
Jump Over ASLR:
Attacking Branch Predictors to Bypass ASLR

Dmitry Evtyushkin
Department of Computer Science

State University of New York
at Binghamton

devtyushkin@cs.binghamton.edu

Dmitry Ponomarev
Department of Computer Science

State University of New York
at Binghamton

dima@cs.binghamton.edu

Nael Abu-Ghazaleh
Computer Science and

Engineering Department
University of California, Riverside

naelag@ucr.edu

Abstract—

Address Space Layout Randomization (ASLR) is a widely-
used technique that protects systems against a range of attacks.
ASLR works by randomizing the offset of key program segments
in virtual memory, making it difficult for an attacker to derive
the addresses of specific code objects and consequently redirect
the control flow to this code. In this paper, we develop an attack
to derive kernel and user-level ASLR offset using a side-channel
attack on the branch target buffer (BTB). Our attack exploits the
observation that an adversary can create BTB collisions between
the branch instructions of the attacker process and either the
user-level victim process or on the kernel executing on its behalf.
These collisions, in turn, can impact the timing of the attacker’s
code, allowing the attacker to identify the locations of known
branch instructions in the address space of the victim process or
the kernel. We demonstrate that our attack can reliably recover
kernel ASLR in about 60 milliseconds when performed on a real
Haswell processor running a recent version of Linux. Finally, we
describe several possible protection mechanisms, both in software
and in hardware.

Index Terms—Address Space Layout Randomization, Bypass,
Side Channel, Timing Channel, Timing Attacks, Kernel Vulner-
abilities, Exploit Mitigation.

I. INTRODUCTION

Memory corruption attacks such as stack and heap over-
flows [1], [2] and format string attacks [3] can lead to
control hijacking and arbitrary code execution by the attackers.
Despite significant efforts to prevent such attacks [4], [5], [6],
[7], [8], they remain a serious exploitable class of vulnera-
bilities present in many types of software. Since creating a
bug-free environment is practically impossible, systems are
often hardened using techniques that substantially reduce the
probability of a successful attack.

One such hardening technique is Address Space Layout
Randomization (ASLR). ASLR provides protection by ran-
domizing positions of key program components in virtual
memory. The randomization targets code and data segments,
stack, heap and libraries. The purpose of ASLR is to make it
difficult, if not impossible, for the attacker to know the location

of specific code pages in the program’s address space. For
example, even if the attacker successfully hijacks the control
flow, it would be difficult to perform a meaningful return-
oriented programming (ROP) [9], [10], [11] attack under
ASLR, because the addresses of ROP gadgets to inject on
the stack are not known due to randomization. Relying on
brute-force solutions to discover required gadget addresses
can cause the program to crash, or it can take prohibitively
long time [12], enabling detection by system software [13].
Discovering and exploiting other vulnerabilities that disclose
the randomization algorithm significantly complicates the at-
tack [14]. Non-control-data attacks [15] require the attacker
to know locations of various data structures. Although our
attack directly recovers ASLR for the code segment only,
data segments are typically not decoupled from code seg-
ments [16]; thus a successful attack on code ASLR reveals the
locations of data structures. Today, ASLR-based defenses are
widely adopted in all major Operating Systems (OS), including
Linux [17], Windows [18] and OS X [19]. Smartphone system
software such as iOS [20] and Android [13] also use ASLR.

ASLR implementations across different operating systems
differ by the amount of entropy used and by the frequency at
which memory addresses are randomized. These characteris-
tics directly determine the resilience of ASLR implementations
to possible attacks. For example, 32-bit systems have a much
smaller addressable space, limiting the amount of space that
can be dedicated to randomization, making it possible to build
fast brute-force attacks [12]. The randomization frequency
can range from a single randomization at boot or compile
time to dynamic randomization during program execution.
More frequent re-randomization reduces the probability of a
successful attack.

Traditionally, ASLR has only been considered as a protec-
tion mechanism against remote attacks. As a result, and also
for performance reasons [21], some ASLR implementations
randomize positions of libraries only one time during the
system boot. Consequently, all processes executed on a ma-
chine receive the same mappings of the libraries, thus making978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

return-to-libc [22], [23] or other code reuse attacks possible
within the same system. The presence of many high-privileged
processes in the system makes the attack surface large. For
example, on our experimental machine, an OS with only basic
services executes 30 and 80 root background processes in
Ubuntu 14.04 LTS and OS X El Capitan 10.11.2 respectively.
If one of these processes is subverted by an attacker, the entire
system becomes compromised with respect to ASLR.

All current operating systems supporting randomizations
implement variants of ASLR for both user and kernel-level ad-
dress spaces. Kernel-level ASLR (KASLR) randomizes kernel
code segments and can stop attacks that require knowledge of
the kernel address space layout (including ROP, jump-oriented
programming (JOP), return-to-libc, ret-2-user [24] and other
attacks). Unfortunately, current implementations of KASLR
are often criticized for incompleteness and insufficient en-
tropy [25]. A small entropy is typically justified by the fact that
it is infeasible for an adversary to mount a brute-force attack
against KASLR. If the attacker guesses the randomization
incorrectly, the kernel typically crashes and the attack fails.

In this paper, we demonstrate a new attack that can recover
all random bits of the kernel addresses and reduce the entropy
of user-level randomization by using side-channel information
from the Branch Target Buffer (BTB). Our attack only requires
the control of a user-level process and does not rely on
any explicit memory disclosures. The key insight that makes
the new BTB-based side-channel possible is that the BTB
collisions between two user-level processes, and between a
user process and the kernel, can be created by the attacker in
a controlled and robust manner. The collisions can be easily
detected by the attacker because they impact the timing of the
attacker-controlled code. Identifying the BTB collisions allows
the attacker to determine the exact locations of known branch
instructions in the code segment of the kernel or of the victim
process, thus disclosing the ASLR offset.

Our attacks exploit two types of collisions in the BTB. The
first collision type, exploited to bypass KASLR, is between a
user-level branch and a kernel-level branch - we call it cross-
domain collisions, or CDC. CDC occurs because these two
branches, located at different virtual addresses, can map to
the same entry in the BTB with the same target address. The
reason is that the BTB addressing schemes in recent processors
ignore the upper-order bits of the address, thus trading off
some performance for lower design complexity. The second
type of BTB collisions is between two user-level branches that
belong to two different applications. We call these collisions
same-domain collisions, or SDC. SDCs are used to attack
user-level ASLR, allowing one process to identify the ASLR
offset used in another. An SDC occurs when two branches,
one in each process, have the same virtual address and the
same target.

We demonstrate our attack on a real system with Haswell

CPU and a recent version of Linux kernel equipped with
ASLR. Since this new attack adds to the arsenal of a potential
adversary, we also discuss a number of possible software
and hardware-supported mitigation mechanisms to thwart this
attack. The solutions range from further hardening the ASLR
implementations to reconsidering the hardware designs of the
BTB to avoid collisions.

In summary, this paper makes the following contributions:
• We describe a new technique to bypass existing ASLR

schemes by exploiting a side-channel created through
shared BTB. We show how an adversary can create
a robust side-channel between a user process and the
kernel, as well as between two user processes in a
controlled manner.

• We show how the details of the BTB addressing scheme,
needed for creating a reliable BTB side channel, can be
reverse-engineered.

• We show how the new BTB side-channel attack can be
used to recover kernel and user-level ASLR in a fast
and reliable fashion. We implement our attacks on a real
system with Haswell CPU and recent Linux kernel and
show that kernel-level ASLR can be recovered in about
60 milliseconds.

• We propose several software and hardware countermea-
sures against the new attack and also place our attack in
the context of the related work.

II. THREAT MODEL AND ASSUMPTIONS

We consider two distinct attacks/threat models: one on
KASLR and one on user-level ASLR. In this section we
describe our assumptions about the underlying system and the
capabilities of the attacker in each case.

A. KASLR Attack

We assume that an attacker has control over a process
running on the target system with normal user privileges. We
refer to this process as the spy process. We further assume
that the kernel implements some form of KASLR and that
the kernel’s code and module segments are randomly placed
during boot in accordance with the KASLR algorithm. The
attacker knows which bits of the address are randomized and
which bits are fixed. Beyond that, the attacker does not have
any knowledge on how the random bits were generated. The
spy process can only execute normal user-level instructions,
including instructions for time measurement (such as rdtsc)
and perform regular interactions with the kernel through
system calls. We assume that the spy process cannot brute-
force the correct address. We do not assume any weaknesses
in KASLR implementation: in other words, randomized offset
values were generated using strong sources of entropy with
no algorithmic weaknesses [26]. The goal of the attacker is to
recover the address of a kernel routine, such as a system call
handler in virtual memory.

B. Attack on User Process ASLR

In this case, we assume that two user processes are present
in the system. The first process is a process that is the
target of an attack typically because it runs as root or has
permissions to access sensitive data. We refer to this process
as the victim process. The other process is the spy process
and it is controlled by the attacker who seeks to recover
ASLR of the victim as a first step of further attacks on it.
We assume that the system supports ASLR and the victim is
compiled as a position-independent executable to fully benefit
from it. As a result, the segments in the process image are
randomly shifted in virtual memory. We assume that there are
no weaknesses in the ASLR implementation and the spy does
not have any means to directly obtain the randomized ASLR
offset, for example via a memory disclosure vulnerability. The
spy can only execute normal user-level instructions, including
instructions for time measurement. The spy can also perform
regular interactions with the victim via any interfaces it offers,
for example via initializing network connections.

We assume that the spy can achieve virtual core co-
residency with the victim process. This assumption is required
because BTB collisions can only be achieved within the
same virtual core on Haswell CPU. This assumption is not
unrealistic because, as we demonstrate in Section V-A, it is
possible for the spy to control the cores on which the victim
process is scheduled.

III. CREATING THE BTB SIDE-CHANNEL

Branch predictors are critical to performance of modern pro-
cessors. One of the main components of the branch prediction
hardware is the Branch Target Buffer (BTB). The BTB stores
target addresses of recently executed branch instructions, so
that those addresses can be obtained directly from a BTB
lookup to fetch instructions starting at the target in the next cy-
cle. Since the BTB is shared by several applications executing
on the same core, information leakage from one application
to another through the BTB side-channel is possible. For
example, several previous works demonstrated the feasibility
of recovering secret encryption key bits using branch predictor
side channel [27], [28]. As another example, a recent study
of [29], [30] demonstrated that a reliable and high speed covert
communication channel can be created between two malicious
applications that share the branch prediction logic.

In this paper we describe a new security threat associ-
ated with shared branch prediction hardware. Specifically, we
demonstrate how a user-level spy process can gain information
about the position of code blocks in the address space of either
a victim process or the kernel by aligning its code to intention-
ally create BTB collisions between these two address spaces.
The attacker performs a series of time measurements, each
to test a hypothesis about the location of a specific branch.
These experiments allow the attacking process to discover the

precise location of a branch in the kernel address space, or
the address space of another process, thus bypassing kernel-
level ASLR and user level ASLR respectively. In principle,
our approach has a potential to bypass even some recently
proposed fine-grained ASLR solutions [31], [32], [33], [34].

The BTB side-channel that we exploit in this paper for
attacking ASLR is based on creating BTB collisions between
unconditional branch instructions belonging to two different
execution entities. We consider two types of collisions: col-
lisions between two user-level processes (to attack user-level
ASLR) and collisions between user-level and the kernel (to
attack KASLR). While no specific BTB addressing details are
needed by the attacker to perform the attack on the user-level
process, some reverse-engineering and understanding of the
BTB addressing scheme is required for an attack on the kernel.

A. Creating BTB Collisions in User Space

To create a BTB-based side-channel, three conditions must
be satisfied. First, one application has to fill a BTB entry by
executing a branch instruction. Second, the execution time
of another application running on the same core must be
affected by the state of the BTB. This condition is satisfied
when both applications use the same BTB entry, perhaps with
different targets stored. Third, the second application must be
able to detect the impact on its execution by performing time
measurements. We call the BTB collisions created between
two processes executing in the same protection domain (e.g.
two user-level processes) as Same-Domain Collisions (SDC).
An example of a SDC collision that can be exploited by our
attack is shown in Figure 1.

Kernel space Kernel space

User space User space
BTB

Address tag Target

jmp1 jmp2 0x7fefebe45a82

0xebe45a82 0x7fefebe45ad60x7fefebe45ad6

Fig. 1: SDC Example

To verify the sufficiency of the above assumptions for
creating SDCs, we designed and conducted the following
experiment on a machine with an Intel Haswell processor.
We executed two processes on the system: the victim and the
spy. The victim process writes some data into the BTB by
executing branch instructions. The goal of the spy process is
to use the branch instructions and time measurement tools
to detect the information that was written to the BTB by
the victim process. Since the goal of this experiment is to
demonstrate the possibility of data transmission through the
BTB side-channel, we allow the victim and the spy to coor-
dinate their actions by communicating with each other using

signals. The BTB manipulations are performed by executing
the jmp instruction. Conditional branches can also be used,
but for the sake of simplicity we demonstrate our attack using
unconditional jumps.

The key code block executed by both processes contains a
single jmp instruction with additional nop instructions. The
outline of this code is depicted in Listing 1. The code has
two possible jump targets. However, when compiled, the target
is statically set in the binary. We placed this code in both
processes. The functions where this code was placed are called
spy_func() and victim_func() accordingly.

asm("jmp target2;");
asm("nop; nop; ... ");
asm("Target1:");
asm("nop; nop; ... ");
asm("Target2:");
asm("nop; nop; ... ");

Listing 1: Code example with jump instructions

The goal of this experiment is to record the execution
time of the spy process when the measured jmp instruction
aligns with a similar instruction in the victim process. Our
expectation is that the two branch instructions will map to the
same BTB entry if they are located at the same virtual address.
Assuming BTB index() is the BTB indexing function, then
BTB index(Avictim) = BTB index(Aspy) if Avictim and
Aspy are identical virtual addresses. As a result, the data
placed at this address by the victim will affect the execution
time of the spy due to the created SDC.

The victim and the spy processes are compiled and linked
specifically to align the jump instructions. The spy also
measures the number of execution cycles required to execute
the jump block using the rdtscp instruction. We adjust the
number of nop instructions in the spy in order to compensate
for the length of the rdtscp instruction and keep the ad-
dresses of the jump and both targets aligned with the victim’s
addresses. The disassembly of the key functions is depicted in
Listing 2.

We executed the spy and the victim processes under two
settings. In the first setting, the targets of the spy and the victim
are the same, as demonstrated in Listing 2. In the second
setting, the targets are different and the victim jumps to target
T1. The use of different targets results in extra BTB misses
and thus performance slowdown for the spy, as the spy’s BTB
entry is overwritten by the victim, but with a different target
address. By running the spy under both settings, we obtain
the number of cycles required by the spy to execute the jump
code block.

The timing diagram depicting the stages of the experiment is
presented in Figure 3. The affinity masks of the two processes
are set to force them to execute on a single virtual core
interchangeably. First, the spy process sends a signal 1 to the

3000 <victim_func>:
3000 push %rbp
3001 mov %rsp,%rbp
3004 nop
3005 nop
. . .
3021 jmp <T2>
3023 nop
. . .
302d <T1>
302d nop
. . .
3037 <T2>
3037 nop
. . .
3041 pop %rbp
3042 retq

3000 <spy_func>:
3000 push %rbp
3001 mov %rsp,%rbp
3004 rdtscp
3005 nop
. . .

3021 jmp <T2>
3023 nop
. . .

302d <T1>
302d nop
. . .

3037 <T2>
3037 nop
. . .

3041 rdtscp
. . .

306c pop %rbp
306d retq

Listing 2: Disassembly of the functions containing the jump
block in the victim and the spy. Pictured an example with
aligned jump and target addresses.

victim process. To assure the delivery and the correct response
before the spy continues, the spy process calls the sleep() 3

function immediately after sending the signal. The victim
handles the signal by executing the victim_func() 2

function. At this stage, an entry in the BTB will be created
or updated. After a short sleep, the spy process executes
the spy_func() 4 and measures the number of cycles
to execute its jump block. After this step, the measurement
process is repeated again. When enough measurements are
obtained, the same experiment is repeated with the victim
jumping to a different target. We ran this experiment to
generate 100,000 measurements under each setting.

Spy T2 Spy T1
Victim T2 55.76 69.38 (+11.12)
Victim T1 64.93 (+9.17) 58.26

TABLE I: Averaged time of the jump code block (in cycles)
as measured by the spy with different victim settings.

The results of this experiment are shown as a histogram in
Figure 2. As can be observed from the graph, there are two
separate groups of time measurement values. The difference
between the averages of these two groups is about 9 cycles.
According to Intel developer’s manual, the frontend resteer
following an incorrect BTB prediction introduces an 8-cycle
bubble into the instruction fetch pipeline. This value is similar
to the observed slowdown.

In order to verify the consistency of our results, we also
repeated the experiment with the spy having the jump target

45 50 55 60 65 70 75 80 85
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average matching
Average mismatching
Matching
Mismatching

Fig. 2: Distribution of the execution time of the jump code
block (in cycles) when victim process jumps to matching and
mismatching target addresses.

set to T1. The results are summarized in Table I. Note that
since T1 is located closer to the jump instruction in the code
segment, the spy executes more instructions when jumping to
T1. Consequently, T1’s measurements are higher comparing
to T2’s with the victim performing jumps to the matching
target. However, the relative difference between the matching
and mismatching targets is similar in both cases.

Victim Spy

signal

victim_func() sleep()

kill(victim_pid)

spy_func()

n_cycles

1

32

4

repeat

Fig. 3: Interactions between the spy and the victim

These results validate our hypotheses that the BTB access
performed by one process impact the execution time of another
process. The stability of the results offers an opportunity to
use the BTB as a side-channel to monitor the branch activity
of a victim process.

B. Creating Cross-Domain BTB Collisions

We now describe how the BTB collisions can be created
between a user-level process (the attacker) and the kernel
as it executes on behalf of the user process. We call such
collisions Cross-Domain Collisions (CDC) because the spy
and the victim belong to different protection domains. If the
full virtual address was used for BTB addressing, then CDCs
would not exist, because the kernel code and the user code are
located at different virtual addresses. In this case, the BTB
tags would be different and the user process would never
experience a BTB hit on a data placed in the BTB by the
kernel.

However, modern processors typically use long (48-bits in
current implementations) virtual addresses when they run in
the 64-bit mode [35]. Assuming that each BTB entry also
needs to store the absolute value of the target address, the
total size of each BTB entry becomes large if the entire virtual
address is used for tagging and indexing. For example, for a
BTB with 8K sets, 35 bits for the tag and 48 bits for the target
address will be needed, adding up to 83 bits of storage for each
entry, which is expensive and power-consuming. Therefore,
current CPUs typically store only a part of the upper-order
address bits as tags, and some upper-order bits are ignored
for BTB addressing, possibly creating more collisions but
significantly simplifying the design and the BTB area and
power requirements.

The knowledge of the precise addressing scheme in the BTB
has significant implications on both types of attacks that we
consider in this paper. For the user-level attack that exploits
SDCs, this information is important because the address bits
that are not used in BTB addressing cannot be recovered
using our attack. In other words, this knowledge gives the
attacker information about the maximum possible benefits of
a successful attack. In terms of attacks against KASLR that
exploits CDC, the knowledge of the addressing mechanism is
essential even for creating the CDC collisions themselves.

On the Haswell processor used in our experiments, only a
subset of the virtual address bits is used for BTB addressing.
We used the following algorithm to discover which particular
bits are used for addressing the BTB. First, we created a
detectable SDC between two jump instructions in two separate
processes (as described in the previous section). Second, by
changing the address bits in the colliding instructions, we
determined if the specific bits were used for BTB addressing.
In particular, when inverting a specific address bit eliminates
a previously observed collision, the conclusion is that this bit
was used in the BTB addressing; otherwise it was not used.

To determine the relevant bits for Haswell processor, we
repeated the experiment similar to the one described above in
Section III-A under different settings. The main difference was
that while we kept the address of the jump instruction the same
in the victim process, we changed the address bits of the jump
instruction in the spy process. We discovered that all lower bits
of the address are used continuously and only the higher bits of
the address were cut off and not used in the BTB addressing.
In particular, bits 0 to 30 of the virtual address are used,
and bits 31 to 47 are ignored. The reverse engineered BTB
addressing scheme in the Haswell processor is depicted in
Figure 4. Figure 5 shows how a kernel-level branch instruction
and a user-level branch instruction can create a CDC in the
BTB.

Equipped with the understanding of the BTB addressing
scheme, the attacker can now create CDCs in the BTB and
exploit them for the kernel-level attack. The kernel-based

Haswell

Virtual Address: 0xAAAA AAAAAAAA
30 0

f(x)

Branch Target Buffer

Indexing
function

Fig. 4: BTB addressing scheme in Haswell processor

Kernel space

User space

BTB
Address tag Target

jmp1

jmp2

0xffffa9fe8756

0x000a9fe8756

0xa9fe8756

Fig. 5: CDC Example

attack flow is described in detail in the next section. After
presenting the kernel-level attack, we show how a complete
attack on user-level process can be realized using SDCs in the
BTB.

IV. RECOVERING ASLR BITS OF KERNEL CODE

ADDRESSES

In this section, we demonstrate how the BTB side-channel
can be used to effectively recover the randomized offset bits
used in kernel ASLR in a short amount of time. We use a
recent Linux kernel (version 4.5) for our experiments.

A. KASLR in Linux

Modern desktop and server operating systems implement
kernel ASLR (KASLR). Starting from kernel version 3.14,
KASLR is also included in the mainstream Linux kernel
distribution. To provide the necessary background, we first
explain the KASLR implementation in 64-bit mode Linux
kernel.

When KASLR is disabled, the kernel image is always
placed at the same physical address during system’s boot.
The address translation in kernel mode can be performed by
simply subtracting a predefined PAGE_OFFSET value (which
is 0xffffffff80000000 for a 64-bit kernel) from the
virtual address. Thus, the location of the kernel image is fixed
in both the virtual and physical address spaces.

When KASLR is enabled, a sequence of random bits is
generated during early boot process. These bits are used to
calculate the randomized offset at which the kernel image
is placed in physical memory. The virtual-to-physical address
translation for kernel addresses remains unchanged. The ran-
domized placement of kernel code in physical memory is
mirrored by the same offset being applied to the virtual ad-
dresses in virtual memory. This leads to a critical observation:
if an attacker discovers the position of the kernel code either

in physical or virtual address space, the address layout is
disclosed, and the location of any address in the static kernel
image can be determined from there. Since our attack is built
around virtually-addressed BTB, for the rest of this section
we focus on virtual addresses. Note that since the kernel is
mapped into the address space of every process, deriving the
KASLR offset on any process exposes KASLR for all.

Due to the specifics of the Linux kernel memory layout, the
64-bit kernel currently randomizes only 9 bits of the virtual
addresses. In particular, the kernel code must be aligned at
2MB boundaries. As a result, only the Page Directory Entry
(PDE) bits of virtual addresses are randomized. While it would
have been possible to extend the relocation mechanism, this
requires significant reorganization of the physical memory lay-
out and will likely result in performance degradation. Figure 6
demonstrates the randomized bits as well as how the bits are
used for page translation on x86 64 machines operating with
large 2MB pages. The figure also shows possible range of
kernel code addresses.

Page Offset

020212930383947
Page Map

Level 4 Offset
Page Dirrectory
Pointer Offset

Page Directory
Offset

Randomized
during Load

Determined during
Compilation

0293047 2021

Always Fixed
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

2MB page translation:

Kernel addresses randomization:

Example of min and max randomized addresses:

Min:
Max:

0xffffffff801e8756
0xffffffffbffe8756

Fig. 6: KASLR used in 64-bit Linux kernel. Only the Page
Directory Entry (PDE) bits are randomized.

B. Using the BTB Channel for KASLR Bits Recovery

In Section III we demonstrated how two independent jump
instructions can collide inside the BTB to create contention
for BTB entries, resulting in a measurable slowdown of the
colliding jump instructions. We now describe how this side-
channel can be used to discover the random address bits of
one kernel function. This, in turn, allows the discovery of a
randomized offset value generated during the boot process.

To prepare the attack, an adversary needs to locate a branch
instruction whose execution can be easily triggered by the spy
process. One way to achieve this is to analyze the code of
system calls available to a user process and locate a system
call that performs a branch instruction. In order to make the
attack faster and to minimize noise, first consideration should
be given to system calls with a small number of instructions.

Next, the attacker creates a list of all possible locations for
that branch taking into account the randomization scheme and
the location of that branch in the compiled kernel code. After
that, for each address A from that list, the attacker performs
the following steps:

1) It allocates a buffer at the required address in the spy
process.

2) It loads this buffer with a block of code containing a
single jump instruction. The loading is done in a way
that creates collisions in the BTB with a possible kernel
branch instruction at address A. This block of code also
contains an instruction to measure the time to execute
the jump instruction.

3) The target branch instruction in the kernel code is
activated by executing the identified system call.

4) The block of code in the spy process is executed a
number of times and the number of cycles taken to
execute it is recorded.

5) Finally, the results are analyzed. The block with higher
average cycle measurement corresponds to the situation
when the jump instruction in the spy’s code block
collides with the kernel branch at address A.

C. Results of KASLR Bit Recovery

We implemented the attack discussed above and executed
it on our test machine equipped with a Haswell CPU. In our
experiments, we used the open system call to locate a branch
instruction in the kernel code. This system call opens a file and
returns a file descriptor. However, prior to accessing the file
system, the OS checks for any errors. This check involves a
comparison performed using a conditional branch instruction.
The branch instruction is located at a predictable address and
therefore can be used for the attack.

One of the possible errors that occurs during the system call
is when the provided file name is larger than the maximum
length allowed by the system. In order to make the attack fast
and to minimize noise, we intentionally provided the erroneous
filename. After the kernel detects the length violation, the
control flow is immediately returned to the user process that
requested this system call.

The results of this experiment are presented in Figure 7.
The nine random address bits correspond to 512 possible
A addresses. For each such address A, we collected 50
measurements. As seen from the graph, there is a single
point that has the average timing that is much higher than
the rest of the points on the graph. This point corresponds to
the colliding branch instruction. In particular, the user space
jump instruction at address 0xa9fe8756 collides with an-
other branch instruction at address 0xffffa9fe8756. This
collision results in a significant slowdown due to the wrong-
path instruction fetch after the BTB prediction. Therefore, the
value of the KASLR bits is a9f in this case. The described
attack takes a very short time: only 60 milliseconds are needed
to collect the required number of samples.

V. RECOVERING ASLR BITS IN USER APPLICATION CODE

User-level processes can also be the victims of attacks
attempting to compromise ASLR. Privileged processes or

7d0 834 898 8fc 960 9c4 a28 a8c af0 b54 bb8 c1c c80
KASLR bits

40

50

60

70

80

90

100

C
y
cl

e
s

to
 e

xe
cu

te
 s

p
y
's

 c
o
d

e
 b

lo
ck 0xa9fe8756

Fig. 7: Results of the BTB-based Attack on KASLR

processes that have access to specific data can be attacked by
other processes running in the same system; as part of such
an attack, reverse engineering the ASLR offset is necessary.
While system security settings may only allow an attacker to
remotely create a process with user privileges, the attacker can
use this user process as a starting point for discovering and
attacking other processes with higher privileges.

A typical system has many daemon processes executing
with administrative privileges and these daemons can have
common exploitable vulnerabilities. For example, a recently
reported vulnerability [36] in the cupsd printing scheduler
(which is found on most Unix-like systems and is executing
as root), allows a remote attacker to execute arbitrary code.
Typically, ASLR interferes with the attacker’s ability to per-
form a subsequent attack, such as a code reuse attack, that
follows the exploitation of the vulnerability e.g. by means of
buffer overflow. To complete a successful attack, the adversary
first needs to de-randomize the victim process prior to enabling
the correct exploitation of the vulnerability without crashing
the victim process.

Another relevant application of a user-level ASLR attack
is to perform layout de-randomization in isolated execution
environments, where application secrets are protected inside
enclaves or compartments [37], [38], [39], [40]. The compart-
ment code layout is usually kept secret in such systems, and
de-randomizing it opens avenue for side-channel attacks on
compartments, similar to the ones reported by Xu et al. [41].

The BTB side-channel presents one way of de-randomizing
the code segment of a running process in this scenario. Our
contribution is to demonstrate the principles of such user-
space attack. Similar to the attack on kernel ASLR described
in previous section, the attack on user-level ASLR is based
on the ability of the spy process to trigger some activity in
the victim process. Such triggering can be accomplished in

several different ways depending on the interfaces offered by
the victim process. For example, with the cupsd daemon,
the spy can send some requests via the network to force some
code to be executed as needed. In the attack preparation stage,
the attacker analyzes the victim’s executable to find functions
that can be triggered and also locates jump instructions in such
functions. The stages of the attack are presented in Figure 8.
Specifically, the spy process performs the following steps for
each possible address A where the victim’s branch instruction
can reside:

1) It allocates a buffer at the required address.
2) It fills the buffer with the code containing a single jump

instruction at address A.
3) It triggers 1 an activity in the victim process 2 in order

to force the victim to create a BTB entry.
4) It waits 3 for the activity to complete.
5) It executes the jump block several times and measures

the execution time 4 .
6) It changes the target of the jump instruction 5 and

repeats the measurement stages.
7) Finally, the spy discovers the address at which the

behavior of the jump is similar to what we described
in Section IV.

We now discuss the requirements for this attack and mech-
anisms that allow the attacker to fulfill these requirements.

Victim Spy

request

request

victim_activity sleep()

Trigger victim

Change jmp target

sleep()

spy_func()

n_cycles

spy_func()

n_cycles

1

5

32

4

victim_activity

Trigger victim

Fig. 8: Stages of the user ASLR attack

A. Achieving Co-residency of the Victim and the Spy

The attack on kernel ASLR described in previous section
does not have to be tied to a specific core. When a process
performs a system call, the process switches to kernel mode
and executes the kernel code which is mapped into its address
space; i.e., the kernel code executes on the same core without
causing a context switch. After that, the kernel returns to the
process and allows it to continue.

The situation is quite different for the user-level attack. Our
experiments with the BTB side-channel on both Sandy Bridge
and Haswell CPUs revealed that a BTB collision between two
user-level processes can only happen when both processes are

— Dummy — Victim

— Spy — Conext swith

Phys Core 0 Phys Core 1

Phys Core 2 Phys Core 3

0 14 5

2 6 3 7

(a) Dummy processes force the OS to schedule the
victim on a desired virtual core (prior the spy)

Phys Core 0

0 14 5

2 6 3 7

Phys Core 1

Phys Core 2 Phys Core 3

(b) A copy of the spy process is executed on each
core

Fig. 9: Two types of spy scheduling. Both produce context
switches from the victim to the spy allowing leakage of
sensitive data.

scheduled consecutively on the same virtual core (or hardware
thread context) of a hyper-threaded processor. The collision
does not happen when the two processes are executed on
parallel hardware contexts. This observation implies that either
each virtual core has a dedicated area in the BTB, or every
BTB entry is marked with a virtual core ID. Consequently, the
first goal of the user-level attack is to ensure co-residency of
the victim and the spy on the same virtual core.

The virtual core co-residency requirement can be met in
several ways. One method is to inject dummy processes in the
system on all other virtual cores in order to alter the scheduling
mechanism and force the spy to be placed on the same virtual
core as the victim. Another option is to execute the spy on all
virtual cores. These two schemes are summarized in Figure 9
and are described below.

1) Manipulating the OS Scheduler: One way to achieve co-
residency is to manipulate process scheduling by the kernel.
We assume that it is possible for a user process to schedule
itself on an arbitrary core. In Linux, such capability is available
through a call to sched_setaffinity() [42]. Scheduling
manipulation is possible because of predictability of the task
placement algorithm. In order to efficiently and equally utilize
the CPU computational and power resources, the OS attempts
to spread the load equally among all cores. With that con-
straint, the OS is more likely to schedule a process on a core
with a lower utilization level. To exploit this algorithm, the
attacker can substantially load all cores in the system with
dummy tasks, except for the core on which it wishes to place
the victim process.

To validate that it is possible for a user-level process to
control the placement of other processes (including privileged
ones) in the system, we examined the scheduling of the
sshd daemon process (OpenSSH server) that was executed
as root. First, we did not introduce any dummy processes
in the background and allowed the OS to freely choose any
cores to schedule this process on. We performed a series of
observations recording which core the process was scheduled
on. During each observation, we initialized a new ssh con-
nection in order to force the OS to wake up the process
and place it on one of the cores. For the second part of the
experiment, we executed dummy CPU-bound processes (as
shown in Figure 9a), loading all but a single virtual core to
the maximum. We repeated the same series of observations,
recording the cores on which the sshd process was placed.

We executed the above experiment to capture 1 million data
points for each case. For this experiment, we used a machine
with Intel Core i7-4800MQ quad-core processor. Note that
although the CPU has 4 physical cores, the hyper-threading
technology makes the OS recognize 8 virtual cores with 2
threads per physical core. Our machine was running Ubuntu
14.04 LTS with the generic Linux kernel version 3.16.0-48.

The results of these experiments are presented in Figure 10.
As seen from the graphs, when there are no dummy processes
running on the CPU, the OS spreads the load among the
cores equally. However, when there is a core with much lower
utilization level, the OS would typically schedule the sshd
daemon on that core. Another interesting observation is that
the OS is more likely to choose virtual cores 0 – 3 (thus
spreading the load among all four physical cores) before using
virtual cores 4 – 7, which add another process on the same
physical core via hyper-threading.

2) Executing Multiple Spies: An alternative method of
achieving context switches from the victim to the spy on
the same virtual core is to execute multiple copies of the
spy process and allowing the OS to freely choose any core
to schedule the victim process on. Figure 9b illustrates this
approach. Even if a task migration happens, the victim process

will be placed on a core with a copy of the spy process
running. This method requires a slightly more complex spy
organization. In order to achieve a continuous side-channel,
the scheduled group of spy processes needs to detect which
one of the spies is co-located with the victim process at the
moment. They also need to communicate this information
to each other. Detecting co-residency can be done either by
directly obtaining such information from the OS or by relying
on side-channel analysis [43].

In our experimental system, which was configured with the
default parameters, the OS allows all user processes to obtain
the placement information on any other process, including
privileged processes. This information includes the status of
the process (active, sleeping, etc.) and the core number on
which the target process is/was executing. Such information
is provided through the /proc [44] virtual file system. This
makes the detection of core co-residency straightforward.
Moreover, the OS is more likely to reschedule a process to
the same core due to scheduling policies favoring cache affin-
ity [45], [46]. This scheduling approach reduces the number of
times the process is migrated between the cores and promotes
uninterrupted collection of side-channel data.

B. Experimental results

We implemented a prototype of the attack on user-level
ASLR by modifying the experiment described in Section IV.
First, we compiled the victim process with full ASLR support.
Second, we equipped the spy process with the capability to
check possible locations of the victim branch. The victim has a
jump with target T2, while the spy repeatedly tries two targets:
the matching target T2 and the mismatching target T1. The
results are presented in Figure 11. For demonstration purposes,
we only show the recovery of 8 bits of the address.

The results are obtained following the methodology of
Section 3.1. The victim and the spy code is the same as shown
in Listing 2. The spy executes more instructions when jumping
to target T1, therefore the blue points are higher than the green
points on Figure 11. The vertical line in the middle of the
graph shows the situation when the victim’s branch and the
spy’s branch hash to the same BTB entry, causing a collision
and additional delay at the spy. While the latency increase
in T1 is expected, the slight increase in T2 (matching target)
is due to collisions and contention on other shared virtually-
addressed resources, such as the uop cache. The collisions are
not through BTB in this case because both victim and spy will
get the BTB hits for the same virtual address and the same
target address (T2).

Our prototype code tests 100 addresses in a second. Further
optimizations can make the throughput even higher. Please
note that current BTB addressing scheme (as used in Haswell
processor used for our experiments) allows us to recover only
a limited number of ASLR bits. The number of bits that are

0 1 2 3 4 5 6 7
Schedule Frequency by Core

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Fr
eq

ue
nc

y

24.80%
23.46%

21.19%
22.32%

2.07% 2.54% 2.18%
1.44%

(a) No scheduling manipulation

0 1 2 3 4 5 6 7
Schedule Frequency by Core

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Fr
eq

ue
nc

y

0.07% 0.06% 0.06%

99.59%

0.03% 0.02% 0.02% 0.17%

(b) The spy forces scheduling at core number 3

Fig. 10: Scheduling of the victim process to virtual cores.

randomizes is implementation specific. However, according
to [47], the full ASLR in Linux randomizes 12th to 40th bits
of the virtual address. Since 30th and higher bits are not used
in BTB addressing, only 18 bits can be recovered using the
BTB attack on Haswell. However, this significantly reduces
the entropy, making the brute force of the remaining 11 bits
more feasible.

7efebe3e8 7efebe44c 7efebe4b0 7efebe514
Randomized part of the instruction address

75

80

85

90

95

100

105

110

115

120

C
y
cl

e
s

to
 e

xe
cu

te
 s

p
y
's

 c
o
d

e
 b

lo
ck

T1

T2
0x7fefebe45a82

Fig. 11: Results of the BTB-based Attack on User-level ASLR

VI. MITIGATING BTB-BASED ATTACKS

In this section we describe several possible countermeasures
that can either make the ASLR schemes less vulnerable to
the BTB side-channel attacks presented above, or completely
suppress the side-channel. We categorize possible solutions
into two groups: purely software solutions and hardware-
supported solutions.

A. Software Mitigations

Software countermeasures are limited because they are not
able to control how branches are mapped to the BTB entries,
thus they do not address the root cause of the side channel.
However, several software countermeasures are possible that
can make the recovery of the ASLR bits difficult or even
impossible.

Traditional ASLR schemes randomize only the offset of the
segments within the program address space. However, recent
research efforts suggested finer-grained ASLR schemes that
can randomize code at the granularity of functions [31], basic
blocks [48] or instructions [49], [50]. While most of these
solutions focus on user-level ASLR, fine-grained KASLR is
also possible. Reconstructing the code layout in memory is
much harder when such fine-grained protection schemes are
applied. The BTB attack described in this paper has a potential
to bypass even these fine-grained techniques, provided that
they preserve the basic block structure, because it discovers
the position of individual branch instructions in memory.
However, such an attack on fine-grain ASLR would require
significantly more effort from the attacker. In addition, if an
ASLR technique randomizes the sizes of basic blocks, the spy
process will not be able to distinguish basic blocks from one
another, thus closing the BTB side-channel.

Another approach to mitigating the BTB side channel (as
well as many others) is to make the accurate execution
time readings difficult by fuzzing the time stamp counter, or
disabling it completely [51], [52]. However, such a solution
could interfere with many legitimate applications that need
to have precise time measurement capability. Moreover, some
implementations have been shown to be insecure [53].

1) Kernel ASLR Reinforcement: As was demonstrated in
Section IV-A using the example of Linux, today’s operating
systems rely on limited entropy for KASLR. A small number

of randomized bits makes the KASLR side-channel attack
possible. In addition, the bits being randomized fall into the
lower 30 bits of the virtual address1, making the BTB-based
attack possible. A simple solution which does not require
any hardware changes is to ensure that more higher-order
bits are randomized during every system load. The memory
organization on x86 64 machines allows the use of 48 bits of
virtual address with the most significant bit used to distinguish
between the lower half and the upper half of virtual memory.
Thus, assuming 2MB pages for kernel code (and thus 21
bits in the page offset), the maximum number of bits that
can be theoretically randomized is 26 (48-1-21). Since 17 of
these bits (the upper order bits of the address) are not used
for BTB addressing, the BTB side-channel will not provide
sufficient information to derive ASLR. The 17 bits correspond
to approximately 131,000 possible kernel positions. Since
brute-force attacks in kernel space are infeasible, this level
of entropy is likely to provide sufficient security.

Randomization schemes interfere with the way the kernel
normally organizes its memory layout. In current implementa-
tions, large memory areas are fixed and reserved for devices,
the hypervisor and other service structures. Therefore, im-
plementing such a scheme would require significant memory
reorganization in order to benefit from high levels of entropy.

B. Hardware Mitigations

The BTB side channel attack is possible because of two
types of BTB collisions. The first type of collision occurs when
two branches residing in different protection rings and located
at different addresses are mapped to the same BTB entry -
this opens the door for BTB-based attack against KASLR.
The second type of BTB collision occurs when two different
branch instructions are located at identical virtual addresses
but belong to different processes - this collision is the basis
for an attack on user-level ASLR.

A hardware solution that would fundamentally mitigate
the BTB-based attacks is to change the BTB addressing
mechanism in a way that prevents exploitable collisions in the
BTB. The attack against KASLR can be mitigated by using
full virtual address for accessing the BTB, thus eliminating
collisions between the user code and the kernel code. This
would require adding extra bits in the BTB, as the tag size
will increase significantly (by 17 bits compared to Haswell
implementation for 48-bit virtual addresses).

Alternatively, the BTB can use different indexing functions
for user and kernel-level code. For example, a secret value can
be added to the existing BTB hash function when the CPU
is executing in the kernel mode. To prevent the user process
from discovering this value and reverse-engineering the hash
function, this value can be randomized during each system’s
boot.

1The number of bits can be different on other microarchitectures

In order to apply the same protection technique to mitigate
user-level ASLR attack, each process needs to have a unique
value that will be used in the BTB hashing function. This
can be the hardware Address Space Identifier (ASID) [54],
or the values of the CR3 register, which are unique for each
process. Of course, these values must be kept secret from other
processes.

Other possible hardware-supported mitigation techniques
include flushing the BTB on context switches or marking each
BTB entry with unique process ID to distinguish the entries
set up by different processes.

VII. RELATED WORK

Hardware side channels are well-known threats to security
of sensitive data. A large number of prior works studied differ-
ent aspects of side channels in instruction and data caches [55],
[56], [57], [58], [59]. Aciicmez et al [27], [28]. were the first to
demonstrate side channel attacks on branch prediction units to
recover secret keys. In another recent work [30], [29], branch
predictor’s pattern history tables were used to build a covert
channel and to pass information from one process to another.
In this paper, we show how the specially-constructed new BTB
side channel can be used to discover the memory layout of
another process or the kernel, thus bypassing existing KASLR
schemes and reducing the entropy of user-level ASLR.

Several works have demonstrated how ASLR can be de-
feated through brute-force approach [12], and by using mem-
ory disclosure attacks [60]. Some studies also showed how to
bypass ASLR on mobile platforms [61] and novel shielded
systems [41]. In [62], Gu et al. addressed the problem of
de-randomizing kernel address space based on signatures
generated from kernel memory snapshots.

Hund et al [63] demonstrated an attack on kernel ASLR
using cache-based timing side channel analysis. In that work,
three different attacks were demonstrated. The first attack
relied on the collision of kernel and user objects in the last
level caches. This attack requires the attacker to know the
physical address of data that he places in the cache. In addition,
the attack is hard to perform in realistic scenario because of
excessive amount of noise in the last-level caches from other
processor cores. The second attack described in [63] exploits
a particular property of Intel’s CPUs. In particular, when a
user process tries to access a location in the kernel memory
space, an exception is generated. Even though the access is
denied, the TLB entry is still created, which can be detected
later by the user process. This attack allows the spy process to
discover which memory pages are allocated in kernel space.
The third attack of [63] is based on observing the time needed
for a page walk. To perform the cache-based attack, the spy
process first flushes all cache levels and then invokes some
system service. After that, it performs a memory access, times
it, and uses this information to determine what kernel code

resides on what page. Compared to the cache-based attacks,
the BTB-based attacks proposed in this paper are significantly
simpler and allow the adversary to perform the attack under a
much more controlled setting. Indeed, the attacker no longer
needs to deal with noisy measurements from the last-level
cache and does not require any knowledge about the physical
addressing. All our attacks are based on virtual addressing and
the exploitation of simple BTB collisions. While the attacks
on KASLR using side-channel information were previously
considered, as described above, to the best of our knowledge
this paper is the first to consider side-channel analysis to
recover user-level ASLR.

To harden the security properties of ASLR schemes against
emerging attacks, researchers have proposed various fine-
grain ASLR techniques. These schemes enforce the enhanced
randomization at different levels, such as at the level of func-
tions [31], basic blocks [48] or instructions [49], [50]. While
some of fine-grain ASLR solutions can thwart our BTB attack
by randomizing the relative positions of branch instructions in
memory, they usually have significant performance overhead
and are not widely adopted. In addition, our attack can still be
used to locate the position of individual branch instructions
in memory. This information can potentially lead to the
development of other techniques to eventually reconstruct the
code layout in memory despite deep randomization.

Snow et al. [64] presented just-in-time code reuse attack as
an effective technique against sophisticated fine-grained ran-
domization schemes. The attack is based by scanning and con-
structing the Return-Oriented-Programming (ROP) payload at
the runtime exploiting memory disclosures. A system called
Heisenbyte [65] has been proposed to protect against such
just-in-time attacks by addressing memory disclosure attacks.
Heisenbyte defeats memory disclosure attacks by introducing
the concept of destructive code reads. Since our BTB attack
does not rely on code reads from memory, it can still be used in
an arsenal of tools to create memory disclosures and eventually
reconstruct the address randomization schemes.

VIII. CONCLUDING REMARKS

Address Space Layout Randomization (ASLR) is a widely-
adopted security mechanism, both in kernel and application
levels, to protect systems from code reuse attacks. In this
paper, we exploited collisions in shared BTBs to create BTB
side-channels and allow the attacker process to recover the
memory layout of both the kernel and user-level applications.
We demonstrated a successful attack on a system with Haswell
CPU and a recent version of Linux kernel. We showed that
our attack is robust and can bypass KASLR in a very short
amount time. In addition, the attack can reduce the entropy of
the user-level ASLR. Since this BTB attack adds to the arsenal
of tools available to the attackers, we also described possible

software and hardware countermeasures to mitigate this new
security threat.

IX. ACKNOWLEDGMENT

This material is based on research sponsored by the National
Science Foundation grant CNS-1422401.

REFERENCES

[1] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[2] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in DARPA
Information Survivability Conference and Exposition, 2000. DISCEX’00.
Proceedings, vol. 2. IEEE, 2000, pp. 119–129.

[3] T. Newsham, “Format string attacks,” 2000.
[4] F. Qin, S. Lu, and Y. Zhou, “SafeMem: Exploiting ECC-memory for

detecting memory leaks and memory corruption during production runs,”
in High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on. IEEE, 2005, pp. 291–302.

[5] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Defeating
memory corruption attacks via pointer taintedness detection,” in Depend-
able Systems and Networks, 2005. DSN 2005. Proceedings. International
Conference on. IEEE, 2005, pp. 378–387.

[6] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt, “Automatic diagnosis
and response to memory corruption vulnerabilities,” in Proceedings of
the 12th ACM conference on Computer and communications security.
ACM, 2005, pp. 223–234.

[7] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Securing C++ Virtual
Calls from Memory Corruption Attacks.” in NDSS, 2014.

[8] E. C. Sezer, P. Ning, C. Kil, and J. Xu, “Memsherlock: an automated de-
bugger for unknown memory corruption vulnerabilities,” in Proceedings
of the 14th ACM conference on Computer and communications security.
ACM, 2007, pp. 562–572.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security. ACM, 2010, pp. 559–572.

[10] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch
regulation: Low-overhead protection from code reuse attacks,” in Com-
puter Architecture (ISCA), 2012 39th Annual International Symposium
on. IEEE, 2012, pp. 94–105.

[11] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “SCRAP: Architecture for signature-based protection from
code reuse attacks,” in High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium on. IEEE,
2013, pp. 258–269.

[12] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[13] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev, “Address space
randomization for mobile devices,” in Proceedings of the fourth ACM
conference on Wireless network security. ACM, 2011, pp. 127–138.

[14] “CVE-2015-3108.” Available from NVD, CVE-ID CVE-2015-3108,
Sep. 6 2015, [Online; accessed Feb. 2 2016 https://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2015-3108].

[15] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data
attacks are realistic threats.” in Usenix Security, vol. 5, 2005.

[16] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping address space leakage for code reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 280–291.

[17] PaX Team, “Address space layout randomization,” Phrack, March, 2003.
[18] M. Howard, “Address space layout randomization in Windows Vista,”

Microsoft Corporation, vol. 26, 2006.
[19] D. Keuper, “XNU: A security evaluation,” December 2012.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3108
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3108

[20] D. A. Dai Zovi, “Apple iOS 4 security evaluation,” Black Hat USA, pp.
1–29, 2011.

[21] M. Payer, “Too much PIE is bad for performance,” 2012.
[22] S. Designer, “return-to-libc attack,” Bugtraq, Aug, 1997.
[23] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[24] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
lightweight kernel protection against return-to-user attacks,” in Presented
as part of the 21st USENIX Security Symposium (USENIX Security 12),
2012, pp. 459–474.

[25] B. Spengler and PaX Team, “KASLR: An Exercise in Cargo Cult
Security,” Available online, Mar. 20 2013, [Online; accessed Feb. 2 2016
http://forums.grsecurity.net/viewtopic.php?f=7&t=3367#p12726/].

[26] T. Mandt, “Revisiting iOS Kernel (In) Security: Attacking the
early random() PRNG.”

[27] O. Aciicmez, K. Koc, and J. Seifert, “On the power of simple branch
prediction analysis,” in Symposium on Information, Computer and
Communication Security (ASIACCS). IEEE, 2007.

[28] ——, “Predicting secret keys via branch prediction,” in The cryptogra-
phers’ track at the RSA conference, 2007.

[29] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and mitigating covert channels through branch predictors,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 13, no. 1,
p. 10, 2016.

[30] ——, “Covert channels through branch predictors: a feasibility study,”
in Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy (HASP). ACM, 2015, p. 5.

[31] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commodity
software,” in null. IEEE, 2006, pp. 339–348.

[32] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), 2012, pp. 475–490.

[33] H. Xu and S. J. Chapin, “Improving address space randomization with
a dynamic offset randomization technique,” in Proceedings of the 2006
ACM symposium on Applied computing. ACM, 2006, pp. 384–391.

[34] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for com-
prehensive protection from memory error exploits.” in Usenix Security,
2005.

[35] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The AMD
Opteron processor for multiprocessor servers,” IEEE Micro, no. 2, pp.
66–76, 2003.

[36] “CVE-2015-1158.” Available from NVD, CVE-ID CVE-2015-1158,
Sep. 6 2015, [Online; accessed Feb. 2 2016 https://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2015-1158].

[37] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in Proceedings of the 2nd
international workshop on hardware and architectural support for
security and privacy, vol. 13, 2013.

[38] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
and R. Riley, “Iso-x: A flexible architecture for hardware-managed
isolated execution,” in Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on. IEEE, 2014, pp. 190–202.

[39] ——, “Flexible hardware-managed isolated execution: Architecture,
software support and applications,” IEEE Transactions on Dependable
and Secure Computing (TDSC), 2016.

[40] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[41] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” 2015.

[42] M. Kerrisk et al., “SCHED SETAFFINITY(2) linux programme’s man-
ual,” Dec 2015.

[43] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Co-
residency detection in the cloud via side-channel analysis,” in security
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 313–328.

[44] M. Kerrisk et al., “proc(5) Linux Programmer’s Manual,” Dec 2015.
[45] V. Kazempour, A. Fedorova, and P. Alagheband, “Performance impli-

cations of cache affinity on multicore processors,” in Euro-Par 2008–
Parallel Processing. Springer, 2008, pp. 151–161.

[46] J. Torrellas, A. Tucker, and A. Gupta, “Evaluating the performance of
cache-affinity scheduling in shared-memory multiprocessors,” Journal of
Parallel and Distributed Computing, vol. 24, no. 2, pp. 139–151, 1995.

[47] H. Marco-Gisbert and I. Ripoll, “On the Effectiveness of Full-ASLR on
64-bit Linux,” 2014.

[48] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[49] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 601–615.

[50] S. Shamasunder, “On the Effectiveness of Heterogeneous-ISA Program
State Relocation against Return-Oriented Programming,” Ph.D. disser-
tation, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 2015.

[51] R. Martin, J. Demme, and S. Sethumadhavan, “TimeWarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” ACM SIGARCH Computer Architecture News, vol. 40,
no. 3, pp. 118–129, 2012.

[52] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on AES to practice,” in Security and Privacy (SP),
2011 IEEE Symposium on. IEEE, 2011, pp. 490–505.

[53] S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay, “Unraveling time-
warp: What all the fuzz is about?” in Workshop on Hardware and
Architectural Support for Security and Privacy (HASP), 2013.

[54] B. Jacob and T. Mudge, “Virtual memory in contemporary micropro-
cessors,” Micro, IEEE, vol. 18, no. 4, pp. 60–75, 1998.

[55] D. Gruss, C. Maurice, and K. Wagner, “Flush+ Flush: A Stealthier Last-
Level Cache Attack,” arXiv preprint arXiv:1511.04594, 2015.

[56] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in null. IEEE, 2006, pp. 473–482.

[57] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy, 2015, pp. 605–622.

[58] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,
L3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 719–732.

[59] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in Proceedings of the
53rd Annual Design Automation Conference. ACM, 2016, p. 72.

[60] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized libc,” in Computer Security Applications Con-
ference, 2009. ACSAC’09. Annual. IEEE, 2009, pp. 60–69.

[61] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened ASLR on Android,” in Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 2014, pp. 424–439.

[62] Y. Gu and Z. Lin, “Derandomizing kernel address space layout for
memory introspection and forensics,” in Proceedings of the Sixth ACM
on Conference on Data and Application Security and Privacy. ACM,
2016, pp. 62–72.

[63] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[64] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013, pp. 574–588.

[65] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
memory disclosure attacks using destructive code reads,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2015, pp. 256–267.

http://forums.grsecurity.net/viewtopic.php?f=7&t=3367#p12726/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-1158
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-1158
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan

