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Abstract—Topology Control (TC) algorithms for multi-hop
wireless networks create a connected communication subgraph
that satisfies sometopological properties by assigning appropriate
transmission power to each node. A topology is said to be
minimum-energy path-preserving if it preserves minimum energy
paths between every pair of nodes. Creating sparse topologies
while preserving all minimum energy paths is a fundamental
research problem in TC that has been addressed in several recent
research works. Although sparseness is a key metric in comparing
the performance of such algorithms, none of these prior works
provides analytical models to determine the sparseness. In this
paper, we provide analytical models for evaluating sparseness of
such topologies. The derived analytical expressions are useful in
determining topology size without running simulations or prior to
the deployment of real systems. Moreover, we demonstrate how
to analytically couple sparseness of topologies with the radio
transceiver parameters for multi-hop wireless networks. The
analytical expressions are validated through extensive simulation
experiments.

I. I NTRODUCTION

Topology control is a fundamental research problem for both
wired and wirelessnetworks. In a wired network, topology
control refers totwisting the physical layout of interconnection
patterns whichoften requires significant efforts from the ad-
ministrator/network operator. In contrast, topology control in
wireless domain is comparatively easier to achieve. By simply
manipulating the transmission powers, one can easily modify
underlying topologies and switch from one to another in order
to meet desirable performance characteristics as needed.

On the contrary, the topology size of a wired network,
once it is configured, is easy to determine. For example, a
typical ring topology withn nodes contains exactlyn − 1
links between them. Similarly, a (fully) mesh topology ofn
nodes has exactlynC2 = n(n−1)

2 links. However, determining
the total number of links present in a wireless network after
reconfiguring topology is a non-trivial task (unless all nodes
are within the communication range of each other and form
a clique). It greatly depends on the rules used for eliminating
the links by the underlying topology control algorithm. Graph
theory has been heavily used in the literature to study the
linkage structure of the topologies generated by the algorithms.
However, it is unclear how to estimate the network size
using such graph theoretic approach. One inherent reason
lies on the fact that most of the topology control algorithms

typically generate highly complex structures which are often
difficult and challenging to analyze using simple mathematical
formula and the existing research efforts were only targeting
simple heuristics. Unlike other research works, we provide
a generalized framework for estimating topology sizes by
weaving graph theoretic approach with probability theory.

Nevertheless, many principal characteristics of multi-hop
wireless networks often result from the communication topol-
ogy. Determining the topology size is one of the keys to
understanding those characteristics. For example, the number
of edges in a planar graph is at most(3n − 6) [16], where
n is the number of vertices. Thus, if the topology size is
known apriori then it is possible to determine whether the
underlying topology is planarizable or not. Moreover, some
performance metrics are directly or indirectly related to the
topology size. For instance, the average node degree provides
a crude estimation of the level of relaying burden, contention
and interference. In general, the relaying burden is inversely
proportional to the average node degree whereas contention
and interference experienced by a node are directly propor-
tional to the average number of neighbors. The average node
degree is determined by dividing the topology size with the
number of nodes present in the network.

Many topology control algorithms have been proposed over
the past decade. Among them, a special class of topology
control algorithms dubbed asminimum-energy path preserving
(MEPP, in short hereafter) algorithms, occupy a rich propor-
tion of state-of-the-art topology control algorithms [4],[17],
[2], [14], [12], [7], [9] for mobilewireless multi-hop networks.
A topology is said to be MEPP if it preserves minimum
energy paths between every pair of nodes while creating
sparser connected subgraphs. In general, these algorithms
conserve energy by replacing long distance links as much
as possible with (multiple) short distance links using one
or more intermediate relays. Thus, key energy savings are
achieved byshifting long distance data communications in
spacetowards short distance links. As the transmission power
consumption grows at least quadratically with the distance
between communicating nodes, pushing communication to
shorter connections potentially saves power.

Although sparseness is a key metric in comparing the
performance of all MEPP algorithms, none of the prior works
provide analytical models to determine the topology size
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or sparseness. Therefore, in this paper we derive analytical
models for evaluating sparseness of topologies generated from
such algorithms. While developing the model, at first, we in-
troduce a novel locally-defined mathematical concept dubbed
aspruning regionwhich is coupled with each links present in
the network. We further model this pruning region based on
the rules used in MEPP algorithms for pruning longer links.
The derived analytical expressions are useful in determining
topology size prior to the deployment of real systems.

A careful insight to derive analytical expressions backed-
up by the simulation results find that the performance of
MEPP algorithms, in terms of topology size and sparseness,
strongly depends on a number ofnetwork parameters(node
number, deployment area, and node distribution), and some
other transceiver parameters(transmission range, radio re-
ceiver power, antenna height, and gain). Notably, with small
values of transmission range and large values of radio receiver
power the sparseness drops down to a large extent. It turns out
that, with certain settings of transceiver parameters, MEPP
algorithms are unable to prune any links at all.

The major contributions of the paper are summarized as
follows: (i) we provide a generic analytical model for de-
termining size/sparseness of the MEPP topologies, (ii) The
generic model is then applied to various MEPP algorithms,
(iii) for the first time in the literature, we demonstrate how
to analytically couple sparseness of topologies with the radio
transceiver parameters. (iv) finally, we quantitatively explore
how several factors such as transceiver and network parameters
affect the structural density of the topologies.

The rest of the paper is organized as follows. Section II
describes related works along this direction. Section III for-
mally shows how graph theory is used to model topologies
and provides a brief description of the MEPP topology con-
trol algorithms. A generic analytical model for determining
topology size, sparseness and average node degree are de-
veloped in Section IV. This generic model is then applied
to MEPP graph structures in Section V. Section VI validates
the analytical expressions with rigorous simulation results and
presents effect of different network/transceiver parameters on
structural densities. Finally, Section VII concludes the paper
with the possible direction for future works.

II. RELATED WORK

The sparsest possible topology ofn nodes is theglobal
minimum spanning tree (MST) containing exactlyn−1 edges.
Constructing such global MST is impractical and energy-
inefficient because it needs global knowledge of the network
topology. Somewhat closer to global MST is thelocal MST
(LMST) proposed by Liet al. [5] where each node creates
LMST within its neighborhood graph by assigning appropriate
weight to an edge based on the necessary transmission power
to reach its two ends. After constructing the LMST, each
node contributes to the final topology those nodes that are its
neighbors in its LMST. Although LMST can be constructed
in an energy-efficient distributed manner, no analytical model
is known to estimate its size or sparseness. Moreover, LMST
does not preserve minimum-energy paths.

In terms of sparseness, another established solution is the
Relative Neighborhood Graph (RNG) proposed by Toussaint
[15] where a link〈s, t〉 is eliminated if the distanced(s, t) is
greater than the distance of any other nodew from s or t, i.e.:
∃w 6= s, t : max(d(s, w), d(t, w)) < d(s, t).

On the other hand, Gabriel graph (GG) [3], which is a super
graph of RNG, eliminates a link〈s, t〉 if for any other node
w it happens that:∃w 6= s, t : d2(s, w) + d2(t, w)) ≤ d2(s, t).

Milic and Malek derived analytical models for quantifying
dropped edges and face sizes of RNG and GG [8]. Inspired
by their work, we propose a generalized framework in this
paper with the following major differences. First of all, GG
and RNG are planar graphs, whereas MEPP topologies are not
necessarily planar. Secondly, in GG and RNG, there always
exists a non-zero pruning probability of a vertex whereas for
any MEPP topology control algorithm, the pruning probability
of a link might be zero for certain settings of radio transceiver
parameters as we demonstrate in Section IV. Finally, we pro-
vide analytical expressions for some additional performance
metrics such as average node degree and topology sizes.

Rodoplu and Meng [11] are the first to conceive the idea
of MEPP topologies for mobile wireless networks. Their
algorithm sets a node’s transmission range much lower than
the maximum while keeping the network connected and main-
taining minimum energy paths between every pair of nodes.
Later on, their work triggered a myriad of other research
works [4], [17], [2], [14], [12], [7], [9]. Li and Halpern [4]
improve their result by showing that nodes can start with a very
small transmit power and incrementally search for a suitable
value until all minimum energy paths are preserved. Their
work produces similar results to [11], but with much lower
overhead. Li and Wang [6] address the algorithmic complexity
of the work in [11] and provide an algorithm with lower time
complexity. Ahmedet al. [2] further analyze MEPP topologies
and propose an improved algorithm for sparse networks.
In [14] and [12], the authors incorporate fault tolerance
besides preserving all minimum energy paths. However, none
of these works provide any analytical models to determine
the sparseness/topology size. Thus, by introducing a general
framework for modeling sparseness of MEPP topologies, we
seek to fill this notable gap.

III. M INIMUM -ENERGY PATH-PRESERVINGTOPOLOGY

CONTROL ALGORITHMS

In this section we present as background the distributed
algorithms for constructing MEPP graph structures. The al-
gorithms are presented with some inessential changes to
make the notation and presentation more suitable for better
understanding of the proposed analytical models.

A. Graph theory to model topologies

Consider ann-node, multi-hop, ad-hoc, wireless network
deployed on a two-dimensional plane. Let the set of nodes,
each equipped with a radio transceiver, be denoted byV =
{t1, t2, . . . , tn}. Suppose the transmission powerp(t) of any
node t is adjustable up to a maximum amountPmax, i.e.,
0 ≤ p(t) ≤ Pmax. Such a network can be modeled as a graph
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Gm = (Vm, Em), with the vertex setVm representing the
nodes, and the edge setEm defined as follows:

Em = {〈s, t〉 |(s, t) ∈ V × V ∧ d(s, t) ≤ Rmax} (1)

where d(s, t) is the distance between nodess and t and
Rmax is the maximum distance reachable by usingPmax.
The graphGm defined this way is a visual representation of
the inherentinitial topology (i.e. before running a topology
control algorithm). We use the termtopology and graph
interchangeably throughout this paper.

B. Minimum-energy path-preserving subgraphs

We say that a graphGTC ⊆ Gm is a MEPP graph or,
alternatively, that it has theminimum energy property, if for
any pair of nodes(s, t) that are connected inGm, at least one
minimum energy path betweens andt in Gm also belongs to
GTC . MEPP graphs were first defined in [4]. Typically, many
MEPP graphs can be formed from the initial graphGm. It has
been shown that the smallest of such subgraphs ofGm is the
graphGmin = (V,Emin), where〈s, t〉 ∈ Emin iff there is no
path of length greater than1 from s to t that costs less energy
than the energy required for a direct transmission betweens
andt. LetGi = (V,Ei) be a subgraph ofGm = (V,Em) such
that 〈s, t〉 ∈ Ei iff 〈s, t〉 ∈ Em and there is no path of lengthi
that requires less energy than the direct one-hop transmission
betweens and t. Then,Gmin is formally defined as:

Gmin =

n−1
⋂

i=2

Gi (2)

Any subgraphG
′

of G has the minimum energy property
iff G

′ ⊇ Gmin. Thereby, each ofGi ⊇ Gmin, for any
i = 2, 3, ..., n− 1 is a MEPP graph.

A variety of MEPP graphs can be created from one- or
two-hop neighbor’s position information. For example, letus
consider a graphG1

2 = (V,E1
2) which is a subgraph ofGm =

(V,Em) such that〈s, t〉 ∈ E1
2 iff 〈s, t〉 ∈ Em and there is

no path of lengthtwo that requires less energy than the direct
path betweens and t.

Another MEPP graph, denoted byG2
2 = (V,E2

2), is a
subgraph ofGm = (V,Em) where〈s, t〉 ∈ E2

2 iff 〈s, t〉 ∈ Em

and there do not existtwo or morevertex-disjoint paths of
length two requiring less energy than the direct path between
s and t.

Note that, bothG1
2 andG2

2 graphs can be locally constructed
if only one hop neighbors’ position information is available to
a node because a path of lengthtwo betweens andt can only
be created by using a neighborr of s which is also a neighbor
of t.

C. Link pruning rule

The pruning rule used for constructing MEPP graphs is
based on the generic, two-ray, wireless channel model, where
the required transmission power is a function of distance [10].
To send a message from nodes to nodet separated by distance
d(s, t) the minimum necessary power is approximated by,

Ps→t = K × dα(s, t) + c (3)

whereα (≥ 2) is the path loss factor,K is a global constant
and c is the power required for processing and receiving the
signal. A radio transceiver typically consists of transmitter
electronics, receiver electronics and transmit amplifier.The
first component on the right hand side of Equation 3 is
the transmission power that includes the power consumed
by the transmitter electronics and the transmit amplifier and
dominates the receiving powerc expended at the receiver
electronics. The minimum power required to send froms to t
using an intermediate noder as a relay can be defined as:

Ps→r→t = Ps→r + Pr→t = K × [dα(s, r) + dα(r, t)] + 2c

Therefore, s would use r as a relay to reacht only if
Ps→r→t < Ps→t. Thus, a link 〈s, t〉 is pruned froms’s
neighborhood if there exists at least one noder such that:

Ps→r→t < Ps→t (4)

D. Algorithms to construct MEPP topologies

Consider a nodes that is constructing its direct neighbors
either in G1

2 or G2
2. At first s broadcasts a singleneighbor

discovery message(NDM) at the maximum powerPmax. For
static networks, a single episode of NDM broadcast is enough
to discover all neighbors. When mobility is considered, NDM
needs to be sent periodically at an interval suitably chosen
based on mobility dynamics. All nodes receiving the NDM
reply. While s collects the replies of its neighbors, it learns
their identities and locations. The setNG(s), which starts
with empty set, keeps track of all the nodes discovered in
the neighborhood ofs in Gm. The relay setξG(s, t) between
nodess and t records all relays between them for which the
pruning criteria becomes true (i.e. includes all energy efficient
relays). Initially all those sets are empty too. Whenevers
receives a reply to its NDM from a nodev, it updates its
relay and neighbor sets by executing Algorithm 1.

1) ConstructingG1
2: Two different approaches for con-

structingG1
2 have been proposed in [4] and [9]. In [4], which

is an improved algorithm over [11], nodes start with a very
small transmit power and incrementally search for a suitable
value until all minimum energy paths are preserved. On the
other hand, [9] utilizes assistance from the MAC layer for
lowering the construction overhead (i.e., reducing message
passing). Regardless of the approaches the inherent algorithm
is the same which is described next.

After running updateNeighborset(s, v), node s executes
the algorithm presented in Algorithm 2 for determining its

Algorithm 1 updateNeighborSet(s, v)

1: for eachw ∈ NG(s) do
2: if Ps→v→w < Ps→w then
3: ξG(s, w) = ξG(s, w) ∪ {v}
4: else ifPs→w→v < Ps→v then
5: ξG(s, v) = ξG(s, v) ∪ {w}
6: end if
7: NG(s) = NG(s) ∪ {v}
8: end for
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(a) Initial deployment (b)G1
2 (c) G2

2

Fig. 1. Illustrating an example scenario of 100 nodes deployed over a625m × 625m square area. TX range is150m

final neighbor set inG1
2. Basically, the algorithm iteratively

checks whether the relay set betweens andv is empty or not.
If it is empty thenv is included into the neighbor set ofs in
G1

2 since it indicates that there is no node that can be used as
a relay to transmit message using lower energy than the direct
path betweens andv. Otherwise,v is excluded.

Algorithm 2 G1
2 TOPOLOGYCONSTRUCTION

1: for eachv ∈ NG(s) do
2: if ξG(s, v) is emptythen
3: NG1

2
(s) = NG1

2
(s) ∪ {v}

4: end if
5: end for

Algorithm 3 G2
2 TOPOLOGYCONSTRUCTION

1: for eachv ∈ NG(s) do
2: if |ξG(s, v)| < 2 then
3: NG2

2
(s) = NG2

2
(s) ∪ v

4: end if
5: end for

2) ConstructingG2
2: Algorithm 3 was developed by Roy

at al. [12] to construct MEPPbiconnectedsubgraphs, denoted
by G2

2. Assume that the algorithm is running on a nodes.
For each neighborv of s in Gm the algorithm checks the
number of nodes present in its relay set. If it is less than2
then v is included into the neighbor set ofs in G2

2 since it
indicates that there is at most one relay available to transmit
messages using lower energy than the direct path betweens ∼
v; thus, eliminatingv from its neighbor set may destroy the
bi-connectivity property. Otherwise,v can be safely excluded
from the final neighbor set ofs in G2

2. It has been proven
that topologies constructed this way preserve minimum energy
paths and ensure biconnectivity [12].

Figure 1(a) shows an example scenario of100 nodes
randomly deployed over a625m × 625m square area. The
initial topology contains833 links in total. After running the
algorithm for constructingG1

2 the topology shown in Figure
1(b) is obtained where each node prunes about74.93% links
from its neighborhood on an average. On the other hand the
topology shown in Figure 1(c) isG2

2 where52.33% links are
eliminated after running the corresponding topology control
algorithm.
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Fig. 2. Illustrating a circular strip at distancex

IV. GENERIC ANALYTICAL EXPRESSIONS

In this section, we provide a generic framework for deter-
mining topology size of any MEPP topology control algorithm.
Supposen nodes are uniformly spread over a deployment area
A in order to form a muti-hop wireless network. Thus, the
average node density,µ = n

A
. Let us observe an arbitrary

nodes within this deployment area. Consider a hypothetical
node t at distancex from s. Let us denote the probability
of such node’s existence byPN (x). Clearly PN (x) = 0, if
t is located outside the communication range ofs. When
x is located within the communication area,PN (x) can be
calculated as follows. Consider a small area strip defined by
dx at the perimeter of the circle with radiusx and centered
at s as shown in Figure 2. Also consider a small angledθ
measured from an arbitrary but fixed axis. The length of the
arc ℓ = xdθ and the area of the small regiondA within this
small strip can be approximated as,dA = ℓdx = xdxdθ.
Therefore, the area of the entire small strip denoted byAstrip

becomes,

Astrip =

∫ 2π

0

dA =

∫ 2π

0

ℓdx =

∫ 2π

0

xdxdθ = 2πxdx

ThusPN (x) becomes:

PN (x) = Area of the strip× Node density= Astrip × µ

= 2πxdx× µ = 2πµxdx (5)

Once we find the probability of a node’s existence at
distancex, the next thing is to find the probability that a nodes
would directly communicate with such a node instead of using
a relay. Obviously this communication probability depends
on the topology control algorithm being used. Nevertheless,
in any topology control algorithm, each node examines each
link with its direct neighbors (i.e. nodes within its maximum
communication range) one at a time to see whether it is
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Fig. 3. Pruning probability

possible to prune any of those links. The pruning criteria is
based on a suitably chosenobjective functionoften dubbed
as a “rule” in the protocol. Interestingly, for MEPP topology
control algorithms, the pruning decision implicitly defines a
mathematically quantifiablepruning probability. For exam-
ple, according to the topology control algorithm devised by
Rodoplu et al. [11], a node is pruned if it falls within some
other node’s relay region (i.e. if there exist some energy-
efficient node that could be used for relaying). Therefore,
the pruning probability in this case is directly related to the
probability of nodet falling on all other node’s relay region.
Figure 3 provides a generic view of how apruning rule
translates into thepruning probability. Here the pruning rule
implicitly defines apruning regionwhere a node’s existence
causes the corresponding link to be pruned. Therefore, the
pruning probability becomes the probability that there exists
a certain number of nodes within this pruning region. Let us
denote this pruning probability byPP (x) regardless of the
topology control algorithm being used.

The probability of eliminating any nodet from s’s neighbor
set, denoted byPE(x), is the probability that there exists
a neighbort at distancex from s multiplied by its pruning
probabilityPP (x). SoPE(x) becomes:

PE(x) = PN (x)× PP (x) = 2πµxdx× PP (x) (6)

Now, according to Equation 6,PE(x) = 0, if the pruning
probability PP (x) = 0. Interestingly,PP (x) depends on the
distancex and for low values ofx it may become zero. Thus, if
the distancex is small and less than certain threshold valueRL

thenPP (x) becomes zero. The expected number of neighbors
eliminated bys from its neighbor set is found by integrating
PE(x) from RL to the maximum transmission radiusR within
which s possibly can communicate:

Te =
∫ R

RL

2πµx× PP (x)dx (7)

If we assume a disc communication area fors with radius
R then the expected number of nodes withins’s maximum
communication range becomesπR2 × µ = πµR2. Therefore,
if we divide Te by πµR2, we get theaverage fraction of
neighbors eliminated, Fe, which we define assparseness,

Sparseness = Fe =
Te

πµR2
(8)

ts

Pruning Region

radius =
√

d2

4 − c
2K

d
2

d
2

Fig. 4. Pruning region between a link〈s, t〉

The average node degree is the expected number of neigh-
bors retained after pruning. Therefore, if we subtractTe from
the expected number neighbors withins’s communication
range then we get the average node degreedavg:

davg = πµR2 − Te = πµR2 −
∫ R

RL

2πµx× PP (x)dx (9)

Finally, if we multiply davg by the total number of nodesn,
we obtain twice the number of links retained after running
the topology control algorithm (an edge contributes to exactly
two node’s degree counts). Thus, the size of the graphGTC

becomes,

S(GTC) =
n× davg

2
=

n×
(

πµR2 − Te
)

2

= πnµ

[

R2

2
−
∫ R

RL

x× PP (x)dx

]

(10)

V. SPARSENESS OFMEPPTOPOLOGIES

In this section we apply the generic model developed in
Section IV to model MEPP topology control algorithms. For
these algorithms, there exists a pruning region relative toevery
link such that if another node exists in the pruning region, it is
more beneficial to use it as a relay than it is to use the direct
link. We use geometry to derive the pruning probability from
pruning rules. We apply this probability to estimate topology
characteristics forG1

2 andG2
2 respectively.

A. Pruning probability from the pruning rule

Let us see how thepruning rulesfor constructingG1
2 andG2

2

can be used to derive thepruning probabilityof a link 〈s, t〉.
Consider a pair of nodes(s, t). Envision the set of all points
for which the pruning rule defined in Equation 4 becomes true.
This set of points collectively forms thepruning regionof the
link 〈s, t〉 and is denoted by,PR(〈s, t〉). Mathematically,

PR(〈s, t〉) = {〈x, y〉 |Ps→〈x,y〉→t ≤ Ps→t}

Here we use〈x, y〉 to denote a hypothetical node located
at position〈x, y〉. The shaded region of Figure 4 shows the
pruning regionPR(〈s, t〉) for path loss factorα = 2. Any
node located in this shaded area can be used as a power-
saving relay and thus helps to eliminate the link〈s, t〉 from
the final topology. Therefore, the pruning probability is the
probability that there exist a certain number of nodes in this
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pruning region. If the node distribution is known apriori, this
probability can be directly calculated. The following lemma
shows an important property of the pruning regions.

Lemma 5.1:Suppose the distance betweens and t is d.
For α = 2, pruning regions are circular regions centered at
the midpoint on the straight line connectings andt, and have

radius
√

d2

4 − c
2K .

Proof: Without loss of generality, let us assume thats and
t are located at(0, 0) and(d, 0). Consider a hypothetical relay
noder within the pruning region of the link〈s, t〉 positioned
at 〈x, y〉. All nodes located inside the pruning region must
satisfy the pruning criteria defined in Equation 4:

Ps→r→t ≤ Ps→t

⇔ Ps→r + Pr→t ≤ Ps→t

⇔ K
[

x2 + y2 + (d− x)2 + y2
]

+ 2c ≤ Kd2 + c

⇔
[

x2 + y2 + (d− x)2 + y2
]

≤ d2 − c
K

After simplification, the expression becomes:
(

x− d

2

)2

+ y2 ≤
(
√

d2

4
− c

2K

)2

which is the region confined within the circle centered at

(d2 , 0), and with radius
√

d2

4 − c
2K . Thus, any relay node

capable of pruning the link〈s, t〉 must fall within this circle.

When the distanced betweens and t is very small such
that it is lower than some threshold value, the area of the
pruning region becomes zero. We can determine this threshold
by setting the radius of pruning region to zero, i.e.,

√

d2

4
− c

2K
= 0 ⇔ d =

√

2c

K

Thus, the lower bound of transmission range becomes:

RL =

√

2c

K
(11)

Let’s find the probability that a certain number of nodesk is
located within the pruning region of the link〈s, t〉. According
to Lemma 5.1 the pruning region of〈s, t〉 link is circular region

with radiusR =
√

x2

4 − c
2K . The probability that a node is

placed in this circular areaπR2 within the deployment area
A = n/µ is:

P∆ =
πR2

A
=

πR2

n
µ

=
πµ
(

x2

4 − c
2K

)

n
(12)

The probabilityPk(PR(〈s, t〉)) that exactlyk nodes are
located in the pruning regionPR(〈s, t〉) is:

Pk(PR(〈s, t〉)) =
(

n− 2

k

)

P k
∆ × (1− P∆)

n−2−k (13)

Note thatn−2 is used rather thann because we excludes and
t. For largen and smallP∆, the binomial distribution can be
approximated using Poisson distribution [1], [8] with mean
nP∆. Thus,

Pk (PR(〈s, t〉)) = (nP∆)
k × e−nP∆

k!
(14)

B. Analytical expression forG1
2

While constructingG1
2, a link is pruned if there exists at

least one node inside its pruning region. Thus, the pruning
probability becomes the probability that there exists one or
more nodes inPR(〈s, t〉):

PP (x) =

n
∑

k=1

Pk (PR(〈s, t〉)) =
n
∑

k=1

(nP∆)
k × e−nP∆

k!

= e−nP∆

(

∞
∑

k=0

(nP∆)
k

k!
− 1

)

= e−nP∆

(

enP∆ − 1
)

= 1− e−nP∆ (15)

By substituting the value ofP∆ from Equation 12 into
Equation 15, we obtain:

PP (x) = 1− e
−πµ

(

x2

4
− c

2K

)

(16)

By using Equation 16 and the lower bound on transmission
range from Equation 11 in Equation 7 we get:

Te =

∫ R

√
2c
K

2πµx× PP (x)dx

= 2πµ

∫ R

√
2c
K

x

(

1− e−
πµx2

4
+πµc

2K

)

dx

= 2πµ

∫ R

√
2c
K

xdx− 2πµ

∫ R

√
2c
K

e

(

−πµx2

4
+πµc

2K

)

dx

After some manipulations the final expression becomes:

Te = πµR2 − 2πµc

K
+ 4

[

e

(

−πµR2

4
+πµc

2K

)

− 1

]

(17)

Note that, forR <
√

2c
K

, no link can be pruned, thusTe = 0

if R <
√

2c
K

. Sparseness,Fe = Te/πµR2. Therefore:

Fe =
1

πµR2

[

πµR2 − 2πµc

K
+ 4

{

e

(

−πµR2

4
+πµc

2K

)

− 1

}]

(18)

C. Analytical expression forG2
2

For constructingG2
2, a link is pruned if there exists at

least two nodes inside its pruning region. Thus, the pruning
probability becomes the probability that there exists two or
more nodes inPR(〈s, t〉):

PP (x) =

n
∑

k=2

Pk (PR(〈s, t〉)) =
∞
∑

k=2

(nP∆)
k × e−nP∆

k!

= e−nP∆

(

∞
∑

k=0

(nP∆)
k

k!
−

1
∑

k=0

(nP∆)
k

k!

)

= e−nP∆

(

enP∆ − 1− nP∆

)

= 1− (nP∆ + 1) e−nP∆ (19)

By plugging in the value ofP∆ from Equation 12 into
Equation 19, we obtain:

PP (x) = 1−
[

πµ

(

x2

4
− c

2K

)

+ 1

]

e
−πµ

(

x2

4
− c

2K

)

(20)
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Finally, using Equation 20 and the lower bound on
transmission range from Equation 11 into Equation 7 we get:

Te =
∫ R

√
2c
K

2πµx× PP (x)dx

= 2πµ

∫ R

√
2c
K

x

[

1−
(

πµx2

4
− πµc

2K
+ 1

)

e
−πµ

(

x2

4
− c

2K

)
]

dx

= 2πµ

∫ R

√
2c
K

xdx

−2πµ
(

1− πµc

2k

)

∫ R

√
2c
K

xe
−πµ

(

x2

4
− c

2K

)

dx

−2πµ
(πµ

4

)

∫ R

√
2c
K

x3e
−πµ

(

x2

4
− c

2K

)

dx

The three integrals in the above equation can be separately
solved as follows:

2πµ

∫ R

√
2c
K

xdx = 2πµ

(

R2

2
− c

K

)

(21)

2πµ
(

1− πµc

2K

)

∫ R

√
2c
K

xe
−πµ

(

x2

4
− c

2K

)

dx

= −4
(

1− πµc

2K

) [

e−πµ(R2

4
− c

2K
) − 1

]

(22)

and,

2πµ
(πµ

4

)

∫ R

√
2c
K

x3e
−πµ

(

x2

4
− c

2K

)

dx

= 2πµ

∫ R

√
2c
K

(

πµx2

4

)

e
−πµ

(

x2

4
− c

2K

)

xdx

= 4 +
2πµc

K
−
(

πµR2 + 4
)

e
−πµ

(

R2

4
− c

2K

)

(23)

Finally, using Equations 21, 22, and 23 and performing
some manipulations we get:

Te = πµR2 − 2πµc

K
− 8

+

(

πµR2 − 2πµc

K
+ 8

)

e−
πµ

4 (R2− 2c
K ) (24)

Like before, Te = 0 if R <
√

2c
K

. Sparseness,Fe =

Te/πµR2. Therefore:

Fe =
1

πµR2

(

πµR2 − 2πµc

K
− 8

)

+
1

πµR2

(

πµR2 − 2πµc

K
+ 8

)

e−
πµ

4 (R2− 2c
K ) (25)

According to Equation 18 and 25, the sparseness,Fe is a
function of three parameters namely, maximum transmission
range (R), node density (µ) and radio-receiver power (c), i.e.,
Fe = f(R,µ, c). The general effects of these parameters
(while changing one and keeping the others fixed) are as
follows: Fe increases when eitherR or µ is increased, and
decreases whenc is increased.

Let us apply Equations 18 and 25 to the example scenario
shown in Figure 1. The deployment areaA = 625m × 625m

TABLE I
PARAMETERS USED IN SIMULATION EXPERIMENTS

Notation Description Value

s speed of light 299792458 m/sec
f operating frequency 2.4 GHz
λ wave length 0.001605278 m
ht transmitting antenna height 1.5 m
hr receiving antenna height 1.5 m
Gt transmitting antenna gain 1

Gr receiving antenna gain 1

L system loss 1

rth receiver sensitivity threshold −68 dBm
K propagation model constant 0.001605278

= 390625 m2 and n = 100 result in a node densityµ =
n/A = 100/390625 = 0.000256. Transmission radiousR =
150m; let us assume that the receiver powerc = 0mW. With
such parameter values the Equation 18 gives usFe = 0.781
(i.e., 78.1%) for G1

2 and the Equation 25 gives usFe = 0.573
(i.e.,57.3%) for G2

2. Recall from Section III-D2 that the actual
elimination was74.93% for G1

2 and52.33% for G2
2 which are

very close to what we obtained using the analytical expressions
with a deviation of around5%.

VI. SIMULATION RESULTS

In this section, we present simulation results to verify the
accuracy of analytical expressions. We also explore how node
density, and various transceiver parameters (transmission range
and the receiver power) affect sparseness.

A. Simulation environment

1) Radio parameters:We assume that each node has an
omni-directional antenna with0 dB gain located1.5 meter
above the node. The path-loss exponent,α = 2. The carrier
frequency is 2.4 GHz (the operating frequency of IEEE
802.11g networks). The received signal strength thresholdto
ensure radio connectivity between nodes is set to−68 dBM1.
Given these parameters, the value ofK for the Equation 3 and
its derivatives becomes0.001605278. Table I summarizes all
the parameters that have been used for simulation experiments.

2) Transmission ranges:For the radio parameters shown in
Table I, the cross over distance becomes:

dcross =
4πhthr

λ
= 226.44m

As the path loss factorα was set to2, themaximumtransmis-
sion range (Rmax) was restricted below the cross over distance
and set toRmax = 225m. We determineminimum trans-
mission range (Rmin) for all simulation experiments based
on the Equation 11. According to the equation, transmission

ranges must be above
√

2c
K

in order to develop a (nonzero size)

pruning region. ForR <
√

2c
K

, the pruning region vanishes and
no power savings is possible using intermediate relays because
the radio-receiver power dominates the transmit power for
such a short distance communication. Therefore, the minimum

1we note that commercially available LinkSys routers with WRT150N
series has the similar receiver sensitivity threshold
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transmission range clearly should beRmin =
√

2c
K

. As the
value ofK is constant for a certain set of radio parameters,
Rmin solely depends on the radio-receiver powerc.

However, we observe that the receiver power (c) varies from
radio to radio. With the advent of low-power circuit designs
and signal processing, the receiver power (c) of future radios
is likely to be quite small. As the radio-receiver power (c) may
have a significant impact on the size of the pruning region we
decided tovary the receiver power to see its effect in our study.
For different values ofc, ranging from0mW to 20mW, we

plotted the curveR =
√

2c
K

which is shown in Figure 5. From
the plot, we take12 mW as an upper bound of the receiver
power (c) which implicitly requires the transmission range to
be at least∼ 122m in order to realize any power savings (i.e.,
to generate non-zero size pruning regions). Therefore, we set
Rmin = 125m, for all simulation experiments.

In short, the transmission range was varied betweenRmin =
125m to Rmax = 225m and the receive power was varied
betweencmin = 0mW to cmax = 12mW.

3) Scenarios:We simulate randomly deployed networks of
100, 300, and 500 nodes uniformly over a625m × 625m
square region. Thus, the node density was varied by changing
number of nodes over a fixed deployment region. We only
consider connected networks, since it is not possible to gener-
ateconnectedMEPP sub-networks unless the initial networks
are connected. For each network size we have generated10
scenarios. Performance measures are reported as an average
of these10 random samples.

4) Performance metric:We analyze the performance of
different MEPP topologies usingsparsenessas a metric. Other
performance measures such as average node degree, topology
size etc. are easily derivable from this sparseness metric (see
Equations 9 and 10). The number of links remaining in a
MEPP subgraph determines its sparseness. Thus, the sparse-
ness of a network is determined by measuring the average
fraction of eliminated neighbors,Fe.

The degree of sparseness of a network has a major impact
on routing performance of the routing layer. For instance,
flooding, if used for route discovery, is known to create serious
broadcast storm problemin a dense graph [13]. By reducing
neighbor set of each node, this problem can be mitigated to
some extent.

B. Effect of transmission range

To see the effect of transmission range on sparseness, we
measureFe for bothG1

2, andG2
2 with different node densities.

The transmission range is varied between125m to 225m with
an increment of25m at each step. Figure 6 shows the result. It
is assumed that the power consumed by the radio-receiver is
12mW. Measurements from both simulation experiments and
analytical expressions are plotted in the same graph for a fair
comparison. For bothG1

2 andG2
2, Fe exponentially increases

with the increase in transmission range. Moreover,G1
2 struc-

tures prune more neighbors compared toG2
2 structures. With

c = 12mW , andK = 0.001605278 the critical transmission
range becomesRmin =

√

2c
K

∼= 122m. Thus,Fe drops down
to zero at125m transmission range for both of the plots.

Figure 6(a) and 6(b) show that for all scenarios, the results
of analytical expressions are very close to the simulation re-
sults; the difference is very small, maximal being around6.5%.
Thus, the analytical models are effectively able to capturethe
generic pattern of the simulation results. The small inaccuracy
arises from the nodes located close to the boundaries of
the deployment region, for which the communication area is
restricted, and thus they have fewer neighbors. With larger
transmission ranges the effect also becomes larger. We ignored
this “boundary effects” to simplify the analytical models.

C. Effect of radio-receiver power (c)

Next, we explore the effect of radio-receiver power (c) on
the sparseness. For different values ofc, we plottedFe in
Figure 7 for bothG1

2, andG2
2 graph structures with various

node densities. The transmission range is set to125m. With
this transmission range the sparseness drops down to zero
at c = KR2/2 =

(

0.001605278× 1252
)

/2 ∼= 12mW .
For other values of radio-receiver power,Fe exponentially
increases with the decrease in the value ofc. Moreover,G1

2

graph structures are sparser compared toG2
2 structures for any

node density.

D. Effect of node density

Finally, we present the effect of node density on the
sparseness. Node density were varied by varying number of
nodes between100−500 while keeping the deployment region
constant. Moreover, we have deliberately set the radio receiver
power to zero to see what happens if we ignore the receiving
costsc. Figure 8(a) and 8(b) show the sparseness for both
G1

2, andG2
2 under three transmission radius225m, 175m and

125m. The result is as expected: a higher fraction of neighbors
is eliminated in more dense networks for all transmission
ranges. With larger node densities, it is highly probable that
the required number of nodes exist in the pruning region of
a link, and the link gets pruned by the algorithm. Unlike
other plots, a rich proportion of neighbors are eliminated even
for 125m transmission range. The reason is, forc = 0, the

minimum transmission range becomes,Rmin =
√

2c
K

= 0m;
consequently, for all nonzero transmission ranges, the pruning
region exists and we get a nonzero value of the sparseness.
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VII. C ONCLUSIONS ANDFUTURE WORK

MEPP algorithms constitute an important class of topology
control protocols for mobile wireless multi-hop networks.
This class of algorithms is very appealing, practically im-
plementable algorithms due to their simplicity, distributed
property, and strictly local behavior. We provided analytical
models to determine the structural densities for this classof
protocols. Using the proposed models, the network designer
can easily estimate the sparseness and network size for the
desired topology, perhaps prior to network deployment.

There still remain some open questions to answer. The

analytical expressions are developed under uniform node dis-
tributions, extending the model for other node distributions
is an immediate possibility. It still remains open whether it
is possible to generalize the proposed models to cover other
class of topology control algorithms.
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