that do not have anyregister source operand(such as
NOPandRET with no source operand, orSSY andBRA
with immediate operands).

� With the compiler optimizations, a considerable fraction
of computed values (about 21% of total write operations)
are not written back to the BOCs as they have no reuse
within the window. In those situations, we do not use the
entry for the destination register in the BOC.

To con�rm our intuition, we analyze the occupancy of the
conservatively sized operand collector (four entries per each
instruction) for a window of three instructions. As Figure 9
shows, about half the benchmarks (for example, BFS, BTREE,

Fig. 9: BOC occupancy with a window 3: half of the entries
are unused.

and BACKPROP) never need more than half of the entries
in each BOC. Even benchmarks with higher occupancy (like
WP and SAD), do not use many of the available registers.
On average, across all of our benchmarks, only 3% of the
cycles require more than 50% of the available entries. There
were no instances where the worst case scenario (all 12 entries
occupied) arose in our experiments.

Given this occupancy behavior, we reduce the buffer size in
the BOC to half of the maximum possible size. As a result,
there are situations where the occupancy is high and not all the
operands within the window can be kept in the BOC, in which
case we use a FIFO replacement policy to evict the oldest
entry. We restrict the window size to the nominal window size
(3 instructions in our example) and do not bypass instructions
beyond the window size even if there is suf�cient buffer space
in the BOC. This allows us to simplify the compiler analysis
and tag the writeback target in BOW-WR correctly in the
compiler taking into account the available buffer size (without
this simplifying assumption, an entry tagged for no writeback
to the RF may need to be saved if it is evicted before all its
reuse targets use it). In future work, we will consider enabling
bypassing beyond the nominal window size limited only by
the buffer space.

In worst case scenarios, sharing fewer number of entries in
a BOC across multiple instructions may lead to an increase in
the write-back traf�c from BOC to the register �le due to space
limitation, which in turn can potentially hurt performance
and energy ef�ciency of BOW-WR. However, given that
this happens only 3% of the time across our benchmarks
(Figure 9), this effect is small. At the same time, reducing
the size of the buffering from 12 to 6 entries per BOC means
that the storage overhead in the BOC was reduced from 4x to
only 2x that of the baseline GPUs.

V. EVALUATION

We use GPGPU-Sim [25] which models an NVIDIA TITAN
X Pascal (GP102) con�guration [26] shown in Table II. Bench-
marks have been selected from the Rodinia [27], ISPASS [28],
Parboil [19], and CUDA SDK [29] (see Table III).

A. Performance/Energy Evaluation

Performance: Figure 10 displays the normalized IPC im-
provement achieved by BOW and BOW-WR compared to the

of SMs 56
of cores per SM 128

Max # of TBs/Warps/Threads per SM 16/32/1024
Register File size per SM 256KB

L1 Cache/Shared Memory Size per SM48KB/96KB
L2 Cache Size 3MB

Warp Scheduling Policy GTO

TABLE II: Nvidia TITAN X (Pascal Arch.) Con�guration

Suite Bench. Name Description

ISPASS [28]

LIB LIBOR Monte Carlo
LPS 3D Laplace solver
STO StoreGPU
WP Weather prediction

Rodinia [27]

BackProp Back-propogation
BFS Breadth �rst search

BTree Braided B+ Tree
Gaussian Gaussian elimination

MUM
MummerGPU
(Sequencing)

NW Needleman-Wunsch

SRAD
Speckle Reducing

Anisotropic Diffusion

Tango [20] CifarNet CifarNet NN
SqueezeNet SqueezeNet NN

CUDA SDK [29] VectorAdd
Vector-Vector

Addition

Parboil [19] SAD
Sum of

Absolute Differences

TABLE III: List of used benchmarks

baseline, using different instruction windows. As a result of
bypassing substantial amount of read and write operations,
port contention decreases (on both register �le banks as
well as BOCs), leading to better performance. Notably, we
observe IPC improvement across all benchmarks. BOW-WR
achieves marginally better performance due to its ability to
reduce considerable amount of write operations, while BOW's
improvement comes from bypassing the read operations. On
average, with a window of three instructions, BOW and BOW-
WR can improve the IPC by 11% and 13%, respectively.
The small magnitude of advantage in IPC for BOW-WR
over BOW is not surprising since writes are not on the
critical path of instructions; however, as we will see later, the
advantage of BOW-WR is higher in terms of energy savings.
As IW grows beyond 3, we observe diminishing returns in
the IPC improvements. Operand bypassing is more effective
on register-sensitive applications (such as SAD). In contrast,
benchmarks such as WP with lower register usage and fewer
operand reuse opportunities gain little performance.

To evaluate the impact of reducing the storage size in
the BOCs, we reduce the bypassing storage space by half
(assuming window size of 3, each BOC has six entries instead
of twelve, which are shared across every three consecutive
instructions). Figure 11 shows the performance effect of this
space optimization. While most of the benchmarks with lower
BOC occupancy sustain their performance improvement under
this space constraint, the IPC improvement slightly degraded
for benchmarks with higher BOC occupancy such as SAD. On
average, we have observed a 2% performance loss with half

(a) BOW

(b) BOW-WR

Fig. 10: IPC improvement.

Fig. 11: IPC increase with 6-entry BOC (half-size).

bypassing storage; we still obtain nearly 11% IPC improve-
ment even with half the storage size.

Fig. 12: Cycles spent in OC stage for different window sizes
(normalized to the baseline).

Figure 12 shows the normalized time that each application
spends in the operand collection stage. The OC residence time
is reduced significantly when IW = 2 and 3 (by about 60% in
the latter case). However, we do not see substantial additional
benefit with larger windows. This result demonstrates that

(a) BOW

(b) BOW-WR

Fig. 13: Normalized RF dynamic energy

BOW is able to successfully find most of the reuse oppor-
tunities and reduce the OC residency in a consistent way for
all applications. In most cases, the more time the application
spends in the OC stage in the baseline case, the more benefit it
can get from operand bypassing. However, we do not see that
this hypothesis hold across all applications since the impact on
IPC varies because the application performance may be bound
by other stages of the pipeline.
RF Energy: Figure 13 shows the dynamic energy normalized
to the baseline GPU for BOW and BOW-WR respectively.
The small segments on top of each bar represent the overheads
of the structures added by BOW. Dynamic energy savings
in Figure 13 are due to the reduced number of accesses to
the register file as BOW and BOW-WR shield the RF from
unnecessary read and write operations. Specifically, BOWwith
a window size of 3 instructions reduces RF dynamic energy
consumption by 36%, after considering the 3% increase in
overheads. BOW-WR is even more successful in saving dy-
namic energy because it also avoids substantial amount of
write operations to the RF. We observed 55% reduction to the
overall dynamic energy in BOW-WR, after considering 1.8%
increase in overhead. Note that even the overhead of BOW-WR
is lower since the eliminated writes also consume overhead
through the additional BOW structures. The source of dynamic
energy overhead include the accesses to the BOCs as well as
the modified interconnect. It is interesting that although the
IPC impact of BOWvaries across applications, the advantage
in energy saving is relatively consistent: shielding the RF from
operations reduces dynamic energy.
Comparison to Register File Cachine: Similar to BOW,
there have been attempts to reduce the RF dynamic energy
by caching the outputs in a smaller cache structure [13], a
technique called register file cache (RFC). RFC was proposed

