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_Abstract—Topology Control (TC) algorithms for multi-hop  typically generate highly complex structures which areft
wireless networks create a connected communication subgraph difficult and challenging to analyze using simple matheoati
that satisfies someopological properties by assigning appropriate formula and the existing research efforts were only tangeti

transmission power to each node. A topology is said to be _. le heuristi Unlike oth h K id
minimum-energy path-preserving if it preserves minimum energy simple heunstcs. Unfike other research works, we provide

paths between every pair of nodes. Creating sparse topologies@ generalized framework for estimating topology sizes by
while preserving all minimum energy paths is a fundamental weaving graph theoretic approach with probability theory.

research problem in TC that has been addressed in several recent  Nevertheless, many principal characteristics of mulfi-ho
research works. Although sparseness is a key metric in comparing wireless networks often result from the communication topo

the performance of such algorithms, none of these prior works Det . the t | . - f the k t
provides analytical models to determine the sparseness. In this ogy. etermining the topology size IS one o € Keys 1o

paper, we provide analytical models for evaluating sparseness of Understanding those characteristics. For example, thebeum
such topologies. The derived analytical expressions are useful inof edges in a planar graph is at mds — 6) [16], where

determining topology size without running simulations or priorto  ,, js the number of vertices. Thus, if the topology size is
the deployment of real systems. Moreover, we demonstrate how known apriori then it is possible to determine whether the

to analytically couple sparseness of topologies with the radio derlving t | is ol izabl £ M
transceiver parameters for multi-hop wireless networks. The underlying topology IS planarizable or not. Moreover, some

analytical expressions are validated through extensive simulation Performance metrics are directly or indirectly related he t
experiments. topology size. For instance, the average node degree govid

a crude estimation of the level of relaying burden, contenti
and interference. In general, the relaying burden is irhgrs
proportional to the average node degree whereas contention

Topology control is a fundamental research problem for boeind interference experienced by a node are directly propor-
wired and wirelessnetworks. In a wired network, topologytional to the average number of neighbors. The average node
control refers tdwistingthe physical layout of interconnectiondegree is determined by dividing the topology size with the
patterns whichoften requires significant efforts from the ad-number of nodes present in the network.
ministrator/network operator. In contrast, topology cohin Many topology control algorithms have been proposed over
wireless domain is comparatively easier to achieve. By simpthe past decade. Among them, a special class of topology
manipulating the transmission powers, one can easily moddontrol algorithms dubbed asinimum-energy path preserving
underlying topologies and switch from one to another in prdéMEPP, in short hereafter) algorithms, occupy a rich propor-
to meet desirable performance characteristics as needed. tion of state-of-the-art topology control algorithms [41,7],

On the contrary, the topology size of a wired networl?2], [14], [12], [7], [9] for mobilewireless multi-hop networks.
once it is configured, is easy to determine. For example,Aatopology is said to be MEPP if it preserves minimum
typical ring topology withn nodes contains exactly — 1 energy paths between every pair of nodes while creating
links between them. Similarly, a (fully) mesh topology of sparser connected subgraphs. In general, these algorithms
nodes has exactlyCs, = @ links. However, determining conserve energy by replacing long distance links as much
the total number of links present in a wireless network aftais possible with (multiple) short distance links using one
reconfiguring topology is a non-trivial task (unless all aed or more intermediate relays. Thus, key energy savings are
are within the communication range of each other and forathieved byshifting long distance data communications in
a clique). It greatly depends on the rules used for elimmggati spacetowards short distance links. As the transmission power
the links by the underlying topology control algorithm. @ha consumption grows at least quadratically with the distance
theory has been heavily used in the literature to study thetween communicating nodes, pushing communication to
linkage structure of the topologies generated by the dlyos. shorter connections potentially saves power.

However, it is unclear how to estimate the network size Although sparseness is a key metric in comparing the
using such graph theoretic approach. One inherent reagamformance of all MEPP algorithms, none of the prior works
lies on the fact that most of the topology control algorithmgrovide analytical models to determine the topology size

I. INTRODUCTION



or sparseness. Therefore, in this paper we derive andlyticaln terms of sparseness, another established solution is the
models for evaluating sparseness of topologies generaied f Relative Neighborhood Graph (RNG) proposed by Toussaint
such algorithms. While developing the model, at first, we if15] where a link(s, ¢) is eliminated if the distancé(s,t) is
troduce a novel locally-defined mathematical concept ddbbgreater than the distance of any other nad&om s or ¢, i.e.:
aspruning regionwhich is coupled with each links present irdw # s,t : max(d(s,w), d(t,w)) < d(s,t).
the network. We further model this pruning region based on On the other hand, Gabriel graph (GG) [3], which is a super
the rules used in MEPP algorithms for pruning longer linksgraph of RNG, eliminates a links, t) if for any other node
The derived analytical expressions are useful in detenginiw it happens thatdw # s, t : d?(s,w) + d?(t,w)) < d?(s,t).
topology size prior to the deployment of real systems. Milic and Malek derived analytical models for quantifying
A careful insight to derive analytical expressions backedropped edges and face sizes of RNG and GG [8]. Inspired
up by the simulation results find that the performance &y their work, we propose a generalized framework in this
MEPP algorithms, in terms of topology size and sparsenegsgper with the following major differences. First of all, GG
strongly depends on a number o&twork parametergnode and RNG are planar graphs, whereas MEPP topologies are not
number, deployment area, and node distribution), and somecessarily planar. Secondly, in GG and RNG, there always
other transceiver parametergtransmission range, radio re-exists a non-zero pruning probability of a vertex whereas fo
ceiver power, antenna height, and gain). Notably, with smany MEPP topology control algorithm, the pruning probapili
values of transmission range and large values of radioweceiof a link might be zero for certain settings of radio trangeei
power the sparseness drops down to a large extent. It tutns parameters as we demonstrate in Section IV. Finally, we pro-
that, with certain settings of transceiver parameters, MERide analytical expressions for some additional perforcean
algorithms are unable to prune any links at all. metrics such as average node degree and topology sizes.
The major contributions of the paper are summarized asRodoplu and Meng [11] are the first to conceive the idea
follows: (i) we provide a generic analytical model for deof MEPP topologies for mobile wireless networks. Their
termining size/sparseness of the MEPP topologies, (ii) Thégorithm sets a node’s transmission range much lower than
generic model is then applied to various MEPP algorithm#ie maximum while keeping the network connected and main-
(iii) for the first time in the literature, we demonstrate howaining minimum energy paths between every pair of nodes.
to analytically couple sparseness of topologies with titkora Later on, their work triggered a myriad of other research
transceiver parameters. (iv) finally, we quantitativelplexe works [4], [17], [2], [14], [12], [7], [9]. Li and Halpern [4]
how several factors such as transceiver and network pagasnetmprove their result by showing that nodes can start withrs ve
affect the structural density of the topologies. small transmit power and incrementally search for a sugtabl
The rest of the paper is organized as follows. Section YRlue until all minimum energy paths are preserved. Their
describes related works along this direction. Section dt- f work produces similar results to [11], but with much lower
mally shows how graph theory is used to model topologi@yerhead. Li and Wang [6] address the algorithmic compexit
and provides a brief description of the MEPP topology cof the work in [11] and provide an algorithm with lower time
trol algorithms. A generic analytical model for determigin complexity. Ahmecet al. [2] further analyze MEPP topologies
topology size, sparseness and average node degree areadd- propose an improved algorithm for sparse networks.
veloped in Section IV. This generic model is then applieth [14] and [12], the authors incorporate fault tolerance
to MEPP graph structures in Section V. Section VI validatdiesides preserving all minimum energy paths. However, none
the analytical expressions with rigorous simulation ressahd 0f these works provide any analytical models to determine
presents effect of different network/transceiver paramgeon the sparseness/topology size. Thus, by introducing a gener
structural densities. Finally, Section VII concludes trep@r framework for modeling sparseness of MEPP topologies, we
with the possible direction for future works. seek to fill this notable gap.

1. M INIMUM -ENERGY PATH-PRESERVINGTOPOLOGY
_ . CONTROLALGORITHMS

.T.he sparsest possible topology pf_nodes is theglobal In this section we present as background the distributed
minimum spanning tree (MST) co.nta.lnmg ex.aotlyl edges. algorithms for constructing MEPP graph structures. The al-
_Congt_ructmg such _global MST is impractical and energ jorithms are presented with some inessential changes to
inefficient because it needs global knowledge of the Newop, .o the notation and presentation more suitable for better

topology. Somewhat closer to global MST is tlogal MST derstandi f th d \vtical |
(LMST) proposed by Liet al. [5] where each node createsun erstanding of the proposed analytical models.

LMST within its neighborhood graph by assigning approgriat )

weight to an edge based on the necessary transmission poftef3raph theory to model topologies

to reach its two ends. After constructing the LMST, each Consider ann-node, multi-hop, ad-hoc, wireless network
node contributes to the final topology those nodes that are dieployed on a two-dimensional plane. Let the set of nodes,
neighbors in its LMST. Although LMST can be constructe@ach equipped with a radio transceiver, be denoted by

in an energy-efficient distributed manner, no analyticatledo {t1,¢s,...,t,}. Suppose the transmission power) of any

is known to estimate its size or sparseness. Moreover, LM®®de ¢ is adjustable up to a maximum amouft,,.., i.e.,
does not preserve minimum-energy paths. 0 < p(t) < Pas- Such a network can be modeled as a graph

II. RELATED WORK



G = (Vi, En), with the vertex setl,, representing the wherea (> 2) is the path loss factods is a global constant
nodes, and the edge sk, defined as follows: and c is the power required for processing and receiving the
signal. A radio transceiver typically consists of trangarit
En ={(s,0)[(s,t) € VXV A d(5,8) < Bmaa} (1) electronics, receiver electronics and transmit amplifidre
where d(s,t) is the distance between nodesand ¢ and first component on the right hand side of Equation 3 is
R is the maximum distance reachable by usiRg,,. the transmission power that includes the power consumed
The graphG,,, defined this way is a visual representation dfy the transmitter electronics and the transmit amplifiedt an
the inherentinitial topology (i.e. before running a topologydominates the receiving power expended at the receiver
control algorithm). We use the terrtopology and graph electronics. The minimum power required to send fromo ¢
interchangeably throughout this paper. using an intermediate nodeas a relay can be defined as:
L. . Ps—>7'—>t = Ps—>7‘ + Pr—>t =K x [da(sa 7’) + da(Tv f)] +2c

B. Minimum-energy path-preserving subgraphs

We say that a grapltz7¢ C G,, is a MEPP graph or,
alternatively, that it has theninimum energy propertyif for
any pair of nodess, t) that are connected i@, at least one
minimum energy path betweenandt¢ in G,, also belongs to P yrt < Psyy (4)
Grc. MEPP graphs were first defined in [4]. Typically, many
MEPP graphs can be formed from the initial gra@h, . It has
been shown that the smallest of such subgraphs,gfis the D. Algorithms to construct MEPP topologies
graphGrin = (V, Emin), Where(s,t) € Ep, iff there isno  consider a node that is constructing its direct neighbors
path of length greater thanfrom s to ¢ that costs less energyeither in G} or G2. At first s broadcasts a singlaeighbor
than the energy required for a direct transmission betweenjiscovery messagdlDM) at the maximum power, ... For
andt. LetG; = (V, E;) be a subgraph aff,, = (V, Eyn) Such  static networks, a single episode of NDM broadcast is enough
that (s, t) € E; iff (s, 1) € E,, and there is no path of length o discover all neighbors. When mobility is considered, NDM
that requires less energy than the direct one-hop tranEmissheeds to be sent periodically at an interval suitably chosen

Therefore, s would user as a relay to reach only if
Pyt < Psy. Thus, a link (s,t) is pruned froms’s
neighborhood if there exists at least one nedsuch that:

betweens andt. Then,G,,;, is formally defined as: based on mobility dynamics. All nodes receiving the NDM
n—1 reply. While s collects the replies of its neighbors, it learns

Gmin = ﬂ G; (2) their identities and locations. The séf;(s), which starts
i=2 with empty set, keeps track of all the nodes discovered in

Any subgraphG’ of G has the minimum energy propertythe neighborhood of in G,,. Therelay setéq(s,t) bet\/\{een
iff &' O Guin. Thereby, each olG; O Gyuin, for any nodess andt records all relays between them for which the

i=23,..,n—1is a MEPP graph. pruning criteria becomes true (i.e. includes all energyieffit

A variety of MEPP graphs can be created from one- (51-:-Ia¥s). Initially all those sets are empty tpo. Wheneyer
two-hop neighbor’s position information. For example, ust "€C€ives a reply to its NDM from a node it updates its
consider a grapi&’} = (V, E3) which is a subgraph aff,, = relay and nelghbor sets by ex_ecutmg Algorithm 1.

(V, E,,) such that(s,t) € EL iff (s,t) € E,, and there is 1) ConstructingGi: Two different approaches for con-

no path of lengthwo that requires less energy than the dire@rUctingG have been proposed in [4] and [9]. In [4], which
path betweens and. is an improved algorithm over [11], nodes start with a very

Another MEPP graph, denoted by2 = (V,E2), is a small transmit power and incrementally search for a suatabl
subgraph oG, = (V, E,,) where (s, t) €2E§ iff <’s t2> €E, value until all minimum energy paths are preserved. On the
and there do not exidivo or morevertex-disjoint paths of Other hand, [9] utilizes assistance from the MAC layer for
lengthtwo requiring less energy than the direct path betwed@Vering the construction overhead (i.e., reducing messag
s andt. passing). Regardless of the approaches the inherenttalgori

Note that, bothG andG2 graphs can be locally constructedS the same which is described next.
if only one hop neighbors’ position information is availaib ~_ After running updateNeighborsel(s, v), nodes executes
a node because a path of lengto betweens andt can only the algorithm presented in Algorithm 2 for determining its
be created by using a neighboof s which is also a neighbor
of t.

Algorithm 1 wupdateNeighborSet(s,v)

C. Link pruning rule ; forife;f_r:?_i ]Zag)_jothen
The pruning rule used for constructing MEPP graphs i ¢a(s,w) = Eg(s,w) U {v}

based on the generic, two-ray, wireless channel model,evher. else if P,_,,,_,» < Ps_» then

the required transmission power is a function of distan€g.[1 s:. ¢a(s,v) = €g(s,v) U{w}

To send a message from naod® nodet separated by distance g:  end if

d(s,t) the minimum necessary power is approximated by, 7:  Ng(s) = Ng(s) U {v}

P,y =K xd“(s,t) +¢ ©) 8: end for
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final neighbor set inGi. Basically, the algorithm iteratively

checks whether the relay set betweeandv is empty or not.

If it is empty thenwv is included into the neighbor set efin A@ £
G13 since it indicates that there is no node that can be used as

a relay to transmit message using lower energy than thetdirec dA
path betweers andv. Otherwise,v is excluded. dx\
Algorithm 2 G3 ToPoLOGY CONSTRUCTION Fig. 2. lllustrating a circular strip at distanae
1: for eachv € N¢(s) do
2. if &q(s,v) is emptythen
3: NG%(S) — NG;(S) U {v} IV. GENERICANALYTICAL EXPRESSIONS
4: endif In this section, we provide a generic framework for deter-
5: end for mining topology size of any MEPP topology control algorithm

Supposer nodes are uniformly spread over a deployment area
A in order to form a muti-hop wireless network. Thus, the

Algorithm 3 G2 ToPOLOGY CONSTRUCTION average node density, = %. Let us observe an arbitrary
1: for eachv € Ng(s) do node s Withi.n this deployment area. Consider a hypothgtical
2. if |¢a(s,v)| < 2 then nodet at dlstanceg: from s. Let us denote the probabllllty
3: Ng2(s) = Nga(s) Uv of_such node’s existence b (). _Cle_arly Py(z) = 0, if
4 endif 2 t is located outside the communication range sofWhen
5. end for x is located within the communication areBy (z) can be

calculated as follows. Consider a small area strip defined by

2) ConstructingG2: Algorithm 3 was developed by Roy dz at the perimeter of the circle with radiusand centered
at al. [12] to construct MEPBiconnectedsubgraphs, denoted@t § @s shown in Figure 2. Also consider a small angfe
by GZ. Assume that the algorithm is running on a node measured from an arbitrary but fixed axis. The length of the

For each neighbow of s in G,, the algorithm checks the arcl{ = x_dé) and the area qf the small regialyd within this
number of nodes present in its relay set. If it is less thanSMall strip can be approximated agl = (dz = xdxds.
then v is included into the neighbor set afin G2 since it 1herefore, the area of the entire small strip denotediby.,
indicates that there is at most one relay available to triinsfR€COMeS,

messages using lower energy than the direct path betseen 2 2m 2

v; thus, eliminatinge from its neighbor set may destroy the “strip :/O dA = /0 tdzx :/0 vdrdf) = 2rade
bi-connectivity property. Otherwise, can be safely excluded
from the final neighbor set of in G3. It has been proven
that topologies constructed this way preserve minimumgner py () = Area of the stripx Node density= A,.;, X 1t
paths and ensure biconnectivity [12].

Figure 1(a) shows an example scenario 1df0 nodes
randomly deployed over &25m x 625m square area. The Once we find the probability of a node’s existence at
initial topology contains’33 links in total. After running the distancer, the next thing is to find the probability that a node
algorithm for constructing=} the topology shown in Figure would directly communicate with such a node instead of using
1(b) is obtained where each node prunes alidui3% links a relay. Obviously this communication probability depends
from its neighborhood on an average. On the other hand thie the topology control algorithm being used. Nevertheless
topology shown in Figure 1(c) i&% where52.33% links are in any topology control algorithm, each node examines each
eliminated after running the corresponding topology aaintrlink with its direct neighbors (i.e. nodes within its maximu
algorithm. communication range) one at a time to see whether it is

Thus Py (x) becomes:

= 2mazdr X p = 2wpxdr 5)
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possible to prune any of those links. The pruning criteria lf? The average node degree is the expected number of neigh-

rs retain fter pruning. Therefore, if w rom
basec‘i‘ on"g suitably choserbjective functionoften dubbed thoesefg)thZ((jj antuempb)elﬁ ntgighbgrg (\)Nﬁﬁh‘s so?r?]tﬁ:act)ion
as a‘rule n the protocol. "?teres“’?g.'y' fpr ME_PP top_oyog range then we get the average node degigg:
control algorithms, the pruning decision implicitly defina
mathematically quantifiablgoruning probability For exam-
ple, according to the topology control algorithm devised by

Rodoplu et al. [11], a node is pruned if it falls within some_. v, if ltiol by th | ber of nod
other node’s relay region (i.e. if there exist some energgi'na y, It we multiply dq., by the total number of nodes,
t

"R
vy = TR~ To = nul? — [ *2mpo x Pa(a)da (9)
Rp

efficient node that could be used for relaying). Therefor /e obtain twice the num.ber of links retaingd after running
the pruning probability in this case is directly related ket '€ t0POlogy control algorithm (an edge contributes to éyac

probability of nodet falling on all other node’s relay region.tWO node’s degree counts). Thus, the size of the grépi

Figure 3 provides a generic view of how @uning rule becomes,
translates into th@runing probability Here the pruning rule n X dyg X (TpR?—T.)
implicitly defines apruning regionwhere a node’s existence S(Gre) = 2 = 2
causes the corresponding link to be pruned. Therefore, the R2 R
pruning probability becomes the probability that theresexi = Ty [2 —/ T X Pp(.r)dx] (20)
a certain number of nodes within this pruning region. Let us R
denote this pruning probability byr(z) regardless of the
topology control algorithm being used. V. SPARSENESS OFMMEPPTOPOLOGIES
The probability of eliminating any nodefrom s’s neighbor In this section we apply the generic model developed in

set, denoted byPg(z), is the probability that there existsSection IV to model MEPP topology control algorithms. For

a neighbort at distancer from s multiplied by its pruning these algorithms, there exists a pruning region relativevary

probability Pp(x). So Pg(z) becomes: link such that if another node exists in the pruning regiois i

more beneficial to use it as a relay than it is to use the direct

Pp(x) = Py (x) x Pp(r) = 2npwdr < Pe(z) - (6) i e use geometry to derive the pruning probability from

Now, according to Equation 6Pz(z) = 0, if the pruning pruning rules. We apply this probability to estimate tojgylo

probability Pp(z) = 0. Interestingly, Pp () depends on the characteristics fotz; and G3 respectively.

distancer and for low values of: it may become zero. Thus, if

the distance: is small and less than certain threshold valtye A pruning probability from the pruning rule

then Pp(x) becomes zero. The expected number of neighbors

eliminated bys from its neighbor set is found by integrating

Pg(x) from Ry, to the maximum transmission radifswithin

which s possibly can communicate:

Let us see how thpruning rulesfor constructingsi andG?3

can be used to derive th®uning probabilityof a link (s, t).
Consider a pair of node&, t). Envision the set of all points
for which the pruning rule defined in Equation 4 becomes true.

R . . . . .
_ This set of points collectively forms theruning regionof the
Te = /RL 2mpe x Pp(w)de (7) link (s,t) and is denoted byPR((s,t)). Mathematically,
If we assume a disc communication area fowith radius PR((s,t)) = {{x,y) |Pss (z.y)—t < Post}

R then the expected number of nodes withia maximum ]
communication range becomesR? x ;= 7 R?. Therefore, Here we use(x,y) to denote a hypothetical node located

if we divide 7. by 7uR?, we get theaverage fraction of &t position (z,y). The shaded region of Figure 4 shows the

neighbors eliminated?,, which we define asparseness ~ Pruning regionPR((s)) for path loss factorx = 2. Any
node located in this shaded area can be used as a power-

Te saving relay and thus helps to eliminate the lipkt) from
8) : . pos

muR? the final topology. Therefore, the pruning probability i th

probability that there exist a certain humber of nodes is thi

Sparseness = F, =




pruning region. If the node distribution is known apriohijs B. Analytical expression fof3
probability can be directly calculated. The following le@m \ynile constructingGl, a link is pruned if there exists at
shows an important property of the pruning regions. leastone node inside its pruning region. Thus, the pruning

Lemma 5.1:Suppose the distance betweerand? is d.  nropability becomes the probability that there exists one o
For a = 2, pruning regions are circular regions centered glore nodes iPR/((s, £)):

the midpoint on the straight line connectiagndt¢, and have -
X e~ Ma

radius/ & — 5% Pp(z) — ZPk (PR((s,1))) = Zn: (nPy)"*

Proof: Without loss of generality, let us assume thand ot P k!

t are located at0, 0) and(d, 0). Consider a hypothetical relay (nPs)

noder within the pruning region of the linKs,t) positioned = e "Pa < A 1)

at (z,y). All nodes located inside the pruning region must k=0

satisfy the pruning criteria defined in Equation 4: = e nfa (e nba _ e "Pa (15)

Py yrst < Psyt By substituting the value ofPA from Equation 12 into
= Py + Py <Py Equation 15, we obtain:
K [2% + 9>+ (d — 2)? + 2] +2c < Kd? (2o e

& Kl +y +(d—af +37] +2e K e Pp(z) =1 — ¢ (5 7) (16)
& [+ 2+ (d—2)*+y*] <d* — &

By using Equation 16 and the lower bound on transmission
range from Equation 11 in Equation 7 we get:

5 2
-5 < Y R
2 o2k T = / 2wux x Pp(z)dz

2c

which is the region confined within the circle centered at =

(4,0), and with radius/% — ;<. Thus, any relay node _ 27m/R (1_6 W/ngJr’;;;(a)dx
capable of pruning the links, ¢t} must fall within this circle. <

After simplification, the expression becomes:

| | R R T rpe
When the distancel betweens and t is very small such = 27?#/ xdm—?w/ 6(7 ! +2K>d33
that it is lower than some threshold value, the area of the ® VE
pruning region becomes zero. We can determine this threéshélfter some manipulations the final expression becomes:
by setting the radius of pruning region to zero, i.e.,  auR? | mpe
To=muR? — THEC 1y { ( +35) 1] (17)
—— —=0&d= \/7

2c H _
Thus, the Iower bound of transmission range becomes: Note that, forR? < /%, no link can be pruned, thuf. = 0

% if R < ,/2¢. Sparsenessk, = T./muR?. Therefore:

Rp = I (11)

1 2mp maf? | The
Let's find the probability that a certain number of nodeis ¢ = e { pR? — ' +4{ - ) - 1}] (18)
located within the pruning region of the link, t). According
to Lemma 5.1 the pruning region ¢f, t) link is circular region

with radius R = % — 5%+ The probability that a node is

placed in this circular areaR?

C. Analytical expression fo63

For constructingG2, a link is pruned if there exists at
within the deployment area jg55t1wo nodes inside its pruning region. Thus, the pruning

A=n/uis: probability becomes the probability that there exists two o
R R TH (% _ ﬁ) more nodes iPR((s,t)):
PA = A = 7 = " (12) 0 nPA « einPA
Iz Pp(z) = ZPk (PR((s,t)) Z
The probability P, (PR(({s,t))) that exactlyk nodes are k=2
located in the pruning regioRR((s,t)) is: o0 1
_ e—nPA Z TZPA Z ’I’LPA
Pu(PR — (" A\PE < (1- Pyt (13 =
W(PR((s,1) = ("7 )PA x (1= Pa) (13) =0 =0
. = e " (enfr -1 nPA)
Note thatn—2 is used rather than because we excludeand |~ (nPa +1)ePa (19)
= - A

t. For largen and smallP, the binomial distribution can be
approximated using Poisson distribution [1], [8] with meaBy plugging in the value ofPx from Equation 12 into
nPa. Thus, Equation 19, we obtain:

(nPx)F x e=nPa

APR(s ) = 9 pew) == [ (- o) 1] ) o)



Finally, using Equation 20 and the lower

bound on

TABLE |

transmission range from Equation 11 into Equation 7 we get:

R
T = / 2rux x Pp(z)dx

e

2c

T’
4

R 12 c
_27TM (1_%)/ T _”/L(T_M( dx
2k /22
R 2 .
—2mp (i>/ :L"‘Se_w(T 2 >d:r
1)

PARAMETERS USED IN SIMULATION EXPERIMENTS
[ Notation [ Description [ Value |
s speed of light 299792458 m/sec
I operating frequency 2.4 GHz
A wave length 0.001605278 m
ht transmitting antenna height 15m
hy receiving antenna height 15m
Gt transmitting antenna gain 1
G receiving antenna gain 1
L system loss 1
Tth receiver sensitivity threshold —68 dBm
K propagation model constanf  0.001605278

= 390625 m?> and n = 100 result in a node density, =
n/A = 100/390625 = 0.000256. Transmission radiou® =
150m; let us assume that the receiver power OmW. With

The three integrals in the above equation can be separatglith parameter values the Equation 18 givesFus= 0.781

solved as follows:

R 2
R ¢
27ru/ = xdx = 2w <2 — K> (21
: R 502 C
21 (1 - %> / xeiM(TiT)dz
2K Iy
=4 (1 — %) [e*w(%sz) _ 1} (22)
and,
R T2 C
27 (ﬂ) wbe (T 5 gy
) E
R 2 22 e
:27T,u/ <7T'lf )eﬂﬂ(42K xdx
%
2 (B2 e
—4 chf(w,uRerél)e w5 —a) (23)

Finally, using Equations 21, 22, and 23 and performinf

some manipulations we get:

21 pce
Te = muR*— -8
T K
2 T c
+ (TFMR2 _ Lrie + 8) e~ H(RP-%) (24)

Like before,7. = 0 if R < ./%. Sparsenessf,
T./muR?. Therefore:

- 1 9  2muc
© TR (WR K 8)

According to Equation 18 and 25, the sparsenéssjs a
function of three parameters namely, maximum transmissi
range (?), node density /) and radio-receiver powet) i.e.,
Fe = f(R,u,c). The general effects of these paramete
(while changing one and keeping the others fixed) are
follows: F. increases when eitheR or . is increased, and
decreases whenis increased.

Let us apply Equations 18 and 25 to the example scenaria

shown in Figure 1. The deployment arda= 625m x 625m

rpsruning region. FoR <

(i.e., 78.1%) for G} and the Equation 25 gives U5, = 0.573
(i.e.,57.3%) for G3. Recall from Section 11I-D2 that the actual
elimination was74.93% for G3 and52.33% for G5 which are
very close to what we obtained using the analytical expoessi
with a deviation of around%.

V1. SIMULATION RESULTS

In this section, we present simulation results to verify the
accuracy of analytical expressions. We also explore hovenod
density, and various transceiver parameters (transmisaime
and the receiver power) affect sparseness.

A. Simulation environment

1) Radio parametersWe assume that each node has an
omni-directional antenna witfh dB gain locatedl.5 meter
above the node. The path-loss exponent= 2. The carrier
equency is2.4 GHz (the operating frequency of IEEE
02.11g networks). The received signal strength threstmld
ensure radio connectivity between nodes is set8 dBM?.
Given these parameters, the valugofor the Equation 3 and
its derivatives become.001605278. Table | summarizes all
the parameters that have been used for simulation expeismen

2) Transmission rangesEor the radio parameters shown in
Table |, the cross over distance becomes:

4Tl'hth7~
A
As the path loss factar was set td®, the maximuntransmis-
sion range R,,..) was restricted below the cross over distance
and set tOR,,.: = 225m. We determineminimum trans-
mission range R,,;,) for all simulation experiments based
on the Equation 11. According to the equation, transmission

oanges must be abowg{% in order to develop a (nonzero size)

= 226.44m

dcross =

\/%, the pruning region vanishes and
Q power savings is possible using intermediate relaysuseca
the radio-receiver power dominates the transmit power for
such a short distance communication. Therefore, the mimmu

we note that commercially available LinkSys routers with WRIN5
series has the similar receiver sensitivity threshold
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B. Effect of transmission range

To see the effect of transmission range on sparseness, we
measureF, for both G3, andG% with different node densities.
The transmission range is varied betwd@dm to 225m with
an increment oR5m at each step. Figure 6 shows the result. It
is assumed that the power consumed by the radio-receiver is
12mW. Measurements from both simulation experiments and
analytical expressions are plotted in the same graph foira fa

Data reception and processing power, ¢ (mW) comparison. For botli:} and G3, F. exponentially increases

with the increase in transmission range. Moreové}, struc-
tures prune more neighbors compared:t structures. With

c = 12mW, and K = 0.001605278 the critical transmission
range become®,,;, = \/% 2 122m. Thus, F. drops down
transmission range clearly should B&,., = |/%. As the to zero at125m transmission range for both of the plots.
value of K is constant for a certain set of radio parameters, Figure 6(a) and 6(b) show that for all scenarios, the results
Rpin solely depends on the radio-receiver power of analytical expressions are very close to the simulate®n r

However, we observe that the receiver powdnries from Sults; the difference is very small, maximal being aro@rid.
radio to radio. With the advent of low-power circuit designd hus, the analytical models are effectively able to capthee
and signal processing, the receiver powsrdf future radios 9eneric pattern of the simulation results. The small ineacy
is likely to be quite small. As the radio-receiver poweripay arises from the nodes located close to the boundaries of
have a significant impact on the size of the pruning region Wae deployment region, for which the communication area is
decided tovary the receiver power to see its effect in our studyestricted, and thus they have fewer neighbors. With larger
For different values of, ranging fromOmWwW to 20mw, we transmission ranges the effect also becomes larger. Weedno
plotted the curver — % which is shown in Figure 5. From this “boundary effects” to simplify the analytical models.

the plot, we takel2 mW as an upper bound of the receiver

power ¢) which implicitly requires the transmission range taC. Effect of radio-receiver power (c)
be at least- 122m in order to realize any power savings (i.e.,
to generate non-zero size pruning regions). Therefore,ate 8
Ryin = 125m, for all simulation experiments.

Fig. 5. Relationship between transmission range and raiekrer power

Next, we explore the effect of radio-receiver powey ¢n
e sparseness. For different valuescofwe plotted . in
Figure 7 for bothG3, and G2 graph structures with various

In short, the transmission range was varied betwegp, = node densities. The transmission range is set2fam. With
125m t0 Ryuq. = 225m and the receive power was variedhis transmission range the sparseness drops down to zero
betweenc,,in = 0MW 10 ¢par = 12MW. at ¢ = KR?*/2 = (0.001605278 x 125%) /2 = 12mW.
For other values of radio-receiver poweF, exponentially
increases with the decrease in the valuec.oMoreover,G3
g{aph structures are sparser compare@iatructures for any
dee density.

3) Scenarios:We simulate randomly deployed networks o
100, 300, and 500 nodes uniformly over &25m x 625m
square region. Thus, the node density was varied by chang
number of nodes over a fixed deployment region. We on
consider connected networks, since it is not possible tegen
ateconnectedMEPP sub-networks unless the initial network$) - Effect of node density
are connected. For each network size we have genetéted

scenarios. Performance measures are reported as an averagl@a"y’ we present the effect of node density on the
of these10 random samples. sparseness. Node density were varied by varying number of

nodes betweeh00—500 while keeping the deployment region
4) Performance metric:We analyze the performance ofconstant. Moreover, we have deliberately set the radidvece
different MEPP topologies usirgparsenesas a metric. Other power to zero to see what happens if we ignore the receiving
performance measures such as average node degree, topatogysc. Figure 8(a) and 8(b) show the sparseness for both
size etc. are easily derivable from this sparseness megie (G}, andG2 under three transmission radiggsm, 175m and
Equations 9 and 10). The number of links remaining in @5m. The result is as expected: a higher fraction of neighbors
MEPP subgraph determines its sparseness. Thus, the spagseliminated in more dense networks for all transmission
ness of a network is determined by measuring the averag@ges. With larger node densities, it is highly probablat th
fraction of eliminated neighborsr.. the required number of nodes exist in the pruning region of

The degree of sparseness of a network has a major impactnk, and the link gets pruned by the algorithm. Unlike
on routing performance of the routing layer. For instanc@tN€r plots, a rich proportion of neighbors are eliminateene
flooding if used for route discovery, is known to create seriof8" 125m transmission range. The reason is, for 0, the
broadcast storm problerm a dense graph [13]. By reducingminimum transmission range becomés,,;,, = \/% = 0m;
neighbor set of each node, this problem can be mitigated donsequently, for all nonzero transmission ranges, theipgu

some extent. region exists and we get a nonzero value of the sparseness.
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VII. CONCLUSIONS ANDFUTURE WORK analytical expressions are developed under uniform nosle di

tributions, extending the model for other node distribusio
MEPP algorithms constitute an important class of topologg an immediate possibility. It still remains open whether i
control protocols for mobile wireless multi-hop networksis possible to generalize the proposed models to cover other
This class of algorithms is very appealing, practically imelass of topology control algorithms.
plementable algorithms due to their simplicity, distridait
property, and strictly local behavior. We provided anaigti
models to determine the structural densities for this ctdss ACKNOWLEDGEMENTS
protocols. Using the proposed models, the network designer
can easily estimate the sparseness and network size for thghis research work was funded by Qatar National Research
desired topology, perhaps prior to network deployment.  Fund (QNRF) under the National Priorities Research Program
There still remain some open questions to answer. T(EPRP) Grant No.:08-562-1-095.
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