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Abstract—Parallel Discrete Event Simulation (PDES)
can substantially improve performance and capacity of
simulation, allowing the study of larger, more detailed
models, in shorter times. PDES is a fine-grained parallel
application whose performance and scalability are limited
by communication latencies. Traditionally, PDES simula-
tion kernels use processes that communicate using message
passing; shared memory is used to optimize message pass-
ing for processes running on the same machine. We report
on our experiences in implementing a thread-based version
of the ROSS simulator. The multithreaded implementation
eliminates multiple message copying and significantly min-
imizes synchronization delays. We study the performance
of the simulator on two hardware platforms: a Core
i7 machine and a 48-core AMD Opteron Magny-Cours
system. We identify performance bottlenecks and propose
and evaluate mechanisms to overcome them. Results show
that multithreaded implementation improves performance
over the MPI version by up to a factor of 3 for the Core i7
machine and 1.2 on Magny-cours for 48-way simulation.

I. INTRODUCTION

Discrete Event Simulation (DES) is a type of simula-
tion used to study systems where the changes of state are
discrete; for example, it is widely used in the simulation
of computer and telecommunication systems, biological
networks, and war simulation. The increasing demands
of simulation models challenge the capabilities of se-
quential simulators. Parallel Discrete Event Simulation
(PDES) exploits the natural parallelism present in simu-
lation models to substantially improve the performance
and capacity of DES simulators, allowing the simulation
of larger, more detailed models in shorter times.

A. Parallel Discrete Event Simulation

In PDES, a simulation model is partitioned across
a number of processes (called Processing Elements,
or PEs). Each PE processes events in simulation time
order, sending messages to remote PEs if future events
are generated to them. These messages must be pro-
cessed in correct simulation time to maintain causality.
This global time synchronization can be supported in
two ways: (1) conservative simulation requires PEs to
coordinate to guarantee that no causality errors can

occur (i.e., simulation time does not progress beyond
a point until all events that occur prior to that point are
received and processed); and (2) optimistic simulation:
no explicit synchronization is enforced between PEs.
However, if an event is received late (it has a simula-
tion time earlier than the current simulation time), the
simulation is restored (rolled-back) to a time before the
event time, possibly sending messages to cancel any er-
roneously sent event after that time, and restarted. Con-
servative simulation requires frequent communication,
even when no dependencies are present. On the other
hand, optimistic simulation can hide the latency of com-
munication by allowing PEs to process speculatively;
however, it remains sensitive to communication latency,
and incurs the overheads associated with checkpointing
and rollbacks.

PDES is difficult to parallelize effectively because
of its fine-grained communication behavior and the
complex underlying dependency pattern present in most
models. Researchers have explored reducing the impact
of message latency in a number of ways [7], [28],
[31], [20]. Model partitioning [18] and dynamic object
migration [25] attempt to localize important dependen-
cies, reducing the frequency of remote communication.
Throttling attempts to avoid excessive rollbacks by lim-
iting the simulation from speculating aggressively [29].
However, PDES remains highly constrained by the high
cost of communication.

B. PDES on Multi-core Architectures

The emergence of multi-core architectures and their
expected evolution into many-cores presents an ex-
citing opportunity to PDES and similar fine-grained
applications. The low communication latency and tight
memory integration among the cores on a multi-core
chip substantially reduce the communication cost and
have significant impact on the scalability of PDES
simulations. However, most existing PDES simulation
kernels have been created for cluster environments and
have not been optimized to work in multi-core settings.



In this paper, we report on our experiences in op-
timizing a PDES simulation kernel, the Rensselaer’s
Optimistic Simulation System (ROSS) [5], for multi-
core platforms. Specifically, we reimplement the pro-
cess based simulator as a multi-threaded simulator, to
take advantage of the tight integration among cores on
the same chip. This allows us to substantially reduce
communication latency by passing events directly from
one thread to another. We profile the performance of
the multithreaded ROSS on two multicore platforms:
an Intel core i7, and an AMD Magny-cours 48-core
machine.

We discover a number of performance bottlenecks,
especially on the 48-core machine, and propose op-
timizations to improve their performance. First, we
show that the MPI barrier synchronization does not
scale due to lock contention, and use the optimized
pthread_barrier implementation instead. Second,
we show that the standard implementation of memory
allocation is not aware of the Non-uniform memory
latency present on some multi-core architectures and
develop message allocation strategies that are aware of
these effects. Finally, we show that there is substantial
contention for the incoming event queues, and present
a distributed implementation that significantly reduces
this contention. Together, with these optimizations, the
multi-threaded ROSS outperforms the baseline distribu-
tion of ROSS by up to a factor or 3 on the Intel core
i7 and 1.2 on 48-core AMD Opteron Magny-cours.

The remainder of this paper is organized as follows.
Section II provides background information on PDES
in general, and the ROSS simulator in particular. Sec-
tion III provide details of the solution we are propos-
ing. Analysis of the baseline implementation helped us
identify a number of bottlenecks; we discuss these and
propose solutions to them in Section IV. In Section V,
we first present our experimental setup and then the
performance evaluation of the ROSS-MT simulator and
the proposed optimizations. In section VI we review
related work. Finally, Section VII will provide the
conclusion of the study.

II. BACKGROUND

In this section, we first briefly describe parallel dis-
crete event simulation and the ROSS simulator [5], and
overview a typical multi-core cluster organization.

A. Optimistic Parallel Discrete Event Simulation

A parallel discrete-event simulator (PDES) is orga-
nized as a collection of Processing Elements (PEs)
that communicate by exchanging time-stamped event
messages [12], [17]. Each PE processes its events in

time stamp order (to ensure causality). PDES simulators
differ in the synchronization algorithm used to ensure
correct event ordering among events on different PEs.
The PEs in conservative simulators exchange messages
to upgrade each other of their progress and guarantee
correctness. Alternatively, optimistic simulation may be
used where PEs process events with no explicit synchro-
nization occurring among them. Causality is preserved
among different processes by exchanging time-stamped
event messages and using rollback upon receiving a
message with a time in the past. Thus, the state of the
simulation must be saved to allow rollbacks when a
causality breach is detected.

The progress of the simulation (the Global Virtual
Time, or GVT) is computed as the minimum of the
timestamps of all PEs as well as messages in tran-
sit. GVT is used to garbage collect state information,
commit output events and often to adapt configuration
parameters of the simulation. When a rollback occurs,
the state of the simulation is restored to a valid state
before the rollback time. Any messages erroneously
sent to other PEs must be cancelled by sending anti-
messages. Cascading rollbacks can occur when a roll-
back at one node causes a sequence of rollbacks at other
nodes as it sends out it’s anti-messages. Cascading roll-
backs significantly harm performance. More frequent
communication, or higher communication latencies can
lead to rollbacks and cascading rollbacks and delays in
computing GVT resulting in larger memory footprint,
and slower overall execution and so communication
frequency and latency play a major role in determining
the performance of simulation [7];

In our experiments, we use the ROSS [5] simulator.
ROSS is an optimistically synchronized simulator. It
has the option of implementing reverse computation
where, instead of storing state information, code is
stored to undo events in case of rollbacks. If no reverse
computation code is provided, ROSS uses state saving
instead.

B. Multi-core Architectures

In our experiments we use two multicore platforms
with significantly different architecture and memory
organizations. The first is a 4-core Intel core i7 pro-
cessor (Figure 1). Each core supports two Simultaneous
Multi-threaded (SMT) thread contexts. The cores have
private L1 and L2 caches but share an L3 cache. The
second platform we use is a 48-core AMD Magny-
cours machine [8]. As shown in Figure 2, there are
four CPU chips on the memory bus, each holding
12 cores. The cores on a chip are on two separate
dies, with each die holding 6 cores. The cores have
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Figure 1: Architecture of the Intel Core-i7

private L1 and L2 caches, and share the L3 level of
the cache. A specialized interconnect is used to connect
the caches across dies. The cores have non-uniform
memory access to different regions in memory and
experience non-uniform latencies on cache hits to the
L3 cache depending on whether the cache line is in the
L3 cache of the same die or a remote die. More details
about the specifics of the two machines are presented
in Section V.

III. MULTI-THREADED ROSS: DESIGN OVERVIEW

In this section we overview the components of the
simulation kernel that require the use of communication
to show the impact of the communication cost on the
simulation. We show how communication support is im-
plemented in the baseline MPI-based ROSS simulator.
We then overview the baseline threaded implementation
of ROSS (ROSS-MT).

A. ROSS Simulation Loop

Communication occurs in the ROSS simulator for
three primary purposes: (1) Exchange of event mes-
sages; (2) Exchange of anti-messages, cancelling earlier
messages sent erroneously; and (3) for Global Virtual
Time computation which is used to commit events, and
garbage collect unneeded state and event checkpoint
information. It is essential for communication latency
to be low for all three of those functions; otherwise,
rollbacks occur more frequently, are more expensive
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Figure 3: MPI-based Message Passing Mechanism

and more difficult to contain, and GVT computation
overhead becomes very high.

Event message communication in the MPI version of
ROSS works as shown in Figure 3. Each PE maintains
a queue of outgoing remote events. When a PE sends
a message to another remote PE, an event message is
first queued in to the Output Queue (Outq). Events
are later dequeued from Outq and sent to appropriate
destination process asynchronously based on receiver
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buffer availability. Posted sends and Posted receives
buffers are used for asynchronous message passing.
Once the event message is successfully received at the
destination process, it is queued in to priority queue at
the receiver side, while the sender marks the message
as successfully sent. The event queue is a priority
queue maintained by the scheduler to keep the events in
time-order. The scheduler dequeues events from priority
queue and processes them one by one. Due to the need
to compute Global Virtual Time, the state of messages
in transit must be tracked. Keeping track of message
state enables the appropriate steps to be taken during a
rollback as well.

B. ROSS-MT
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Figure 4: Mutlithreaded ROSS Message Passing Mech-
anism

In ROSS-MT we use threads instead of processes
as seen in Figure 4. Because the threads share the
same memory image, there is no need to use explicit
message passing between them. Thus, instead of using
a separate input and output queue for each thread, we
only use an input queue for each thread containing all
remote events from other threads (PEs). No buffering is
needed and thus Posted send and Posted receive buffers
are eliminated. A thread is associated with its own
memory manager, scheduler and free event queue for
fossil collection.

Communication occurs by inserting a pointer of the
message copy in the input event queue of the destination
thread. The sender keeps a copy of each message sent so
that in case of rollbacks, cancellation messages can be
sent. The receiver thread dequeues events from the input

queue and inserts them into the event priority queue for
processing. Thus we completely avoid synchronization
delays present in MPI based ROSS implementation. We
use this two stage insertion to avoid lock contention on
the main event queue.

IV. PERFORMANCE BOTTLENECKS AND
OPTIMIZATIONS

Figure 5 shows the performance of the basic mul-
tithreaded implementation in comparison to the MPI
implementation for both the Intel Core i7 (Figure 5(a))
and the AMD Magny-cours (Figure 5(b)) platforms. For
these results, we used the clustered Phold benchmarks,
which allows us to control the percentage of event mes-
sages that are remote; Clustered Phold is described in
more detail in the next section. While the core i7 results
show substantial performance improvements with multi-
threading, surprisingly, the Magny-cours results show
significant slowdown.

The two machines have substantially different ar-
chitectures, especially with respect to the memory or-
ganization. Moreover, the Magny-cours machine has
substantially higher parallelism (48-cores) than the core
i7 (4 cores/8 threads). We profiled the ROSS-MT execu-
tion behavior, which allowed us to identify a number of
bottlenecks. In this section, we describe three of these
bottlenecks and describe optimizations to address them.

A. Efficient Barrier Synchronization

Barrier synchronization and all-reduce communica-
tion primitives are key operations for GVT computation.
ROSS-MT uses its own library for barrier synchroniza-
tion and all-reduce operation. In the baseline version
of multithreaded implementation we used condition
variables and pthread mutex for implementing these
operations. Profiling results showed very high overheads
due to the use of condition variables. We optimized
this library by using pthread barrier construct instead
of condition variables.

B. NUMA-aware free memory management

ROSS implements its own free memory management
to avoid unecessary use of the memory allocation li-
brary. The ROSS implementation returns the memory of
an event message after it is consumed to a free memory
pool. This memory is then used for future message
events. Suppose that a message is generated from PE
1 to PE 2. The message is allocated by PE 1 from its
closest memory region (the OS NUMA option enforces
that). Once the message is consumed by PE 2 it is
returned to the memory pool for PE 2. In the future,
if PE 2 needs to send an event to another PE, say PE
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Figure 5: Performance of Baseline ROSS-MT vs. ROSS using MPI

3, it picks the memory region that was allocated by PE
1, which is remote for both PE 2 and PE 3, leading to
high access latency.

To address this issue, we split the free memory pool
to keep track of the allocation source. When PE 2 needs
memory space for an event, it uses the free memory pool
for the receiving PE to ensure NUMA friendly behavior.
In addition, we implemented a Last In First Out (LIFO)
approach to message allocation. Thus, the most recently
freed message is used from each free memory sub-pool.
This policy improves cache reuse.

C. Distributed Locking for the Input Queue

By allowing sending threads to directly access the
input queue of receiving threads, we eliminate the need
for a buffer copy to an intermediate message queue.
However, each input queue may now be accessed by
any of the sending threads, as well as the receiving
thread (i.e., all threads in the simulation). This gives
rise to high contention on the lock to access the input
queue. To reduce this contention, we split the input
queue into private queues, one for each possible sender.
The contention for the queue is reduced from all threads,
to only two threads, the sender and the receiver.

In the next section we evaluate how well the opti-
mizations work individually and in combination. The
impact of the optimizations is different for the two
platforms due to the differences in their memory or-
ganization. Additionally, the larger number of possible
threads on the Magny-cours platform exacerbates lock
contention issues.

We note that the current implementation exploits
shared memory to optimize only the message commu-
nication aspects of the simulator. There are additional

opportunities for optimization that arise due to direct
access to other thread’s space that we plan to implement
in the future. For example, direct cancellation can be
used to optimize rollbacks by removing unexecuted
erroneous messages directly (instead of using anti-
messages) [10]. In the future, we will explore mech-
anisms to share a single copy of the message instead
of creating a copy for rollback purposes; we have
preliminary results for this optimization.

V. PERFORMANCE EVALUATION OF ROSS-MT

In this section, we present a performance evaluation
of ROSS-MT, including the three proposed optimiza-
tions. First, we discuss the evaluation environment, and
the simulation benchmark that we use.

A. Experimental Setup and Benchmark

To capture a wide range of application characteristics
we developed a synthetic, controllable benchmark that is
a variant of the classical Phold benchmark. Phold is the
most widely used for performance evaluation of PDES
systems. The model starts with a number of objects that
have events. Event execution sends a message to another
object (picked uniformly among all the objects in the
simulation). The message causes this object in turn to
later send another event message to a third object. Thus,
the number of events in the simulation remains constant.
While Phold has a number of drawbacks: its perfectly
load balanced, with an flat dependency pattern, it is
valuable for the characterizing the performance of the
communication behavior of the simulator.

In particular, we modified Phold to allow control of
the target probability for the events to allow us to control
the percentage of events that are generated local to a
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core, to another core on the same machine, or remotely
to a core on a different machine. This benchmark is
similar to that used by Perumalla [24] and Bauer et
al [2] in recent scalability studies of PDES on the IBM
Blue Gene.

We evaluated performance of multi-threaded ROSS
against MPI based ROSS on two hardware platforms.

1) A 4-core (8 thread) Intel Core i7-860 processor
with 8 GB memory and Debian 6.0.2 with Linux
version 3.0.0-1. Each core has a private 32KB
L1 data and instruction cache and private L2
256KB cache. 8 MB L3 cache is shared among all
the cores. We use classic PHOLD as benchmark
application with configuration of 1000 LPs per
PE, one PE per MPI node and total 8 MPI
nodes. Simulation model thus consists of 8000
LPs distributed equally on 8 PEs and a PE is
pinned to one hyperthread. We selected efficient
settings for GVT computation period to balance
fossil collection overhead with rollbacks as per
the experiment [2]. We use 16 KPs per PE and a
GVT interval 256 for Intel Core-i7 and 512 for
AMD Opteron with batch size 8.

2) In order to verify the scalability of multithreaded
ROSS on upcoming many-core platforms we stud-
ied multithreaded ROSS behavior on an AMD
Opteron 6100 (Magny-cours) 48 core machine
(4 chips with 12 cores each) [8]. The chips are
connected using Hyper-transport 3.0 links. Each
chip consists of 2 dies and each die has 6 cores,
with a 6 MB L3 cache shared among the cores
on each die. Each core has private 64KB L1 and
512 KB L2 caches. The Hyper-transport links are
cache coherent, thus 4P configuration provides 48
core shared memory environment. The server is
running Ubuntu 10.10 with Linux version 2.6.35-
30-server and has 64GB memory.

B. ROSS-MT Performance Analysis

We use the Clustered Phold model with 1000 objects
per core. We fix the GVT interval at 512 (as recom-
mended by prior evaluation studies of ROSS [2] and
confirmed by our own experiments). Execution time is
measured at different remote percentage for fixed batch
size. We observed that batch size of 8 is optimal for
both multi-threaded ROSS and MPI-based ROSS.

We implemented the three optimizations discussed
in the previous section (Barrier optimization, NUMA
aware memory pool management, and distributed input
queue). Figure 6 shows the performance improvement
obtained from each of the optimizations in isolation
and combined on the core i7. We consider a 2-way,

4-way and 8-way simulation, while keeping the number
of objects per thread the same.

A number of observations stand out. For two nodes,
as the number of remote messages increase, the opti-
mizations are actually counter productive. Queue distri-
bution is not beneficial since the contention degree is
not reduced, but the overhead is increased. Moreover,
NUMA issues are not important either since each mem-
ory element is local to either of the two threads. Finally,
lock contention issues are minor in the barrier imple-
mentation. It is interesting to see some gain initially,
but that is likely due to the LIFO strategy introduced
as part of the NUMA optimization; other optimizations
are likely to introduce overhead without benefit for a
two thread simulation. As the number of threads is
increased, the optimizations start to become useful. The
baseline barrier implementation seems efficient up to 8
nodes; the optimized implementation does not result in
significant improvement in performance. The optimiza-
tions seem to interact positively as their combined effect
is higher than the linear sum of their isolated effects; up
to 50% improvement relative to the baseline ROSS-MT
is achieved.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

CPU Utilized

MPI

RMT

Other GVT Event Processing
Event Receive Event Send

Activity based CPU Profiling on Intel Core-i7

Figure 7: Execution Time Breakdown – Core i7

Figure 7 shows the breakdown of the execution time
among the various stages of the simulation. We note
that with ROSS-MT, significantly smaller percentage of
time is spent in event send and receive (30% compared
to 50% for MPI). Less time is also spent in GVT
computation (18% compared to 25%). Moreover, the
percentage of time spent in event processing is more
than doubled.

Figure 8 shows the impact of the optimizations for
the Magny-cours machine, for 4, 16 and 48 thread
scenarios. Since the bottlenecks were most severe for
this machine, the optimizations yield substantial im-
provement in performance (over 150% for 48 threads).
The impact of the barrier optimization increases with
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Figure 8: Magny-cours performance for different degrees of parallelism

the degree of parallelism, and reduces slightly with
the increase in event communication (recall that the
barrier optimization affects GVT computation but not
event communication). Like the core i7, the queue
distribution benefit increases as contention on the queue
increases: both with increasing the degree of parallelism
and increasing the remote event percentages.

In Figure 9 we show another snapshot of the Magny-
cours machine performance. In this case, we fix the

percentage of remote communication and show the
performance improvement for varying degrees of par-
allelism. In general, the performance benefit of the
individual optimizations increases with the degree of
parallelism.

The results show that the Barrier and NUMA opti-
mizations signifcantly improve performance when re-
mote communication is infrequent. In such models, the
LIFO strategy in the NUMA optimization likely leads to
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Figure 9: Magny-cours Performance as a function of Remote Events

much better cache locality explaining the better perfor-
mance. As can be seen in Figure 7, GVT computation
consumes a substantial portion of execution time in the
20% remote case; the barrier optimization impacts GVT
computation and significantly improves performance.
Finally, the distributed queue optimization increases
in impact as the percentage of remote communication
increases, increasing the perssure on the input queue.
Note that in these figures, we show the speedup (rather
than reduction in run-time); this explains why their
combined effect is high since it is bound by the product
rather than the sum of the speedup from the individual
optimizations.
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Figure 10: Performance Improvement Relative to MPI–
Magny-cours

Figure 10 shows the performance improvement for
the Magny-cours ROSS-MT with all optimizations rel-
ative to the baseline ROSS with MPI. The performance
improvement increases as the percentage of remote
events increases (increasing the use of the communi-
cation subsystem and the optimizations). However, in
general, the benefit is less pronounced as the degree
of parallelism is increased. We believe that with some
effort, we can track down additional lock contention
issues and address them.
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Figure 11: Execution time of the optimized ROSS-MT
on Intel core-i7
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Figure 12: Execution time of the optimized ROSS-MT
on AMD Magny-cours

We show the impact of the optimizations on run time
on the core i7 machine with 8 cores and event message
size of 8 bytes in Figure 11. Its clear that the multi-
threaded implementation is substantially faster than the
MPI version on this platform. Figure 12 shows the same
comparison for the Magny-cours platform with 48 cores
(same message size). ROSS-MT also outperforms the
MPI version, although the gap is substantially closer.
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Figure 13

In the next experiment, we study the impact of bigger
message sizes on the performance of the simulator. The
message size is a key factor impacting communication
cost; not only is transmission cost increased, but buffer
copies and checksum operations increase in cost with
the size of the message. We studied the impact of

message size on event rate of MPI based ROSS and
ROSS-MT. Figure 13 shows the performance of ROSS-
MT on the AMD Magny-cours with message size 500.
The multi-threaded implementation does a message
copy into the input queue to keep a separate copy in
case of rollback. However, this additional copy can be
avoided by keeping pointers and tracking sharing to the
message. We implemented a preliminary version of this
optimization (results shown in Figure 12); substantial
reduction in execution time are observed, making the
ROSS-MT as much as 65% faster than the MPI im-
plementation. We believe that there remains room for
ROSS-MT optimization.
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Figure 14: Speedup for AMD Magny-Cours

Finally, Figure 14 shows the speedup that ROSS-
MT and MPI ROSS relative to sequential execution as
the number of cores is increased with 100% remote
communication. Speedup increases linearly up to the
full 48-cores for both implementations where ROSS-
MT achieves speedup close to 12, while the MPI version
achieves a speedup of 10.

In summary, we showed the performance of ROSS-
MT on two different multi-core platforms. The large
difference in behavior can be explained by the following
differences in their architecture.

1) Even though the number of cores is high on the
Magny-cours each core is individually less than
the Intel core i7 cores.

2) Although NUMA remote cache access issues have
been improved by the NUMA optimization and
LIFO free memory strategy, NUMA issues are
still present and significant remote cache accesses
occur in the current multithreaded ROSS imple-
mentation.

9



3) Further, only L3 is shared among the 6 cores on
a die. On core i7, all the cores share L3, and two
hyperthreads on the same core share L1 and L2.

VI. RELATED WORK

In the general high performance computing commu-
nity, it is well known that communication is a common
performance bottleneck, especially for fine-grained par-
allel applications [27]. As a result, managing the impact
of communication is a recurring focus of the parallel
processing community. One of the approaches to reduce
communication latency is to improve the network per-
formance. For clusters, high performance networks [19]
and networking abstractions, communication libraries
and system software implementations (e.g., [3], [9],
[16]) have been proposed. In a multi-core environment,
the design of the on-chip interconnect remains an open
research problem [23]; most existing designs use the on-
chip interconnect to implement indirect communication
through shared caches.

At the application/algorithm levels, there are general
techniques for optimizing parallel applications such as
overlapping computation and communication and reduc-
ing lock contention) [27], [1]. Efficient partitioning is
necessary to reduce remote communication [30], [18].
However, most efforts in implementing parallel appli-
cations discover that application insights and awareness
of the architecture are necessary to optimize the parallel
implementation [26], [6], [11]. Parallel Discrete Event
Simulation is difficult to parallelize because of its fine-
grained nature, and complex and dynamic dependency
pattern [12], making it substantially different from typ-
ical parallel applications. Thus, we focus on optimiza-
tions specific to PDES, rather than other applications or
parallel processing in general.

A. Optimizing Communication for PDES

Previous works have demonstrated the importance of
partitioning to reduce the communication frequency in
PDES (e.g., [18]). Similarly, dynamic partitioning and
workload rebalancing mechanisms have been proposed
to repartition the simulation to recover dynamic behav-
ior changes of the simulation model for both conserva-
tive (e.g., [4]) and optimistic (e.g., [25]) synchronization
protocols.

Chetlur et al [7] proposed the use of message aggre-
gation, where multiple event messages are combined
in a single communication message, to amortize the
overheads associated with communication across multi-
ple messages. Sharma et al [31] explored optimizing
the polling frequency to check for the presence of
event messages. Rajasekaran et al [28] explored using

a single anti-message with the earliest rollback time-
stamp to inform receiver PEs of rollbacks instead of
sending individual anti-messages for each remote event
to be cancelled. Mattern developed a non-blocking GVT
algorithm which allows event processing to proceed
concurrently with GVT computation, allowing the cost
of that expensive operation, which includes global com-
munication among the PEs, to be hidden [20]. Fujimoto
et al designed the rollback chip, which implements wolf-
calls (very fast notification of all PEs of the occur-
rence of a rollback) [15]. Wolf-calls substantially limit
cascading rollbacks that occur due to communication
latency. Noronha et al used a programmable network
card to optimize event communication and GVT com-
putation [22].

B. Shared Memory PDES

Fujimotos GTW simulator is one of the first shared
memory optimistic PDES implementations. It exploits
shared memory for efficient message communication.
GTW also implemented optimizations such as direct
cancellation, which allows an LP to cancel out erro-
neously sent remote events directly, eliminating the need
for anti-messages [10]. Similarly, in shared memory,
messages can simply be written into a buffer and be-
come visible to all processors. The exploitation of such
features allows the GVT computation algorithm to be
implemented through a single round of inter-processor
communication (as opposed to at least two rounds
required for message passing programming model) with
minimal number of shared variables and data structures.
Fujimoto and Hybinette also describe an efficient on-
the-fly fossil collection algorithm to enable fast recla-
mation of memory [14]. They also explore efficient
buffer management algorithms for shared memory en-
vironments [13].

While some of the schemes developed for shared
memory, which were developed and evaluated on Sym-
metric Multi-processor machines, can apply for many-
cores, the tighter coupling of processing elements and
shorter communication delays for accessing shared
caches requires at least a careful reconsideration of
these approaches. Our paper reports on experiences in
optimizing a PDES simulator on emerging multicore
systems.

Our work is targeted towards emerging multi-core
and many-core architectures. Current examples of these
architectures commonly employ chips with multiple-
cores with on chip memory controllers such as the
AMD Opteron Magny-cours. [21] provides insights
into NUMA related performance issues on such multi-
core platforms and also discusses commonly employed
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solutions to these problems. Our multi-threaded im-
plementation can be much more beneficial on these
platforms provided the design is NUMA-aware. Some
of the techniques presented in [21] were incorporated in
our work such as use of first-touch policy for memory
allocations.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we presented our experiences in build-
ing a multi-threaded PDES simulator optimized to
representative state-of-the-art multi-core machines. We
used the ROSS PDES simulator, and reimplemented it
from a process based model to a thread based model.
Performance evaluation of the base implementation
showed signficant performance benefits on core i7, but
surprisingly poor performance on the AMD Magny-
cours.

We studied the reasons for this poor performance,
and identified three bottlenecks. First, the barrier and
all-reduce primitives used in GVT computation were
implemented in an inefficient way using condition locks
and broadcasts. We replaced it with an implementation
that is based on pthread barrier, which uses native
machine instructions for implementing barriers, signifi-
cantly improving the performance of GVT. The second
problem was due to free memory management, which
was not sensitive to the NUMA nature of the Magny-
cours platform. We addressed this problem by splitting
the free memory pool to keep track of the memory
origin for future allocation. The third bottleneck was due
to the lock contention on the input queue. We resolved
this issue by splitting the queues to reduce contention
from all threads to only two threads for each queue.

The optimizations resulted in subtantial improvement
in performance; optimized ROSS-MT outperforms the
MPI version by a factor of up to 3 on core i7 and
up to 1.2 on Magny-cours. We also explore a pre-
liminary implementation of a no-copy version of our
communication primitives, which significantly improves
performance especially when message lengths are large.

Our future work includes integrating ROSS-MT to
allow operation on a cluster of multi-cores. We also
plan to look at additional algorithmic optimizations that
are possible due to the tight integration available in a
multi-threaded implementation.
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