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ABSTRACT
We present LATCH (short for Locality-Aware Taint CHecker), a
generalizable architecture for optimizing dynamic information flow
tracking (DIFT). LATCH exploits the observation that information
flows under DIFT exhibit strong temporal locality, with typical
applications manipulating sensitive data during limited phases of
computation. This property allows LATCH to monitor significant
spans of execution using lightweight, coarse-grained checks, invok-
ing precise, computationally intensive tracking logic only during
periods of execution that involve sensitive data. LATCH implements
this policy without sacrificing the accuracy of DIFT.

We propose and evaluate three systems incorporating LATCH:
S-LATCH to accelerate software-based DIFT on a single core;
P-LATCH to accelerate multicore software-based DIFT, and H-
LATCH to reduce the architectural complexity of hardware-based
DIFT. We developed an FPGA prototype of the LATCH system,
demonstrating that its advantages come with negligible impact on
power and complexity and no effect on processor cycle time.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Security
in hardware; Information flow control.
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1 INTRODUCTION
Dynamic Information Flow Tracking (DIFT) is a general security
and privacy protection mechanism that is based on marking and
tracking data as it flows through the system [12, 48, 54]. In a typical
security application, DIFT marks (taints) data originating from un-
trusted sources, such as the network or file system, and tracks this
data and any data derived from it through registers and memory sys-
tem during program execution. DIFT checks operations on tainted
data for conflicts with declared policies, and generates security ex-
ceptions in response to violations. Though computationally intensive,
DIFT provides effective protection against a wide range of attacks.
For example, DIFT can detect buffer overflows and thus prevent a
wide range of control-flow hijacking attacks, such as return-oriented
programming and jump-oriented programming attacks [2, 46].

Despite these benefits, existing DIFT proposals face significant
obstacles to widespread adoption. Though highly flexible and rela-
tively easy to deploy, software-based DIFT [3, 8, 9, 19, 21, 30, 32,
33, 38, 39, 44, 55, 57] requires recompilation to insert additional
DIFT instructions into the monitored program, imposing perfor-
mance overheads ranging from 2X to as high as 100X, which are
generally prohibitive for real-time security monitoring. Hardware-
based DIFT [7, 11–13, 15, 31, 40, 43, 47, 48, 50, 53, 54] virtually
eliminates these overheads, but requires additional processor logic
to enforce propagation and data-use policies, as well as a dedicated
taint cache or equivalent structures to check the taint status of each
memory operand.

To address these challenges, we propose LATCH (short for
Locality-Aware Taint CHecker), a versatile, lightweight hardware
module that greatly mitigates the costs of deploying both hardware-
and software-based DIFT. LATCH is motivated by a new analysis,
presented in section 3 of this paper, that shows a high degree of
temporal locality that is inherent in DIFT information flows. Specifi-
cally, most applications that we evaluated only manipulate tainted
bytes during limited phases of execution. In general, there are two
reasons for this behavior. First, the potential for taint explosion [32]
is a strong motivation for security policy designers to exercise re-
straint in defining the set of untrusted inputs, thus contributing to
taint locality. Second, programs have been shown to execute as a
sequence of distinct phases [18], some of which may not manipulate
tainted data.

During the periods of execution where no taint manipulation
takes place, LATCH checks operands for the presence of taint using
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a coarse-grained taint checking module that entails minimal architec-
tural complexity and imposes a negligible performance overhead. On
detecting taint at a coarse granularity, LATCH temporarily invokes a
byte-precise monitor to propagate taint tags and enforce data utiliza-
tion rules. Due to the temporal locality of taint, this heavy-weight
monitoring is rarely invoked, and can be significantly scaled down
in proportion to a diminished workload.

LATCH performs passive taint checking by exploiting the spatial
locality of tainted data, a property that has been established in pre-
vious works [29, 49]. LATCH’s coarse taint state divides memory
into fixed length, multi-byte taint domains, and assigns taint to each
domain that contains one or more tainted bytes. As we show in
Section 4, this coarse taint state can be cached and checked using
minimal hardware, and, due to the spatial locality of taint, closely ap-
proximates the byte-precise taint state. Figure 1 shows the intuition
behind this approach. For elements in untainted domains (A), taint
status always corresponds to that of the coarse taint domain. Tainted
domains may contain untainted bytes (B), which are false positives
for LATCH, as well as tainted bytes (C). In LATCH, false positives
can be easily checked and dismissed when the byte-precise policy
is invoked, allowing the combined system to preserve an accurate
taint state. Similarly, because all possible taint events (false and true
positives) are subject to fine-grained checks, the combine system
offers precise taint checking without introducing false negatives

LATCH is a versatile and generalizable hardware module that can
enhance both software- and hardware-based DIFT systems. When
combined with software-based DIFT, LATCH controls the invocation
of heavy-weight software monitoring, localizing the overhead of
DIFT to program regions where taint is actively manipulated. The
effects of this policy are illustrated in Figure 2. By running only the
taint-handling epoch (b) in software mode, LATCH allows taint-free
epochs (a) and (c) to be executed in hardware at near-native speeds.

When combined with hardware-based DIFT, LATCH reduces
architectural complexity by screening accesses to a conventional,
hardware-based taint cache. This filtering greatly reduces the num-
ber of evictions and cache misses experienced by the byte-precise
taint cache. Consequently, the precise taint cache, which is the great-
est contributor to architectural complexity in most hardware DIFT
schemes, can be reduced in size without sacrificing performance.

To demonstrate the various applications of LATCH, we design and
evaluate three DIFT systems that incorporate the LATCH module.
The first system, called S-LATCH, uses LATCH to optimize software-
based DIFT on a single core, achieving a 4X speedup over a baseline
system ([32]) without losing precision. The second system, called
P-LATCH, applies LATCH to optimize DIFT monitoring using a
separate core. It achieves an estimated 2X speedup over the existing
LBA scheme ([6, 7]). Our third system, called H-LATCH, applies
LATCH to hardware-based DIFT, achieving a mean taint cache miss
rate of less than 0.02% despite a taint cache capacity of less than
8% the size of a conventional implementation ([54]). In addition,
we implemented the core LATCH architecture on an FPGA, and
demonstrate negligible impacts on CPU power, cycle time, and
architectural complexity.

Figure 1: Coarse-grain Taint Domains with LATCH

Figure 2: Exploiting Temporal Locality with LATCH

2 BACKGROUND AND SCOPE
DIFT operations can be abstracted into four main components: ini-
tialization, storage, propagation and validation (or checking). These
operations are depicted in Figure 3. Initialization (1) occurs when
data is tagged as tainted; such data may be data read from an external
taint source, or sensitive data that we are interested in tracking to pre-
vent its exposure. Typical taint sources include files, network sockets,
or user inputs. A typical initialization scheme assigns each byte read
from such a source a taint tag indicating its origin. The storage
of taint tags (2) differs significantly among DIFT implementations.
Software-based DIFT stores taint tags for registers and memory ad-
dresses in software-defined data structures. Hardware-based DIFT
typically provides dedicated hardware to store tags for registers, and
stores memory taint tags in designated memory accessible through a
dedicated taint cache [48, 54]. DIFT applies taint not only to data
initialized directly, but also propagates taint to data that is com-
puted or modified using tainted inputs (3). Software-based DIFT
schemes introduce instrumentation to check the input operands of
each native instruction and generate the result according to specified
rules. Hardware-based DIFT performs this process using dedicated
logic. Finally, every DIFT system supports a validation (or checking)
procedure to ensure that the use of tainted data is consistent with
pre-defined security rules (4). In hardware-based systems, validation
is generally implemented in hardware using rule-checking mecha-
nisms similar to those employed for propagation. Software-based
DIFT schemes perform validation using instructions.

Software-based DIFT is commonly implemented using dynamic
binary instrumentation (DBI). In DBI, a software engine is injected
into a monitored program’s memory space and assumes control of
its execution. The DBI engine extracts the program’s basic blocks
at runtime, rewrites them with interleaved instrumentation code,
and virtually executes them in place of the original code. When
used for DIFT, the instrumentation code includes logic to check and
propagate taint. DBI can be applied at runtime, requires no access to
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Figure 3: Overview of DIFT operations

source code, and can be accomplished using widely available DBI
engines such as Intel’s Pin [37] or the open-source dynamoRIO [5].
The software component of S-LATCH is based on DBI.

LATCH targets the implementations of DIFT described in this sec-
tion. This DIFT policy has applications in detecting control-flow ex-
ploits and malicious data leakage, which are primary security threats.
The next section focuses on locality characteristics of these policies.
While LATCH is applicable in principle to any dynamic tagging pol-
icy with exploitable locality, our conclusions do not necessarily apply
to all other tagged memory schemes. For instance, schemes that tag
pointers to enforce their use with corresponding memory regions[10]
are likely to require continual comparison between pointer and mem-
ory taint tags, and would not benefit from LATCH in its current form.
Similarly, indirect tracking of taint through control flows poses sig-
nificant challenges to conventional DIFT as well as to LATCH due
to rapid taint explosion, and is an open problem for continuing re-
search. The extension of LATCH optimizations to accommodate
other tagging policies is beyond the scope of this paper.

3 UNDERSTANDING TAINT LOCALITY IN
DIFT

In this section, we characterize the spatio-temporal properties of
data flows that motivate LATCH’s design. Our analysis shows that
the strong temporal locality of operations on tainted data allows the
exclusive use of coarse-grained taint checks for extended periods of
program execution. We also show that in most applications, DIFT
dataflows exhibit a high degree of spatial locality, making coarse-
grained tainting an effective, lightweight strategy, especially when
paired with a mechanism to exploit temporal locality.

3.1 Experimental Framework
All evaluations were performed under the Debian 8 distribution of
Linux. We generated DIFT data flows using libdft [32], an open-
source taint tracking library for Intel’s Pin dynamic binary instrumen-
tation engine. We measured the temporal and spatial behavior of data
flows for common network applications, in which taint is introduced
through socket and accept system calls, and for desktop appli-
cations from the SPEC CPU 2006 benchmark suite, which receive
untrusted data from files. The network benchmarks included two pop-
ular network clients, wget and curl, the Apache web server and the
mySQL server. The evaluation of performance-oriented SPEC bench-
marks in combination with a selection of security-critical network
applications is a standard practice in DIFT research [28, 32, 49, 49].
Because programs experience varied phases of taint propagation over

Figure 4: Examples of two program traces with long and short
taint-free epochs

the course of their execution, we sought to run all of our benchmarks
to completion, wherever possible. Except where noted, all results
are derived from complete program runs. To complete evaluations in
reasonable time under Pin instrumentation, we ran the SPEC 2006
benchmarks using the smaller input sets provided with the bench-
marks. We omitted results for SPEC benchmarks that did not receive
any file input. All of our evaluations apply the classical Dynamic
Taint Analysis rules used by [32].

The general evaluation assumes a conservative policy that taints
data from potentially untrustworthy network or file sources. How-
ever, for some network applications, more nuanced policies may
better represent realistic use cases. Specifically, we note that in pro-
duction environments a web server may handle requests both from
trusted sources (such as clients on a local network), and untrusted
sources (such as unknown remote clients). To evaluate these scenar-
ios, we included three additional assessments of the Apache server
in which subsets of requests were tainted as untrustworthy. This was
accomplished within Pin by generating a random number for each
accept4 system call (used to read a single request by Apache),
and tainting the data introduced by that call if the number exceeded a
specified threshold. This resulted in additional evaluations of Apache
in which approximately 25, 50, and 75 percent of incoming requests
were marked as trusted, resulting in differing patterns of locality.
The runs of both apache and mySQL included 1000 requests.

3.2 Temporal locality of accesses to tainted data
This section examines two aspects of the temporal locality of opera-
tions on tainted data: 1) the percentage of instructions that manipu-
late tainted data, and 2) the duration of taint-free epochs.

3.2.1 Percentage of taint-free instructions. This characteristic de-
fines the upper bound on the cumulative length of exploitable taint-
free epochs, and is thus a key measure of the efficiency of LATCH.
Table 1 shows the percentage of instructions in each benchmark that
touched tainted data. In 16 of the 20 SPEC benchmarks, fewer than
1% of instructions accessed tainted data. In the remaining programs,
astar, perl, soplex and sphinx, between 2% and 22% of instructions
were involved in manipulating tainted data. As illustrated in Table
2, taint-handling instructions were slightly more frequent in the
network benchmarks, but did not exceed 2%. Not surprisingly, the
amount of taint handled declined in a linear fashion when apache
was executed with an increasing number of trusted connections.

3.2.2 Duration of taint-free epochs. In addition to the overall per-
centage of taint-free instructions, the duration of continuous taint-
free epochs impacts S-LATCH’s potential effectiveness. Figure 4
illustrates this effect with two hypothetical applications, A and B,
that have the same proportion of tainted and untainted instructions.
In A, these instructions comprise a single, long epoch, whereas in B
they are divided into several shorter epochs. In S-LATCH, executing
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Figure 5: Percentage of instructions in taint-free epochs of various lengths
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taint-free epochs in accelerated mode incurs a constant overhead
with every switch between the hardware and software layers. Conse-
quently, while A must incur this overhead only twice, B experiences
switching repeatedly, reducing cumulative acceleration relative to A.

To evaluate the duration of taint-free intervals in typical work-
loads, we ran each benchmark for 500 million instructions and
detected all taint-free epochs. We assigned these taint-free epochs to
sets based on the epoch length. We considered the sets that contained
more than 100, 1K, 10K, 100K and 1M instructions. Note that under
these sorting criteria, some epochs belong to multiple sets. Figure
5 shows the total number of instructions represented in each epoch
size category as a percentage of all instructions executed. Programs
with more instructions belonging to longer epochs resemble program
A in Figure 4, and are likely to benefit most from acceleration.

Figure 5 shows that 13 of 20 benchmarks executed more than 80%
of their instructions during taint-free epochs of 1K instructions or
more, a pattern similar to that of program A in Figure 4. Benchmarks
such as lbm, mcf and gromacs have fewer instructions in long taint-
free epochs. However, our later evaluations show that these programs
still include enough longer periods to allow significant acceleration.
The four remaining benchmarks, astar, sphinx, perl and soplex, more
closely resemble program B in Figure 4, in that a higher proportion
of their taint-free instructions are divided among shorter epochs.

Among the network applications, the web clients curl and wget
have a relatively high proportion of long taint-free epochs, while

mySQL showed a moderately sharp drop-off in the length of ex-
ploitable epochs. Under the most restrictive DIFT policy, Apache
Server experienced a severe fragmentation of taint free periods.
However, under policies that included trusted clients, the duration of
taint-free epochs increased significantly.

3.3 Spatial locality of tainted data
The spatial locality of tainted data underpins LATCH’s two-layer
logic, and predicts the viability of locality-aware DIFT optimizations.
The following experiments focus on two aspects of spatial locality
that affect LATCH: 1) the distribution of taint across the memory
space accessed by each application, and 2) the accuracy of coarse-
grained tainting at various granularities, measured by the frequency
of false positives.

3.3.1 Distribution of taint in the memory space. The distribution of
tainted data in the memory space of each application is a fundamental
measure of spatial locality that is critical to locality-aware taint
caching. If tainted data occurs in a small fraction of memory regions,
data in taint-free regions will frequently be accessed, allowing most
DIFT checks to be resolved using the coarse taint state.

To evaluate the distribution of tainted data in the memory of each
application, we recorded the number of 4KiB memory pages that
received tainted data in the course of execution, and compared this
value to the total number of pages accessed. The results of this
evaluation for the SPEC benchmarks, presented in Table 3, show
that for 17 out of 20 benchmarks, more than 90% of the accessed
pages were completely free of taint. A minority of applications,
specifically astar, soplex, and sphinx showed incidences of taint
likely to interfere with locality-based optimizations.

Table 4 shows the results for network applications. Tainted pages
occured somewhat more frequently in these evaluations, but occu-
pied a minority of the memory space in all cases. The apache web
server showed the highest occurrence of taint at the page granularity.
Interestingly, the frequency of taint did not vary with the proportion
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Figure 6: Increase in taint detection rates for coarse-granularity tainting policies using various multibyte taint domains. Values over
1 correspond to the ratio of false positives relative to the byte-precise baseline.

curl wget
mysql

apache
apache-25

apache-50
apache-75

Pages acceessed 600 1591 10483 1113 1170 1101 1115

Pages tainted 33 44 435 238 260 231 238

Accessed pages
tainted (%)

5.5 2.77 4.15 21.38 22.22 20.98 21.35

Table 4: Page granularity taint distribution for network appli-
cations

of untrusted requests. This behavior suggests that the same set of
pages are used in sequence to store tainted and untainted requests,
meaning that the evaluation, which covered the entire execution, did
not capture changes in the taint contents of these pages over time.

3.3.2 Frequency of false positives under coarse taint checking. The
incidence of false positives under coarse-grained taint checking is
a more concrete predictor of LATCH’s effectiveness. In LATCH,
false positives can occur when an accessed taint domain contains
a mixture of tainted and untainted data, and result in unnecessary
invocations of the precise propagation and checking logic. Smaller
taint domains typically reduce the frequency of false positives, but
require more complex hardware to check. The trade-off between
taint-domain granularity and the frequency of false positives is thus
critical to LATCH’s implementation.

Figure 6 shows how the number of accessed memory elements
falsely reported as tainted increases in proportion to taint domain
size. The number of taint detection events are plotted as a multiple
of the number of tainted elements detected by byte-precise taint; for
instance, a value of 10x means that the precise DIFT logic is invoked
10 times more frequently under a given domain granularity due to

Figure 7: LATCH hardware organization

false positives. For most SPEC programs, taint detection accuracy
degrades steadily as the domain size increases, but remains useful
for most applications for domains of 64 bytes and in some cases
even 256 bytes. The bzip2, gobmk, and lbm benchmark are notable
in that the coarse-grained tainting policies produced few or no false
positives. This suggests that in these programs, tainted data is closely
aligned with page boundaries.

Though counterintuitive, the low rates of taint for benchmarks
such as bzip2 and the web clients are consistent with the operation
of these programs. In both the compression algorithm used by bzip2,
and the SSL and TLS cryptographic schemes used by the web clients,
data from the taint source is replaced by untainted, precomputed
values from a substitution table[45]. We note that in general, the
taint policies used in this section are conservative in that they tag
all external data as untrusted: to avoid taint explosion and excessive
false positives, security policies are likely to define a subset of inputs
as untrusted, rather than tagging all inputs indiscriminately, thus
further increasing taint locality.
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Figure 8: Taint cache address generation logic in LATCH

4 LATCH DESIGN
Motivated by the preceding analysis of taint locality, this section
presents the design and operation of LATCH. The core LATCH logic,
shown in Figure 7, consists of the following components:

• Extraction Logic (A): Extracts operands from committed
instructions.

• Taint Register File(TRF) (B): Stores byte-level taint associ-
ated with the register file.

• Coarse Taint Cache (CTC) (C): Performs coarse taint
checks on memory operands, evaluating taint status at the
granularity of tens of bits.

• Coarse Taint Table (CTT) (D): In-memory data structure
storing coarse taint tags for use by the CTC.

• TLB Taint Bits (E): Provides additional filtering at the gran-
ularity of kilobytes. This justification for this is elaborated in
Section 4.2.

• Precise DIFT mechanism (E): Implements byte-granularity
propagation, if required following CTC taint check.

Among the components described above, the operand extraction
logic and the TRF are simple to implement and are analogous to
structures described in existing hardware-based DIFT proposals such
as [54]. LATCH provides alternate update mechanisms to support
integration with hardware- and software based DIFT, and we defer
discussion of these mechanisms to sections 5.1 and 5.3, which
introduce the corresponding LATCH integrations. In the following
sections we discuss the combined coarse tainting infrastructure,
comprised of the CTT, CTC, and TLB Taint Bits, which underpin
LATCH’s exploitation of taint locality.

4.1 Coarse taint representation and caching
The CTC and the underlying CTT constitute the core of LATCH’s
coarse tag-checking infrastructure. The CTT uses single-bit tags to
represent taint at the granularity of tens of bytes. For instance, by
using one bit to convey the taint state for a 32-bit memory region, or
taint domain, the CTT can hold coarse taint data for 1KB of memory
in a single 32-bit word. Due to the high degree of compression inher-
ent in the CTT, LATCH’s CTT requires comparatively few entries
to hold the (approximate) taint state for a large set of addresses.
Moreover, the temporal locality of taint allows these addresses to
remain cached for long periods of time, allowing LATCH to achieve
high hit rates using a small CTC. Consequently, the CTC can be
implemented with minimal hardware while maintaining high hit
rates.

Figure 8 details LATCH’s procedure for accessing the taint cache.
To retrieve the index of the CTT word with a memory operand’s
taint bit, the taint-cache uses the corresponding high order bits of

the extracted operand. LATCH combines this index with the base
address of the CTT to obtain the absolute address of the CTT word
in virtual memory.

4.2 TLB-Taint Bits
In the taint analysis in section 3.3, we observed that spatial locality
is evident at the page and Kilobyte level, as well as at the level of
taint domains consisting of tens of bytes. While the second type
of locality is often needed to avoid excessive false positives, and
is thus employed in the CTT, LATCH’s taint caching infrastructure
also exploits the former type of locality by using page-level taint
bits in each TLB entry to screen out checks to large, untainted
regions before they reach the CTC. To provide page-level filtering,
LATCH extends the page table and the TLB with a small number
of page taint bytes, which divide each page into one or more multi-
kilobyte page-level taint domains. The extension of the TLB with
additional metadata is an approach used in several existing proposals
[20, 41] to reduce accesses to main memory. Alternatively, the page
taint data could be stored in a separate small cache, whose misses
would coincide with those of the TLB. To simplify implementation,
each page-level taint domain corresponds to a single word of CTT
taint tags. When data in a tainted page is being manipulated, the
CTC logic handles locality at the sub-page level.

5 LATCH INTEGRATIONS WITH DIFT
SYSTEMS

In this section, we demonstrate the integration of LATCH into three
variants of DIFT: single-core software-based DIFT, parallelized
software-based DIFT on two cores, and hardware-based DIFT. We
call these systems S-LATCH, P-LATCH, and H-LATCH, respectively.
In S-LATCH and P-LATCH, LATCH greatly reduces execution over-
heads relative to the equivalent software-only policies; in H-LATCH ,
the LATCH module mitigates architectural complexity without sacri-
ficing performance.

5.1 S-LATCH: Accelerating Software DIFT
S-LATCH is a hardware-software system in which LATCH controls
the invocation of software-based DIFT on a single core. Using the
minimal LATCH hardware base, S-LATCH combines the flexibility
of software-based DIFT with performance properties that are closer
to hardware implementations.

At a high level, S-LATCH consists of two parts: (1) a software
component, which uses DBI to instrument application code with
DIFT propagation and validation operations; and (2) a hardware
acceleration component, which uses the core LATCH logic to con-
tinuously check that data accessed by the program under monitoring
is not tainted. Figure 9 illustrates the high-level operation of the sys-
tem. During normal execution, the hardware component continually
checks memory operands against the LATCH coarse taint state, while
register operands are checked against taints in a small taint register
file (TRF) (1). Upon detecting taint, the hardware component traps
to the software component (2), which checks the trapped instruction
against the precise taint state to verify that the operation is indeed
occurring on tainted data (3). The software component maintains
a secondary image of the monitored process that is dynamically
instrumented with DIFT instructions, and transfers control to this
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Figure 9: High-level Operation of S-LATCH

image if the hardware exception is confirmed (4). After performing
DIFT in software for a specified period, the instrumented image
initiates a transfer of control back to the uninstrumented image (5).
Mechanisms inspired by [1] and [52] could enhance the security of
S-LATCH’s hardware and software components, respectively, in the
presence of untrusted system software.

5.1.1 S-LATCHComponents. By performing all precise taint checks
in software, S-LATCH obviates hardware propagation logic and the
precise taint cache, retaining only the core LATCH module, TRF, and
operand extraction logic. The S-LATCH software layer consists of
three distinct units: the S-LATCH exception handler, the DBI engine,
and the taint initialization logic. The exception handler, discussed
in section 5.1.2, is responsible for validating exceptions issued by
the hardware layer against the precise taint state and, if an exception
is confirmed, for transferring control to the DBI engine. The DBI
engine (discussed in Section 5.1.3), is responsible for performing
DIFT analysis and for returning control to hardware at the end
of each taint-containing epoch. Additionally, S-LATCH introduces
three dedicated ISA instructions shown in Table 5. The strf (set
TRF) instruction updates the taint register file following a period of
in-software propagation. The stnt (set taint) is a special memory
write instruction that updates the CTT directly though the taint
cache, rather than the regular data cache. Lastly, in the course of
filtering false positives, the S-LATCH exception handler uses the
ltnt (load taint) instruction to load the address that triggered the
last S-LATCH hardware exception.

5.1.2 Transition from Hardware to Software Monitoring. When the
hardware monitor detects a potential taint, the exception handler
serves as a point of entry to S-LATCH’s software layer. The handler
performs the following operations. First, it screens out any false

Figure 10: Memory layout under S-LATCH monitoring

strf reg set the TRF flags to the value in the register reg
stnt adr reg update the taint status of memory address mem, to the value in reg
ltnt reg load the address operand that caused the most recent S-LATCH exception

into register reg

Table 5: Special S-LATCH instructions

positive operations issued by the hardware based on the precise taint
information at the software layer. If the operation is indeed a false
positive, the handler switches back to the hardware mode. If the
operation is a true taint operation, the handler initiates a transfer of
control from the native application code to the instrumented image.
Finally, it passes control to the DBI software monitor. To evaluate
the status of an address, the handler loads the address into a register
using the ltnt instruction, checks the corresponding entry in the
precise taint state, and, in accordance with the result of the check,
transfer control to either the native or instrumented program image.

5.1.3 Software Taint Checking and Propagation. S-LATCH uses a
Pin-based program (Pintool) incorporating functionality from libdft
library. However, other, potentially lighter-weight DBI engines could
easily be substituted in the future. The instrumentation code run by
this engine is modified to update the CTT and precise taint state
directly using the stnt instruction, thus reducing the number of
taint-related memory operations and avoiding the cache pollution.
Figure 10 shows the integration of S-LATCH’s software components
into program memory.

To make full use of hardware acceleration, the software compo-
nent must relinquish control as quickly as possible following each
epoch of active taint propagation. However, given our observations
on the temporal locality of taint operations, if we return to the hard-
ware monitor immediately, it is likely that other tainted data will be
accessed soon, causing another switch and harming performance.
Thus, we implemented a timeout policy in the software layer that
determines when to switch back to the hardware monitoring mode.
While a variety of timeout policies are possible, S-LATCH achieves
strong performance using a simple timeout scheme that returns con-
trol to hardware after 1000 instructions have been executed without
manipulating tainted data.

5.1.4 Updating the Coarse Taint State. In S-LATCH, the absence
of a hardware taint cache necesitates an alternative method of syn-
chronizing the coarse and precise taint states. Specifically, while the
stnt instruction allows the S-LATCH software layer to synchronize
taint assertions between the CTT and precise taint state, special
measures must be taken to update the CTT when a taint domain is
fully cleared of taint.

To track domains that might have been cleared, the CTC incorpo-
rates a taint clear bit for each taint domain bit. The taint clear bit is
asserted whenever a byte in the corresponding domain is assigned a
taint status of zero by a stnt instruction, and de-asserted when a
non-zero taint status is written. Before returning control to hardware,
the software component iterates through the precise representation
of each domain whose clear bit is asserted, and updates the CTT
entry for any domains that have been completely cleared of taint. To
eliminate the need to store taint clear bits in memory, a check is also
triggered (using a hardware exception) whenever a CTC word with
asserted clear bits is evicted. This mechanism ensures that coarse
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(a) Baseline parallel DIFT (b) P-LATCH organization

Figure 11: P-LATCH Architecture

taint is removed when the last precise taint bit in the corresponding
domain is cleared.

5.2 P-LATCH: Accelerating Parallel Software
DIFT

In addition to accelerating software DIFT on a single core,
LATCH can provide significant performance gains to systems that
perform DIFT in parallel. Figure 11-a shows a generalization of
this scheme, in which two cores respectively host the monitored
code (A) and the software security monitor (B). The monitored core
includes simple logic to extract instructions from the hosted program
and place them in a shared first-in-first-out (FIFO) queue (C). The
monitor then reads events from the queue, and performs the requisite
analysis and detection.

Parallelization for DIFT and other tag-based policies, similar to
the baseline system described above, was introduced in the Log
Based Architecture (LBA) proposal [6], and has been optimized in
subsequent proposals using general-purpose cores and dedicated co-
processors [6, 7, 14, 15, 25, 31, 34, 36, 39]. Existing systems signif-
icantly accelerate software-based DIFT, but still impose substantial
(> 3x) performance overhead, or require complex, specialized hard-
ware optimizations. This is because the shared queue can become
saturated, forcing stalls [6]. As shown in Figure 11-b, P-LATCH ad-
dresses the problem of queue stalls by reducing the load on the
shared queue. Instead of filtering invocations to the DBI engine, as
in S-LATCH, the otherwise unmodified LATCH hardware module
on the monitored core selectively enqueues instructions according to
the coarse taint detection policy, ensuring that only instructions that
might require monitoring populate the queue. Due to the temporal
locality of taint-handling accesses, this policy ensures that the queue
is empty – and thus stall-free – for significant periods of execu-
tion. Moreover, during periods of execution that contain numerous
taint-handling instructions, P-LATCH can continue to provide accel-
eration by filtering operations that do not contain taint. In addition
to reducing the queue stalls that cause overhead on the monitored
core, this policy also increases computational throughput by freeing
the monitoring core to execute other processes. P-LATCH imple-
mentations may require additional logic to prevent false negatives
from arising due to outstanding CTT updates. This can be addressed
by tracking the destination operands for queued events, and treating
them as tainted until the coarse taint state is updated. A small FIFO-
like structure could be used to track these operands. When taint is
updated, a signal from the monitored core can pop the corresponding
entries in the FIFO and invalidate any associated CTC lines if taint
has been changed. Although this mechanism is not addressed in the

Figure 12: H-LATCH cache update logic

current analytical model for P-LATCH, and could occasionally cause
additional false positives, taint locality makes changes to the CTT
rare, limiting the effects on performance.

5.3 H-LATCH: Reducing Complexity in
Hardware DIFT

In addition to providing performance benefits to software-based
DIFT in single-core and paralleled contexts, LATCH can be inte-
grated with hardware-based DIFT systems to significantly reduce
architectural complexity. We refer to the resulting system as H-
LATCH. H-LATCH is motivated by the observation that, in most
hardware-based DIFT systems, the caching logic used for checking
the taint status of memory operands is the single greatest contributor
to architectural complexity of hardware-based DIFT. For instance,
[54] requires a dedicated 4KB taint cache to perform word gran-
ularity checking with one-byte taint tags (or larger, if taint tags
are extended). By resolving most taint checks using a lightweight,
coarse-grained taint state, H-LATCH allows the precise taint cache
to be significantly scaled down while maintaining high performance.
H-LATCH consists of the core LATCH logic integrated into a generic
DIFT architecture. For this implementation, we assume an architec-
ture similar to [54], which performs all checking and propagation at
the commit stage of the pipeline. This design avoids invasive modifi-
cations to the out-of-order portion of the pipeline, and is thus easily
incorporated into existing architectures as a modular extension.

5.3.1 Updating the Coarse Taint States. Similar to other LATCH im-
plementations, H-LATCH must synchronize the coarse and precise
taint states whenever a taint tag is updated. Figure 12 illustrates
the logic that H-LATCH uses to ensure multi-granular taint-state
integrity. At the beginning of each taint update, H-LATCH extracts
the logical and of the taint bits in the pre-update taint state word,
excluding the bits for the tag to be updated. The de-selection of the
updated taint bit is performed by modified decoder logic using offset
bits from the memory operand. When the new taint tag is computed,
it is anded with the masked word taint to produce the updated higher
granularity taint bit. This operation can be chained for multiple lev-
els of coarse tainting, allowing simultaneous updates to the CTC and
page-level taint bits. This operation is comparable in delay to the
peripheral logic for register file access. Since the operation occurs
during the commit stage, it can be pipelined if necessary to remove it
from the critical path. Similar to the logic described in Section 5.1.4,
this mechanism ensures that a coarse-grain taint domain is marked
as taint-free when the last taint tag within that domain is cleared.
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Figure 13: Performance overheads of software DIFT (libdft) and S-LATCH over native execution

Figure 14: Sources of overhead in S-LATCH

Figure 15: P-LATCH performance overheads relative to native execution

6 RESULTS AND DISCUSSION
This section evaluates performance and/or complexity advantages of
S-LATCH, P-LATCH, and H-LATCH. Our performance evaluations
were performed in Linux environment described in Section 3. Exe-
cution time estimates are based on a virtualized single-core system,
with 3.4 GHz 32-bit x86 processor and 2GB of DRAM.

6.1 S-LATCH Evaluation
We evaluated S-LATCH using a simulation framework based on Intel
Pin. Our simulator used libdft to propagate taint, and perfromed
coase taint detection using a simulated CTC with a miss penalty of
150 cycles. Our simulator recorded the proportion of instructions
executed under hardware and software monitoring, and assigned per-
formance overheads accordingly. Overheads for software monitoring
were based on the average slowdown for each benchmark when
continuously monitored by a libdft-based Pintool implementing Dy-
namic Taint Analysis. Additionally, our framework included the
overheads for reseting the coarse taint state, handling false positives,
and transferring control between hardware and software modes. The

transfer overheads arise from two sources: the storing and reloading
of the native program context before and after each mode switch, and
the cost of loading the current section (Pin trace) of the instrumented
image from the Pin code cache. The former was based on timing
information for the C functions getcontext and setcontext,
which are used to store and load program context; the latter was deter-
mined for each benchmark based on the delay between the execution
of two traces, which corresponds to Pin code-cache latency.

6.1.1 S-LATCH Performance for SPEC benchmarks. Figure 13
shows the overhead of S-LATCH and software-only libdft relative to
execution without DIFT protections. When all SPEC benchmarks
are considered, S-LATCH incurs a harmonic mean overhead of 60%
across all evaluated benchmarks, with more than half (12 of 20)
experiencing overheads of less than 50%. While direct comparison
is challenging given the differing sets of benchmarks used, this over-
head is significantly lower compared to most aggressively optimized
software-based schemes [4, 44]. In addition, 8 benchmarks, experi-
ence overheads of less than 5%, which is close to the performance
of hardware-based DIFT. Most of the programs that experienced
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higher overheads are those with poor temporal locality, as detailed
in Section 3. When these programs are omitted, the mean overhead
is 32%. On average, SPEC benchmarks experienced approximately
a 4X speedup relative to software-based DIFT.

S-LATCH was able to accelerate both web clients by a factor of
more than 10X relative to software-based DIFT. mySQL and baseline
Apache experienced speedups of 63% and 47% respectively, relative
to software-based DIFT. While the servers experienced relatively
high overheads compared to execution without DIFT, [32] showed
that network latency frequently masks DIFT overheads from the
perspective of the client, and the speedups achieved represent a
meaningful gain in the context of server-side resource utilization.
Additionally, under the alternative tainting policies introduced in
Section 3, Apache server achieved significantly higher speedups of
up to 3.25X.

6.1.2 Sources of Overhead. Figure 14 shows that libdft instrumen-
tation is the primary source of overhead in most programs, indicat-
ing that the hardware logic of S-LATCH performs taint detection
and mode switches (shown as control xfer) efficiently. For a few
programs, switches between the hardware and software layers con-
tributed more to the overhead. Because S-LATCH accommodates a
range of software-based DIFT policies, we note that libdft could be
replaced with a more aggressively optimized scheme, such as LIFT
or minemu [4, 44], to mitigate this source of overhead. In addition to
hardware-software control transfers, false-positive checks and CTC
misses contributed to S-LATCH overhead, but only exerted signif-
icant impacts on the performance of astar, in which poor spatial
locality imposed unusual pressure on the coarse-grained tainting
policy.

6.2 P-LATCH Evaluation
Next, we extended our performance model to evaluate the over-
head of P-LATCH in a 2-core monitoring system. To assess P-
LATCH overheads over native execution, we integrated the reported
performance overheads of the baseline LBA 2-core monitor (ob-
tained from the results presented in [7]) into our evaluation frame-
work, and estimated performance with LATCH localizing the over-
heads to periods of active propagation, measured at 1000 instruc-
tion granularity. For comparison, we also modeled a P-LATCH in-
tegration with an optimized version of the LBA framework [7].
Since [6, 7] evaluated LBA on a different (older) benchmark suites,
we used reported mean LBA overheads for our model’s baseline.
Though approximate, this model represents a conservative assess-
ment of S-LATCH performance across the full set of applications,
since it does not account for increased queue slack introduced by
P-LATCH during periods of active taint propagation.

Figure 15 reports P-LATCH performance overheads for the ap-
plications in our evaluation set. For the simple integration with LBA,
we observed mean overheads of 18.4% for the SPEC benchmarks
and 52.4% for the network benchmarks, with a mean overhead of
25.7% across all applications. These values are significantly lower
than the mean 3.38X overhead imposed by baseline LBA [7]. Over-
heads for the optimized schemes were still lower at 7.6% for SPEC
2006 benchmarks, 10.1% for network applications, and 0.8% overall,
compared to 36% for the optimized scheme without P-LATCH([7]).

6.3 H-LATCH Evaluation
To evaluate H-LATCH, we extended the Pin-based framework used
in the S-LATCH experiments with a simulated precise taint cache,
and analyzed the effect of coarse-grained filtering on overall taint
caching performance. Table 6 and Figure 16 present these results for
SPEC 2006 benchmark suite. The cache miss rate of H-LATCH is
the combined number of CTC and taint cache misses as a fraction
of all memory accesses. This value did not exceeded 1% for any
SPEC or network benchmark, except astar and sphinx. To contextu-
alize these observations, we compared the results for H-LATCH’s
filtered taint cache to a comparable taint cache without the benefits
of LATCH filtering. As a result of filtering, H-LATCH eliminated
over 89% of cache misses for SPEC benchmarks, and more than
98% for network applications. Indeed, for all programs except astar
and sphinx, H-LATCH eliminated between 98 and 99.99% of all
cache misses incurred by the taint cache without LATCH filtering.

To assess the internal dynamics of H-LATCH, we measured
the number of memory accesses resolved by each element of H-
LATCH’s taint caching stack: the TLB, CTC, and precise taint cache.
Our results, presented in Figure 16, show varied distribution of ac-
cess loads between the TLB and CTC. In most programs, the TLB
deflected more than 90% of memory accesses. In astar, gromacs,
omnetpp, and Apache, however, the CTC assumed a critical role in
screening the precise taint cache. Unsurprisingly, astar and sphinx
placed the heaviest burden on the taint cache, although in both cases
LATCH logic screened the majority of memory accesses.

6.4 LATCH Complexity Analysis
In the H-LATCH integration presented above, LATCH uses a fully
associative CTC with a 32 bit cache line, resulting in a capacity of
64 bytes. The precise taint cache used 32 bit blocks, with 4 ways
and a 128 byte capacity. When combined with taint bits added to a
128-entry TLB, the H-LATCH caching system has a total capacity
of 320 bytes to achieve byte-granular tainting. In the S-LATCH and
P-LATCH integrations, LATCH uses a 16-entry (64 bytes of total
capacity) fully-associative CTC, with a 64-byte taint domain, and
the TLB is correspondingly extended with two page-level taint bits.
The resulting system has a total capacity of 160B, including the CTC
clear bits.

To assess impacts on the area, power, and time of a real architec-
ture, we integrated the core LATCH hardware with an open source
AO486 processor implemented on an FPGA. The AO486 processor
is a 32-bit, in-order, pipelined, 33MHz implementation of the Intel
80486 ISA. We synthesized this combined architecture on a DE2-
115 FPGA using Quartus II 17.1 software, with LATCH attached to
the back-end stage of the core.

The results show that LATCH indeed has a low complexity. In
terms of area, LATCH increases the total logic elements and total
memory bits by 4% and 5%, respectively. In terms of power, it in-
creases core dynamic and static power by 5% and 0.2%, respectively.
Although it is difficult to measure power accurately, we applied the
power analysis tool provided by Quartus to measure power after
synthesis to get more accurate results. Moreover, since LATCH de-
sign is simple, it fits within the optimized frequency of the core.
Thus, it has no effect on cycle time. While we used the in-order
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Figure 16: Percentage of memory accesses handled by each taint caching element in H-LATCH

astar
bzip2

cactusADM

calculix
gcc gobmk

gromacs
h264ref

hmmer
lbm mcf namd

omnetpp
perlbench

povray
sjeng

soplex
sphinx

wget
wrf Xalan

mean

CTC miss percentage 2.622 0.0001 0.0001 0.0001 0.0008 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0034 0.0001 0.0001 0.0001 0.2872 0.0004 0.0035 0.0141 0.0001

t-cache miss percent in H-LATCH 2.8894 0.0001 0.0001 0.0025 0.0037 0.0001 0.0044 0.0002 0.0001 0.0026 0.0024 0.0008 0.0001 0.0469 0.0017 0.0001 0.0001 2.0087 0.0055 0.0274 0.0124 0.0003

combined miss percent in H-LATCH 5.5114 0.0001 0.0001 0.0025 0.0045 0.0001 0.0044 0.0002 0.0001 0.0026 0.0024 0.0008 0.0001 0.0503 0.0017 0.0001 0.0001 2.2959 0.0058 0.0309 0.0265 0.0003

t-cache miss percent without LATCH 7.9707 5.3137 25.364 10.3279 11.3298 11.3462 5.0965 6.9702 7.39 23.6281 35.6878 12.1935 12.3787 16.4413 10.0139 15.0817 13.5815 11.3727 7.0173 16.4611 13.4061 10.4956

percent misses avoided by H-LATCH 30.8541 99.9995 99.9999 99.9758 99.9604 99.9991 99.913 99.9977 99.9999 99.9891 99.9933 99.9932 99.9997 99.6939 99.9829 99.9999 99.9999 79.8126 99.9168 99.8125 99.8022 89.3475

Table 6: H-LATCH cache performance for SPEC 2006 benchmarks

apache-0
apache-25

apache-50
apache-75

curl mySQL
wget

mean

CTC miss percentage 0.0632 0.0454 0.0305 0.0141 0.0022 0.0722 0.0003 0.0018

t-cache miss percent in H-LATCH 0.1528 0.1365 0.0713 0.0371 0.0817 0.0544 0.0055 0.0262

combined miss percent in H-LATCH 0.2159 0.1818 0.1018 0.0511 0.0839 0.1266 0.0059 0.0306

t-cache miss percent without LATCH 10.6789 10.7884 10.7945 10.8036 5.8689 11.6442 6.9646 9.0745

percent misses avoided by H-LATCH 97.9779 98.3146 99.0569 99.5267 98.5707 98.9128 99.9157 98.8925

Table 7: H-LATCH cache performance for network applications
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Figure 17: LATCH integrated into AO486 processor core

AO486 processor for demonstration purposes, LATCH can be inte-
grated to out-of-order designs without additional complexity, as its
extraction logic applies to committed instructions. These results are
relative to the small AO486 pipelined core. The overheads will be
much smaller if compared to a modern out-of-order superscalar core,
because LATCH hardware will represent a much smaller percentage

7 RELATED WORK
In addition to using temporal locality to limit taint propagation
and checks, LATCH exploits spatial locality of taint as part of its
coarse-grained tainting policy. In this regard, LATCH advances a line
of research previously developed by the RangeCache system [49].
In contrast to LATCH, which exploits spatial locality to act as a

generalizable filter for a finer-grained tainting system, RangeCache is
a hardware-based tagging scheme that uses range-based compression
to reduce the size of a single-granularity taint cache. Although the
proof-of-concept implementation of H-LATCH was evaluated in the
context of a conventional taint cache, the use of multigranularity
tainting to further reduce the complexity of RangeCache and other
compressed caching schemes is a promising area of research for
future work.

Another recent proposal applied a compression mechanism based
on multi-granularity tainting to a single-granularity last-level taint
cache [29]. Unlike LATCH, this system caches taint tags for the last-
level cache, and thus required a significant investment of hardware.
In addition to the 32KiB last-level taint-cache itself, this system
required the extension data caches at each level with additional tag
bits. Moreover, the implementation presented in [29] tracks taint
tags at a coarse granularity of 256 bits, significantly more hardware
would be required to implement byte-precise tainting.

To our knowledge, LATCH is the first practical system to exploit
the inherent temporal properties of DIFT. The work of [26] used
page granularity taint tagging to activate an emulation-based taint
tracker, but relied on a modified VM to artificially enhance the local-
ity of tainted data, and was evaluated for a restricted taint tracking
policy that omitted DIFT propagation logic. The authors of [26]
observed that reliance on virtualization and emulation still make the
performance overhead too large to be practically usable. LATCH ad-
vances this line of research by defining and exploiting patterns of
locality inherent to DIFT itself, and by specifying lightweight hard-
ware logic to support practical locality-based DIFT acceleration with
reasonable overhead. PAGARUS [42] is a recent work that pursues
a different form a coarse-grained tainting that propagates taint from
the inputs to the outputs of hardware accelerators, rather than at the
granularity of individual instructions.

The work of [24] proposed a mechanism for triggering, disabling,
or changing security monitoring based on high-level events, such
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as user authentication. In contrast, LATCH exploits intrinsic lo-
calities in DIFT information flows. The two mechanisms are thus
orthogonal and complementary: for instance, LATCH can accelerate
pre-authentication monitoring, until the technique of [24] disables
DIFT entirely after authentication. The idea of approximate taint
tracking was explored in [56], which proposed PIFT - a scheme
that propagates taint through consecutive load and store operations
without tracking taint through intermediate registers. In comparison,
LATCH supports precise taint tracking, but can also enhance the
taint-caching in approximate schemes such as PIFT.

S-LATCH shares the objective of accelerating software-based
DIFT with several prior proposals. LIFT [44] and Minemu [4] apply
optimizations within DBI itself, achieving mean overheads 4X and
2.6X, respectively, over native execution. Though impressive, these
overheads remain a deterrent to production deployment. Minemu’s
aggressive software-based optimizations are orthogonal to S-LATCH,
and require that the SSL registers are consistently available for
storage of taint metadata, a strategy which becomes problematic
as more programs take advantage of them. Software-based DIFT
schemes developed for mobile platforms also exhibit impressive
properties [22], but the overhead of running these systems is largely
hidden because DIFT checks are built into a virtualized system,
and would not pertain to natively executed code. Some proposals
introduced DIFT logic statically at compile-time [33]. This approach
improves performance but cannot be used with COTS binaries.

P-LATCH relates to recent efforts to parallelize software-based
DIFT using general-purpose cores. Simple implementations of mul-
tiprocessor DIFT, as embodied in LBA[6, 7], impose overheads
on DIFT in excess of 3X, while more complex systems require
significant additional hardware [7]. A proposal by lo et al. [36]
allows parallel taint tracking to be temporarily disabled to allow
hard real-time systems to achieve deadlines, but provides no secu-
rity guarantees during non-monitored periods. A related proposal
[35] augments this selective monitoring approach by using limited
(although spatially fine-grained) hardware checks to limit compre-
hensive monitoring, thus conserving the budget of cycles allocated
for detailed enforcement. These approaches are ideal for applica-
tions with stringent limitations on monitoring overheads, but unlike
LATCH implementations are not designed to support comprehensive
monitoring.

Among existing proposals, FADE [23] most closely resembles
P-LATCH in its use of hardware checks to filter security events
processed by a second-layer monitor. However, the FADE hardware
module is a fine-grained mechanism that is closer in complexity to
traditional hardware systems, requiring, for instance, a 4KB meta-
data cache. Other related approaches involve specialized external
modules or co-processors [16, 17, 31, 34] or a reconfigurable fab-
ric [15]. These mechanisms are strongly optimized for operations on
tagged metadata, but can not be re-purposed for general computation.

Existing hardware-based taint-tracking systems [12, 23, 27, 48,
51, 54] provide excellent performance, but incur substantial design
complexity which H-LATCH seeks to address. Comparatively light-
weight implementations such as [54] and [23] still require a 4KB
taint cache to check taint tags for all operands at precise granularity,
while other designs introduce additional complexities, such as the
extension of memory buses and DRAM [12].

8 CONCLUDING REMARKS
This paper introduced LATCH, a lightweight hardware module that
exploits temporal locality to reduce the architectural and perfor-
mance overheads of DIFT. Following an in-depth analysis of the
temporal and spatial features of DIFT dataflows, we described the
LATCH architecture and applied it to three DIFT implementations.
We demonstrated significant reductions in performance overhead
for single-core and multi-core implementations of software DIFT(S-
LATCH and P-LATCH), as well as a decrease in the architectural
complexity needed to achieve acceptable taint-cache performance
in hardware-based DIFT (H-LATCH). These examples demonstrate
that locality-aware taint checking is a viable and generalizable op-
timization substrate, enabling more practical and efficient DIFT
solutions.
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