
A Non-Inclusive Memory Permissions Architecture for Protection Against
Cross-Layer Attacks

Jesse Elwell, Ryan Riley*, Nael Abu-Ghazaleh and Dmitry Ponomarev
SUNY Binghamton, Qatar University*

{jelwell,nael,dima}@cs.binghamton.edu, ryan.riley@qu.edu.qa

December 4, 2013

Abstract
Protecting modern computer systems and complex software

stacks against the growing range of possible attacks is be-
coming increasingly difficult. The architecture of modern
commodity systems allows attackers to subvert privileged sys-
tem software often using a single exploit. Once the system
is compromised, inclusive permissions used by current archi-
tectures and operating systems easily allow a compromised
high-privileged software layer to perform arbitrary malicious
activities, even on behalf of other software layers.

This paper presents a hardware-supported page permission
scheme for the physical pages that is based on the concept of
non-inclusive sets of memory permissions for different layers
of system software such as hypervisors, operating systems,
and user-level applications. Instead of viewing privilege lev-
els as an ordered hierarchy with each successive level being
more privileged, we view them as distinct levels each with its
own set of permissions. Such a permission mechanism, imple-
mented as part of a processor architecture, provides a common
framework for defending against a range of recent attacks. We
demonstrate that such a protection can be achieved with neg-
ligible performance overhead, low hardware complexity and
minimal changes to the commodity OS and hypervisor code.

1. Introduction
Modern computing systems employ increasingly complex

multi-layer software stacks that often include a hypervisor to
support virtualization, multiple operating systems and user-
level applications running on top of them. As the complexity
and the number of lines of code in these underlying system
software layers continues to increase, so does the number of
security vulnerabilities that can be exploited by the attackers.
For example, hypervisors are growing to be large pieces of
code with a large attack surface — Xen 4.0 has over 190 thou-
sand lines of code. A recent study [39] analyzed and classified
hypervisor vulnerabilities and attack surfaces. According to
this study, 59 vulnerabilities have been identified in Xen and
38 in KVM as of July 2012. More alarmingly, about half of
these vulnerabilities can lead to security breaches in terms of
confidentiality, integrity and availability of the hypervisor. As
another example, as of November 2013 the Linux kernel had
228 known security vulnerabilities [43].

Exacerbating the problem is the monolithic nature of op-
erating system (OS) kernels and hypervisors, where a single
exploit can compromise the entire system. Current processor
architectures and system software layers are centered around
inclusive memory permissions, where software running at a
higher-privilege layer has unconstrained access to the code

and data of the lower-privilege layers it manages. For exam-
ple, the operating system has complete access to user-level
memory and the hypervisor has access to both OS and user-
level pages, allowing full compromise from a single exploit.
Importantly, each layer implicitly controls the permissions for
less privileged resources and can alter them at will.

We call these attacks that cross privilege layers cross-layer
attacks (Figure 1). Attacks from a less privileged to a more
privileged layer (arrows 1 and 2 in the figure) require an ex-
ploit of a vulnerability to achieve privilege escalation. In some
cases, such as ret-2-user attacks [28], a process obtains OS-
level privileges by leveraging the fact that the OS can execute
code from pages assigned to processes. Attacks from a more
to less privileged layer (arrows 3, 4, and 5 in the figure) do
not require a software vulnerability. Once a layer is compro-
mised due to inclusive permissions, nothing prevents it from
extracting secrets or tampering with operation of less privi-
leged layers under its control. As a result, attacks have been
demonstrated where a malicious hypervisor attacks a guest
OS [52] or an OS attacks user-level processes (for example,
by mapping a page into an incorrect address space).

We propose NIMP (Non-Inclusive Memory Permissions) —
a hardware supported framework that assigns each privilege
layer only the minimum set of permissions necessary to carry
out its tasks, and does not implicitly grant memory access
to any privilege layer. Physical memory pages are assigned
distinct permissions for each privilege layer, and a hardware
based Memory Permission Manager (MPM) follows a set of
static rules to ensure that requests to change permissions will
not allow code in other layers to compromise the confidential-
ity or integrity of memory pages.

In the remainder of the paper, we present a complete hard-
ware/software design of NIMP to support the non-inclusive
architecture of memory page permissions.We also demonstrate
the security of NIMP against a range of attacks. We evalu-
ate its performance overhead using a cycle-accurate simulator
as well as estimate the hardware complexity and timing of
a reference implementation. The performance overhead of
NIMP arises from two factors: 1) the need to access permis-
sion bits on every TLB miss, in the worst case resulting in
an additional memory access; and 2) the need to zero out the
contents of some pages in hardware, as dictated by the permis-
sion modification rules. However, we demonstrate that most
of the time permission bits can be found in the CPU caches
thus avoiding the extra memory access. We also show that
the extra pressure put on the cache by these permission bits is
negligible and does not lead to decreased cache performance
for the regular data. Furthermore, as the operations requiring
the page permission bits to be changed during program exe-

1

Hypervisor

1

AppApp App

2

= Malicious Supervisor/Page Remapping Attacks

= Memory Escalation Attacks

ret-2-user

ret-2-VM

Higher
Privilege

Lower
Privilege

3

4Guest OS Guest OS

5

Figure 1: Cross-Layer Attacks

cution are relatively infrequent, the page zeroing overhead is
also very small. Consequently, NIMP has a very low perfor-
mance overhead — 0.6% on the average across 24 SPEC 2006
benchmarks. In terms of hardware overhead, NIMP requires
28 bytes of on-chip Ternary Content-Addressable Memory
(TCAM) storage for the permission rules, about 9% increase
in the area of all TLBs, and an additional 64-bit register to
point to the starting address of the protected memory region
where the new permissions are securely stored.

The rest of the paper is organized as follows. Section 2
presents our threat model, followed by the overview of NIMP
architecture in Section 3. Section 4 presents the implemen-
tation details of NIMP, followed by the description of how
exactly NIMP mitigates attacks considered in our threat model
in Section 5. Section 6 evaluates performance impact and
hardware complexity of NIMP. We discuss the related work in
Section 7 and offer our concluding remarks in Section 8.

2. Threat Model & Assumptions
We assume that the Trusted Computing Base (TCB) of

NIMP is limited only to the processor, physical memory,
chipset, TPM and system buses. We also assume that sys-
tem software layers including the hypervisor and the OS may
be compromised, and these layers are not part of the TCB. The
only software that is part of our TCB is the loader to ensure
that the application binaries themselves can not be tampered
with.

We assume that hardware attacks (such as snooping on the
memory bus or probing physical memory) are not part of
the threat model. We make this assumption for two reasons.
First, it is more difficult to probe physical hardware than to
perform software attacks. Second, if the proposed architecture
is deployed in a cloud environment, then it is reasonable to
assume that a cloud operator will offer physical security of
the system to protect its reputation. This is consistent with the
assumptions made by recent works such as HyperWall [52]
and H-SVM [47]. We also note that if the physical memory is
assumed to be untrusted, our proposal can be adjusted to that
threat model by adding well-known techniques for memory
integrity verification and encryption [50, 8, 10] to our design.

We do not protect against side-channels and covert channels;
many previous works have addressed these issues [56, 57]. We
also do not protect against Denial-of-Service attacks initiated
by higher privilege levels against lower levels, as higher lev-
els can always deny service by preventing lower levels from

Memory
Permission
Manager

Memory Permission Change Requests

Permission Store
Permission
Reference
Monitor

Memory Access Requests

Memory Access Decision

Figure 2: NIMP Design Overview

executing.
We are concerned with cross-layer memory attacks, where

one software layer of the computing system attempts to com-
promise the confidentiality or integrity of memory in a differ-
ent layer. Specific attack categories that our proposed archi-
tecture protects against are the following.
• Malicious Supervisor Attacks. In this case, a compro-

mised higher-privilege software layer can read and/or mod-
ify data belonging to lower privilege-level software. For
example, a hypervisor can use its unlimited memory access
rights to steal a VM’s private data. Similarly, the OS can
get undesired access to user-level applications. Inclusive
memory permissions used in conventional designs naturally
allow such attacks to take place once a vulnerability in
system software layers is found and exploited.

• Page Remapping Attacks. Here, the OS or Hypervisor
leverages its control over memory mappings/permissions
to either map a private page into the address space of a
possibly malicious process, or change permissions to allow
itself a malicious access.

• Memory Escalation Attacks. In this case, a lower-
privilege level application attempts to alter or add to the
memory footprint of a high-privilege level application. This
sort of attack is usually paired with a software vulnerability
in order to escalate privileges. As an example of this, con-
sider ret-2-user attacks. In this attack, an application writes
malicious code into a page located in user-space and then
exploits a vulnerability in the OS in order to overwrite the
instruction pointer to cause a return to the code in user space
with OS-level privileges [28]. These attacks have affected
all major operating systems and also targeted x86, ARM,
DEC and PowerPC architectures [13, 14, 15, 17, 19, 20, 45].
One could also imagine a guest OS performing a similar
attack against a hypervisor (ret-2-VM) [16].
Our system and the permission transition rules, as presented

in this paper, are designed to prevent these attacks. The rule
set can be extended to support additional attack flows and
variations under the same common framework. The main
purpose of this paper is to demonstrate that an approach based
on non-inclusive permissions is a viable solution to create
secure systems in a low-complexity manner.

3. NIMP Design Overview
Non-inclusive Memory Permissions (NIMP) are a

lightweight form of mandatory access control enforced
through hardware on the different layers of a virtualized sys-
tem. An overview of the system is shown in Figure 2. Permis-
sions are maintained at the physical memory page granularity
in the permission store: a secure memory region inaccessi-

2

Page Other Bits
(S/PT) Hypervisor OS User

S P R W X R W X R W X
1 - - - - - - - - - - -
2 S - R W - R W - R W -
3 - - - - - - - - R W -
4 - - - - - - - - - - X

Table 1: Example Page Permissions

ble directly by software. To allow a layer (e.g., the OS) to
manage another (e.g. user processes), permission changes are
necessary as pages are allocated and assigned. Legal permis-
sion changes are specified by a set of rules that are stored in
a memory permission manager and checked when page per-
mission change requests are made. Permissions are enforced
during run-time by the permission reference monitor which
verifies that each memory access does not violate the permis-
sions on the page it is accessing. In this section, we present
an overview of NIMP and the design requirements for the
different components necessary to implement it.
3.1. Description of Permissions

Under NIMP, access permissions for a physical page are
expanded to include read, write, and execute permissions at
each privilege level supported by the processor. This means
that a page could be readable by a user-level process, but not
by the OS managing that process. NIMP allows for a fine-
grained access control for pages in a manner that supports
non-inclusive access rights by various software layers in the
system. In addition, two additional permissions are included:
the Shared (S) bit and the Page Table (PT) bit. The S bit
signifies if a physical page in question is allowed to be mapped
by the OS or the hypervisor into multiple page tables. The
PT bit specifies that a page is part of the PT, and is used to
identify writes to the page tables so that page mapping and
unmapping events can be detected.

Table 1 shows some example permission sets. Page 1 in
this table has no permissions available for any level. This
state is the default state for a page that is not in use. Page 2
has read and write permissions for all privilege levels and is a
shared page. This page could be used as a buffer to share data
between various levels of the system. Page 3 allows user-level
reading and writing from a page, but does not allow any access
by higher levels. Such a page is used to store application
data that is protected from both the hypervisor and operating
system. Page 4 allows user-level execution, but no privileges
at other levels. A page such as this could be used to store
application code, while preventing against an attack such as
ret-2-user, where the OS executes application code.
3.2. MPM and Assignment of Permissions

The rules for permission setting and changing are controlled
in NIMP by the Memory Permission Manager (MPM). In this
section, we describe its high-level functionality.

In existing systems, a higher-privileged layer not only inher-
its all permissions of the layers it manages, it is also empow-
ered with the ability to set permissions itself. Thus, in addition
to limiting the permissions of lower layers, a NIMP design

must also remove the responsibility of managing permissions
to the trusted computing base; otherwise, a malicious layer
can simply overwrite permissions to enable its attack. As such,
assigning and altering a page’s permissions is controlled by a
set of rules enforced by the processor.

Table 2 shows the complete set of rules for the NIMP system.
The rules are built around two assumptions. First, once a page
has its permissions assigned, those permissions should not
change for the useful life of that page. For example, Rule 1
says that the hypervisor is permitted to take any page with
no permissions set (the null-state) and assign it any set of
permissions. This operation would be performed right after a
currently unused page is mapped into a page table and before
it is put to use. Rule 2 dictates that the hypervisor can return
any page to the null-state, but the hardware will automatically
wipe the page when this occurs. This operation is performed
when a page is being removed from a page table, and ensures
that no confidential information from the page can be leaked.

The second assumption is that a given privilege level can
only assign permissions for itself and lower. This means, for
example, that the OS can grant permissions for itself and user-
level code to a page, but it cannot grant permissions to the
hypervisor. This prevents a compromised OS from loading
code onto a page, granting the hypervisor execute permissions,
and then exploiting a hypervisor bug to execute the code with
escalated privileges. Rules 3 and 4 capture this assumption
by specifying the same intentions of rules 1 and 2, but for the
OS. If the OS requires a page that has hypervisor permissions,
then it asks the hypervisor to set it up and then verifies those
permissions using the methodology from Section 3.3.

For code pages, special care has to be taken to prevent pages
from being both writable and executable at the same time. This
avoids code injection attacks. In conventional modern systems,
this is accomplished by the NX bit.

Rules 5, 6 and 7 shown in Table 2 allow a page to go from
writable to executable modes while retaining the contents of
the pages. All other transitions are either disallowed, or the
contents of a page are wiped out during the permission change,
as dictated by Rules 2 and 4. In addition, the transition from
writable to executable mode is only allowed once for a page
without zeroing out its contents. This is because our permis-
sion transition rules do not allow a page to transition from
executable back to writable, unless the page is first brought
into a null-state and its contents are wiped out.

Two important aspects of this design need to be noted:
• Our rules do not permit user-level code to assign any per-

missions. Simply put, there is no need for applications to be
concerned with assigning their own permissions. Instead,
they should request the OS to assign them and then verify.

• Page tables are still managed as they currently are: the OS
manages them for applications, and the hypervisor (depend-
ing on its implementation) manages them for the OS.

3.3. PRM and Verification of Permissions
The Permission Reference Monitor (PRM) has two responsi-

bilities. First, it ensures that a given memory access is allowed
by the permissions specified for a given physical page. This
is only a minor extension of the type of permission check

3

Initial Permissions New Permissions
S/PT Hyp. OS User S/PT Hyp. OS User

Rule ID Requester S P R W X R W X R W X S P R W X R W X R W X Action Note
1 Hypervisor - - - - - - - - - - - * * * * * * * * * * * None * = don’t care
2 Hypervisor * * * * * * * * * * * - - - - - - - - - - - Wipe Page * = don’t care
3 OS - - - - - - - - - - - * * - - - * * * * * * None * = don’t care
4 OS * * - - - * * * * * * - - - - - - - - - - - Wipe Page * = don’t care
5 Hypervisor - - - W - - - - - - - - - - - X - - - - - - None Hypervisor code page
6 OS - - - - - - W - - - - - - - - - - - X - - - None OS code page
7 OS - - - - - - - - - W - - - - - - - - - - - X None User-level code page

Table 2: Permission Assignment Rules to Mitigate Cross-Layer Attacks Considered in our Threat Model

performed by existing hardware.
The second responsibility of the PRM is to ensure that the

permission specified for a given physical page is allowed by
the requested memory access. To better understand this, con-
sider a potential attack against the NIMP permission system
that may allow a compromised OS to violate the confiden-
tiality of a user-level page. Assume a page has permissions
- - - | - - - | R W -. An application may plan to
use this to store confidential information. During the ap-
plication’s run-time, suppose that the OS returns the page
to the null-state using rule 4 (wiping the page in the pro-
cess) and then uses rule 3 to set the page’s permissions to
- - - | R - - | R W -, hence allowing itself read ac-
cess. Although existing confidential data on the page was
wiped, any future data written by the application could now
be read by the OS.

One solution to this problem would be to simply not permit
the OS to alter the permissions of the page, and instead make
that the sole responsibility of the application. The problem,
however, is that then the OS cannot reclaim memory from a
killed or misbehaving application, which is an unacceptable
outcome. A better solution is for the application to be able
to verify the permissions of the page prior to accessing it.
Then, if the permissions have changed, the write should not
occur. This check needs to be atomic with the write in order
to prevent any sort of time-of-check race condition

In order to accomplish this, the instruction set is modified
to allow memory access instructions to specify what permis-
sions they explicitly do not want other privilege levels to have.
This information can be encoded within memory instructions.
When a memory instruction is executed, then the PRM per-
forms verification and either allows or denies the request.

4. NIMP Implementation Details
In this section we describe our implementation of NIMP.

4.1. Permission Store
Permissions for each physical page are stored in a special

area of memory called the permission store. The permission
store is made of individual page permissions stored in a Per-
mission Structure (PS). The PS entry for each physical page
specifies the currently active permissions for this page, such
that separate "read", "write" and "execute" bits are provided
for each of the privilege layers (hypervisor, OS and user-level).
In addition, the shared (S) and page table (PT) bits are also
included. We assume that 2 bytes are needed in memory to
store each of the PS entries, with five bits reserved for future

use. We include the five reserved bits to make each PS entry
byte aligned. Figure 3 a shows the PS layout for a single
physical page.

The PS entries for each physical page are securely stored
in a protected region of memory accessible only by hardware
that is in charge of enforcing these new permissions. Neither
the OS nor the hypervisor have a direct access to this memory
and every request to set up or change the permissions has to
go through the NIMP hardware.

Physical memory demand for storing the PS bits is very
modest. For example, for a system with 16GB of physical
memory and 4KB pages, the PS entries for all pages require
only 8MB of memory (2 bytes for each of the 4M pages in the
system), which represents 0.05% of the total memory space.
Additionally, the PS bits are also cached in the instruction and
data TLB entries, just like regular permission bits are cached
in traditional systems. Therefore, the access to PS data in
memory is only needed following a TLB miss. The PS data is
also stored in the regular caches, similar to other system-level
data, such as the page tables.

It is important to observe that the permission bits are not
modified directly by any software layer. All changes must be
approved by the MPM. In order to facilitate this, we add a
new instruction called PERM_SET to the ISA to perform the
validity check against the Rule Database and setup the page
permission. This new instruction is described in detail below.
4.2. Memory Permission Manager

In this section, we describe the MPM implementation.
4.2.1. Rule Database and Secure System Boot To modify
permissions in NIMP, we rely on the use of securely stored
permission modification rules — only the transitions specified
by the rules are allowed, and this is directly controlled by
the MPM hardware. All transitions not specified in the Rule
Database are disallowed. These modification rules are stored
in a dedicated Rule Database (RD), which is located inside a
processor die in a small TCAM structure. Once loaded at boot
time, the contents of the RD never change. Initially, the rules
are stored as part of the system BIOS. At system boot time,
the integrity of the BIOS is measured by the TPM [53] and
then the rules are loaded into the RD.

Each RD entry has the following fields, shown in Fig-
ure 3 (b)
• Current permissions: these store the currently active per-

missions for a physical page, as specified by its PS entry.
• New permissions: this field has the same format as the cur-

4

(a) Format of a PS Entry

(b) Format of a RD Entry

New PermissionsCurrent PermissionsRAction

UserOSHyper.
PTS

XWRXWRXWR
Reserved

0124 356789101112131415

111128

Figure 3: Format of RD and PS Entries

rent permissions field, but it specifies requested new permis-
sions. The RD entry dictates whether or not the transition
from the current set to the requested set of permissions is
allowed.

• The requester of the permission change: this is necessary
to distinguish between hypervisor, OS kernel or the user-
level process. Two bits (we call them the R bits) are needed
to differentiate between these three entities.

• Action bits: these specify any special actions needed to be
performed on the page for the rule to be upheld, such as
zeroing out the page, or encrypting it.

4.2.2. Hardware Support for NIMP We now describe the
hardware support required to realize the MPM. The modified
processor is depicted in Figure 4b. First, the processor is
augmented with the cache-like structure that implements the
RD. The RD is a fully-associative cache that is implemented
as a TCAM (associatively-addressed memory that supports
"don’t care" bits in the search key: this takes care of the "don’t
care" bits in the rules) and its search key is composed of the
tuple <Requester, Current PS, New PS>. Each RD entry is
4 bytes long. For a system with 7 rules (that we use in our
evaluation and that are shown in Table 2), the RD requires 28
bytes of storage plus the logic to implement a fully-associative
search in TCAM. We show in the evaluation section that the
access delay of such a TCAM is below that of an integer ALU.

In addition, the new hardware includes a 64-bit register
(called PS_Base) that points to the beginning address of the
PS table stored in memory. This register is protected from
all software layers and is securely setup at boot time, along
with the initialization of the RD. The index into the PS table
to access the permissions associated with a physical page is
computed in the following manner:

Index = PS_Base+(phys_page_number ∗ sizeo f (PS))
Finally, existing TLB entries (for both instruction and data)

need to be augmented with PS entries for each page stored in
the TLB, so that the PS bits can be read out directly from the
TLB without requiring a memory access on a TLB hit. Since
existing TLB entries already have 16 bytes (8 bytes each for
virtual and physical page number cached), then the addition of
2 extra bytes of PS data results in an overhead of about 9% in
terms of the TLB area (peripheral logic does not get impacted).
Note that the PS bits are added as an extra field to each TLB
entry, leaving the traditional protection bits unchanged. If
the system uses the traditional way of managing permissions,

these permissions bits are still available in the TLB and in the
page tables and can be used by the processor and the OS.
4.2.3. Initial Page Permission Setup In a traditional system,
a new physical page allocated for processes or virtual machines
(VMs) becomes accessible after their corresponding physical
frame numbers and protection bits are written into the page
tables. In the design that we propose, the process of initial
permission setup is different. We discuss it first for dynamic
memory allocation and then for static memory allocation.

When an application requests a dynamic page allocation
(for example, using sbrk system call via malloc()), the OS or
the hypervisor would locate a free physical page and establish
a corresponding page table entry. Once this step has completed
the OS or hypervisor will use the new PERM_SET instruction
to assign permissions in a controlled way.

The PERM_SET instruction has the following format:

PERM_SET <virtual page address, new PS entry>

The activities triggered by this instruction are as follows.
First, it performs an address translation using the virtual page
address, TLBs and page tables. Since this page has been
recently setup by the OS, the translation will be found in
the TLB. After that, the current set of permissions for the
corresponding physical page (obtained from its PS entry) is
read. The combination of the selected current PS entry and the
new PS entry as specified in the instruction is then used as a
key to search through the RD. On a match in the RD rules, the
hardware first takes any action specified in the actions field
of the matched RD entry (such as zeroing out the physical
page) and then sets up the new permission bits both in the
TLB and in the protected memory region. If no match in the
RD occurs for this type of transition, then the transition is
disallowed and a permission violation exception is raised. All
these activities are performed by the MPM. The execution of
the PERM_SET instruction is illustrated in Figure 5a, and the
process of accessing the RD is depicted in Figure 5b.

For the initial setup of permissions for static memory pages,
such as code and static data, a similar approach is used. On
a system call such as exec() or CreateProcess(), the OS first
sets up the necessary amount of memory by creating virtual
to physical mappings. Next, the OS uses the PERM_SET
instruction to assign the initial set of permissions which allow
writing to the page (e.g. by the loader). Then the OS would
return from the system call and allow the loader to do its work.
Once the loader has finished writing the code and read-only
data to these pages, it makes another system call (such as
mprotect()) to mark the code pages as executable. At this
point the OS uses the PERM_SET instruction again to carry
out this operation. This operation assumes that the loader is
trustworthy, and that is why it is a part of our TCB.
4.2.4. Permission Changes During Execution There are sit-
uations during the normal execution of a system that the per-
missions of a page may need to be changed, for example, to
support copy-on-write semantics. To request changes to the
existing page permissions, any software layer requesting such
a change does so through the hardware interface provided by
the PERM_SET instruction described above. Regardless of
what layer is invoking this instruction, it directly communi-

5

CPU Physical
MemoryCore 1Core 0

MMU

L1
Data

L1
Inst.

DTLB

ITLB

L1
Data

L1
Inst.

DTLB

ITLB

Hypervisor

OS

(a) Traditional Hardware and System Software

PS Table

CPU Physical
MemoryCore 1

L1
Data

L1
Inst.

DTLB

P
er

m
s

P
er

m
s

ITLB

L1
Data

L1
Inst.

DTLB

P
er

m
s

P
er

m
s

ITLB

Core 0

PS_Base
RegisterRule Database

MMU

MPM

R
eg

u
la

r
M

em
o

ry
P

ro
te

ct
ed

M

em
o

ry

Hypervisor OS

PERM_SET

(b) NIMP Hardware and System Software

Figure 4: Traditional Hardware vs. NIMP Hardware

Access TLB

Access Rule Database

Perform
Action

Exception

Virtual
Address

New
Permissions

Write PS +
TLB

PERM_SET %eax, %ebx

HitMiss

Access Page Tables

Read PS Entry

Match No Match

Current
Permissions

Requester
(Current Privilege Level)

(a) Memory Dataflow Triggered by PERM_SET Instruction (b) Accessing the Rule Database

Figure 5: Activities Generated by the PERM_SET Instruction

cates with the MPM hardware. Notice that because neither
the hypervisor nor the OS directly set the actual PS bits, the
PERM_SET instruction should not be trappable or emulatable
by the hypervisor.

We now describe the means by which the PERM_SET in-
struction is initiated by the various software layers. To enable
the OS kernel to use the page permission change interface
using the PERM_SET instruction, the implementation of the
paging mechanism is slightly modified to call this new in-
struction after setting up the page table entry. Note that the
existing kernel implementation of managing the protection
bits (which stores them as part of the page table entries) can
still remain intact. When the processor executes in the NIMP
mode, then these page table entry bits can be ignored. Alter-
natively, they can still be consulted and the most restrictive of
the two permissions (traditional and NIMP) will be enforced.

For the hypervisor, the permission changing process is sim-
ilar to that of the OS kernel described above. Specifically,
after the page table entry is setup, the call to PERM_SET
instruction is initiated with appropriate operands. The hyper-
visor only needs to perform this activity for its own pages,
as the pages belonging to the OS or the user-level processes
are handled separately, as described above. The addition of
the PERM_SET instruction to the paging implementation is
the only modification to the hypervisor/OS code required by
NIMP.

In the NIMP design, there is currently no distinction be-
tween various user-level programs from the standpoint of man-
aging page permissions. In traditional systems, software PIDs
managed by the OS play this role. However, since the OS is
untrusted in our threat model, we cannot rely on these software
PIDs because they can be easily forged by a compromised OS.

6

In our design, some level of protection is already presented by
the S bit, which is a part of every PS entry. Specifically, if this
bit is not set for a page, then this page cannot be mapped in
more than one page table at a time, ensuring that it cannot be
shared with any other application. It is reasonable to assume
that if security is needed for some pages, then the application
owning those pages would not set the S bit to prevent sharing,
thus potentially exposing critical data. However, if a more flex-
ible design is desired where several applications can securely
share data in a controlled fashion, NIMP can easily adapt to
them by adding hardware-generated PIDs [10, 50] in place of
software-maintained ones, and storing these hardware PIDs
as part of the PS entry, somewhat increasing the overhead of
the NIMP logic. We leave the detailed quantification of this
feature for future work, as this aspect is not central to the
NIMP design.
4.3. Permission Reference Monitor

We now describe how the last component of the NIMP
system – the Permission Reference Monitor (PRM) – is im-
plemented. The PRM’s purpose is to enforce (in hardware)
the new permissions, while also allowing the lower-privilege
level software to verify that these permissions have not been
tampered with. The PRM’s responsibilities are similar to that
of a traditional MMU, but some additional actions are also
required.

When programs are compiled for the NIMP system, each
load and store instruction is augmented with the permission
that it expects other software layers to have for this particular
section of data or code. This information can be communicated
to the PRM hardware in several different ways, depending on
the specifics of the instruction set used.

For example, for CISC ISAs (such as x86), which use
variable-length instructions and opcodes, an additional byte
can be added to every memory instruction to specify permis-
sions of other layers. In this case, 4 bits can be used to check
against the permissions of different privilege layers. Three bits
specify the expected permissions of all other layers, as well
as the expected S bit. We call these the Expected Permission
(EP) bits.

Alternatively, if extending instructions is challenging due,
for example, to the memory alignment issues (as would be the
case for fixed-length RISC ISAs) then the EP bits can either
be conveyed through the opcodes (if they are available), or
using compiler annotations, similar to what is used for static
branch prediction.

Regardless of the implementation, when a LOAD or a
STORE instruction enters the memory access stage of the
pipeline, the PRM unit extracts the EP bits and compares them
with the PS bits related to the OS/Hypervisor access rights.
On a match, the memory access is allowed, and on a mismatch,
the access is not performed and an exception is raised. The
exception handling actions depend on the specifics of the mis-
match. The details of this process for a user-level verified
memory access are shown in Figure 6. In the figure we have
assumed that an extra byte in the instruction is used to specify
the EP bits. Note that the regular permission check (i.e. the
user-level permission check in this case) is not depicted since

it is so similar to traditional checking. Since the loader is
trusted in NIMP, this ensures that the EP bits are tamper-proof,
as is the rest of the program binary.

An alternative way to implement permission verification
is to augment the context of each process with another reg-
ister that holds the EP bits that are checked by all memory
instructions. In this approach, a new instruction also needs to
be added to the ISA to change the contents of this register as
the EP bits change. Such a scheme avoids significant changes
to the application binaries, but requires more changes to the
library code and may have performance implications if the
toggling of the new register occurs frequently.
4.4. Other Considerations

To complete the NIMP implementation, a few additional
system-level considerations have to be taken into account.
• Secure Context Switches and Interrupts During context

switches and interrupts, the registers of a running entity may
be exposed. In order to prevent such an exposure, register
contents need to be saved in protected memory, and then
wiped before control is transferred to a higher-privilege
interrupt handler. The NIMP hardware will then have to be
involved in restoring the register state from the protected
memory when the process is resumed.

• Secure Page Swapping While NIMP prevents malicious
supervisor software from getting access to the application
memory pages, this same functionality also prevents that
software from reading pages in order to swap them to disk.
In order to support swap-out, the rules can be extended to
allow a supervisor to add read permission for itself on a
page, but the associated action encrypts the page using a
key derived from a hash of the application’s code space,
random nonce generated by the hardware and stored in the
application’s memory space, and the page’s current permis-
sions. The supervisor is unable to determine the key without
knowing the nonce, and including a hash of the code in its
derivation ensures that the page can only be swapped back
into the same application. During a swap-in, the encrypted
data can be read back from disk into memory, the correct
permissions restored to the page, and the decryption per-
formed by the hardware.

• Supporting DMA To handle DMA operations, the NIMP
system uses the same set of permissions as those assigned
for the software privilege level responsible for initiating
DMA requests. It would be possible to assign DMA its
own set of permissions under the NIMP framework, but the
security benefits of this are not clear.

• Protecting from Multithreaded Attacks A possible attack
avenue exists when a malicious OS spawns a thread that
was not requested by the program. In this case, the OS
chooses the starting instruction address for that thread —
for example, it can cause the movement of confidential data
to an OS-readable page. To protect against such attacks,
the act of setting the program counter for a newly spawned
thread should not be performed without application or user-
level library involvement.

7

EP BitsOpcode

Load/Store Instruction Bits

Address

=

TLB/Permission Store

OSHypervisor

4

3 3

3

Access Decision

PS Bits

S Bit

4

Figure 6: Permission Verification by the PRM

5. Attack Mitigation
We now summarize how the new page permissions utilized

by NIMP and the supporting infrastructure mitigate the various
cross-layer attacks considered in our threat model.
5.1. Mitigating Malicious Supervisor Attacks

To protect against malicious supervisor attacks, some pages
can be set up in a way similar to Page 3 shown in the exam-
ple of Table 1. Such pages are configurable to be readable
and writable only by the application layer. Therefore, the
compromised supervisor layers will have no access to these
pages. Furthermore, the supervisor layers will be incapable
of granting themselves permissions for such pages and later
accessing these pages with these permissions, because there
is no rule in the RD to support such a transition. An attempt
to perform such an unspecified page permission change will
result in the generation of a security exception by the MPM
hardware, as shown in Figure 5a.
5.2. Mitigating Page Remapping Attacks

Page Remapping Attacks can be performed in two styles.
In the first attack variation, a target page is remapped within
the same address space, but with a different set of permissions.
For example, Page 3 shown in Table 1 can be unmapped
and then a new page remapped in its place with a new set
of permissions that now include the OS or the hypervisor’s
read/write permissions. While the current data on the page
will be wiped out during this process, the new data written
to this page by an unsuspecting application would then be
accessible to the supervisor layers. The permission verification
mechanism described in Section 4.3, however, prevents this
attack. In this case, the application would detect the new
permissions upon its first attempt to write, as the permission
verification would fail.

The second variation of remapping attacks involves remap-
ping a page to a different address space, such as that of another
process. To prevent this type of attack, NIMP ensures that
when a non-sharable page is unmapped, its contents are zeroed
out before a new mapping can be established. Mapping and
unmapping events are detected when writes occur to pages
marked with the PT bit, which is stored in each PS entry.
5.3. Mitigating Memory Escalation Attacks

In current systems, these types of attacks leverage the fact
that a page marked as executable by a user level application

Parameter Configuration
Window Size 8-way issue, 128-entry ROB, 32-entry

Issue Queue, 48-entry LSQ
Data TLB 128-entry, 4-way
Instruction TLB 64-entry, 4-way
L1 I-Cache 32 KB, 2-way, 64B line, 1 cycle hit
L1 D-Cache 32 KB, 4-way, 64B line, 1 cycle hit
L2 Unified Cache 256 KB, 16-way, 64B line, 10 cycle hit
L3 Unified Cache 8 MB, 32-way, 64B line, 30 cycle hit
Memory latency 300 cycles

Table 3: Configuration of the Simulated Processor

can also be executed in a hypervisor/OS context. Under NIMP,
it is possible to use Rules 1,2,3 and 4 in Table 2 to create a
page where a higher privilege level has "execute" permission,
while some lower privilege level has "write" permission thus
creating an environment for these attacks. However, the only
way that such a combination of permissions is possible is when
the victim layer itself gives the "write" permission to the lower
privileged layer that initiates the attack. It is not possible for
the attacking (lower-privileged) layer to set up the "execute"
permission for a higher-privileged layer.

6. Performance and Complexity Evaluation of
NIMP

In this section we evaluate the performance impact and
hardware complexity of NIMP.
6.1. Performance Evaluation

There are two main sources of NIMP performance overhead
due to the additional actions that need to be performed in
this architecture for address translations and memory accesses.
First, we need to access the permission bits that are stored
separately from the regular page tables. While these bits are
cached inside the regular TLBs and therefore do not impact
the memory access latency on TLB hits, additional memory
access is required on a TLB miss following the page table
walk. Second, some of our new permission changing rules
dictate that the corresponding physical pages are zeroed out
by the hardware before the new permission settings can take
effect — this also adds cycles to the critical path.

For estimating the impact of the extra delays due to ac-
cessing the new permission bits, we used MARSSx86[1] —
a full-system x86-64 simulator. We modified the TLB miss
handling code to perform the regular cache lookups and re-
placements for the PS data to estimate the impact of PS data
on the number of cycles needed to execute the applications.
Since the permission bits are also stored in the cache hierarchy
(and therefore, a DRAM access is not always needed to ac-
cess them), we accurately simulated this impact as well. Our
processor configuration is shown in Table 3.

We used 28 SPEC CPU2006 [49] benchmarks for our eval-
uations. For each benchmark, we simulated 1 billion instruc-
tions after skipping the initial 1B instructions to avoid simulat-
ing the initialization stages.

Figure 7 shows the increase in the cycle count for each of
the simulated benchmarks due to the delays of accessing per-
mission bits on the TLB misses. The largest performance loss

8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
cr

ea
se

 in
 C

yc
le

s
(%

)

Figure 7: Cycle Overhead of Caching Permissions

of 4.1% was observed for cactusADM benchmark, followed
by 2.6% for mcf. The rest of the benchmarks experience less
than 1.5% degradation, with the average being about 0.6%.

The reason for a relatively larger drop in performance for
cactusADM is due to a very low hit rate to the PS bits in the
L1 data cache. For this benchmark, only 9% of the accesses to
the L1 cache result in a cache hit, thus extending the TLB miss
latency by at least the latency of the L2 cache access. The
reason for a larger slowdown in mcf, on the other hand, is the
larger absolute number of TLB misses, although the hit rate
to the PS data in the L1 data cache is relatively high — 83%.
Figure 8 shows the hit rates to the various levels of caches for
the PS data. On the average, 70% of the requests for PS data
are satisfied from the L1 cache, and 80% of the L1 misses
are satisfied from the L2 cache, thus keeping the number of
accesses to the L3 cache and main memory very small.

Finally, Figure 9 shows the impact of the PS bits on the
cache hit rate of the regular accesses. As seen from the figure,
there is no noticeable impact for all levels of caches for all
benchmarks that we simulated.

Next, we conservatively estimate the performance overhead
of zeroing out the page contents in hardware if this is dictated
by the permission change rules. To access the frequency of
operations requiring page permission changes, we profiled the
Linux kernel using the built-in ftrace utility. Specifically, we
collected the information about all system calls and filtered out
the ones that resulted in a request to a page permission change
by calling appropriate kernel functions. We then evaluated
how often permission change requests occur on a variety of ap-
plications. Specifically, we evaluated Chromium web browser,
the process of booting a VM with VirtualBox, and opening a
spreadsheet in LibreOffice. We chose these interactive appli-
cations to illustrate this aspect of NIMP performance, because
they have a much higher number of page permission chang-
ing requests compared to the CPU-bound SPEC programs,
and therefore provide worst-case scenario. SPEC benchmarks
even have relatively few system calls during their execution,
so we observed near-zero performance impact for them.

For the three selected applications, we conservatively as-
sumed that the most expensive action (e.g. zeroing out a page)
is required on every such permission change request, and eval-
uated the combined overhead of this operation. We then also

Application Changes Per Second Cycle Overhead
VirtualBox 2765 0.4%
Chromium 2973 0.4%
LibreOffice 8608 1.2%

Table 4: Cycle Overhead of Zeroing Pages

conservatively assumed a latency of 8 CPU cycles for writ-
ing 64 bits to memory. Since a 4KB page contains 512 such
lines, 4096 cycles are needed to wipe off the entire page (for
comparison, HyperWall assumed 512 cycles to wipe off the
entire page; under those assumptions our overheads will be
even smaller).

Table 4 shows these statistics and performance overhead.
The first column shows the number of permission changing
operations per second for these applications, and the second
shows the impact on the total number of cycles assuming a
3GHz processor (e.g. 3B cycles per second of normal ex-
ecution). As can be seen from these results, performance
overheads are very small. Even combined with additional
overhead due to the PS bit accesses, the overall loss does not
exceed 1% in most cases.
6.2. Evaluating NIMP Hardware Complexity

To evaluate the delay and area overhead of the additional
hardware required by NIMP, we implemented the NIMP logic
in Verilog HDL using Xilinx ISE WebPACK 14.6 [22]. Be-
cause the absolute timing on the target FPGA platform is slow,
for comparison purposes we also implemented other basic
CPU logic, such as a 64-bit integer ALU. Assuming that this
basic operation is implemented in a single cycle on a typical
CPU, we compared the delays of the NIMP logic with the
ALU delay and the results showed that the access to the Rule
Database can be performed within a cycle, even if the Rule
Database was extended to 16 entries.

We also evaluated the impact of slightly widening TLB
entries to support storing of the new permission bits inside the
TLB. In terms of the TLB area, this modification increases
it by about 9%, while the impact on the TLB access delay is
only 1%. This is because only the word select delay increases
slightly, while the delays of associative search, bitline delays,
and the delays of sense amplifiers and other peripheral logic
for reading out the data do not change.

7. Related Work
We subdivide previous solutions into two categories:

software-only and hardware-supported schemes.
7.1. Software Approaches

A limitation of many software security schemes that do not
include OS or hypervisors in the TCB is that they rely on some
other trusted layer. Unless this layer is formally verified, it is
not impossible to devise attacks on it. sHype [42] proposes
a hypervisor to secure VM interactions, VMGuard [21] is
a technique for protecting the management VM in Xen. A
number of efforts use introspection to identify the presence
of malicious code [4, 46, 33, 23, 27, 26, 37, 38]. Other works
use the hypervisor to protect the guest OSs [44, 29, 40].

Several attacks on the hypervisors have been recently

9

0
10
20
30
40
50
60
70
80
90

100
DL1 Hit Rate UL2 Hit Rate UL3 Hit Rate

H
it

 R
at

e
(%

)

Figure 8: Cache Hit Rate for the PS Bits

0
10
20
30
40
50
60
70
80
90

100 L1 Hit Rate L1 Hit Rate (w/Perms) L2 Hit Rate L2 Hit Rate (w/Perms) L3 Hit Rate L3 Hit Rate (w/Perms)

H
it

 R
at

e
(%

)

Figure 9: Impact on the Cache Hit Rate for Regular Data Accesses

demonstrated [41, 61, 30, 3, 58, 11, 12]. Therefore, some
schemes protecting the hypervisor from attacks have been
proposed [55, 5, 54].

Overshadow [9] protects applications from the compro-
mised OS by presenting the OS with an encrypted view of
physical memory, while NoHype [51] eliminates the hyper-
visor layer altogether. Cloudvisor [60] uses a small security
monitor below the hypervisor, using nested virtualization. The
security of this approach depends on the integrity of the new
monitor. Inktag [25] introduces paraverification mechanisms,
forcing an OS to do additional computations to make it less
complex for the hypervisor to verify its behavior.

Some previous efforts enhance traditional operating systems
with mandatory access control (MAC) mechanisms. For ex-
ample, SELinux [34] implements a policy-driven MAC frame-
work for Linux kernel. SE Android [48] prototypes SELinux
for Android’s Linux kernel. FlaskDroid[7] builds on SE An-
droid by providing MAC simultaneously on both Android’s
middleware and kernel layers.
7.2. Hardware-Supported Approaches

To address the limitations of software approaches, several
hardware-supported schemes have been recently proposed.
HyperWall [52] and H-SVM [47] are perhaps the closest pro-
posals in spirit to NIMP. We describe them below and contrast
our work to them in some detail.

The threat model of HyperWall[52] is to protect guest VMs

from a malicious hypervisor. This is realized by the new CIP
tables, accessible only to the hardware, that store the hypervi-
sor and DMA access rights to physical memory pages. Every
memory access by the hypervisor is checked by the hardware
through CIP tables and the access is disallowed if the page
permissions stored in the CIP tables are violated. This philos-
ophy is similar to NIMP’s approach of maintaining PS bits
in the protected memory. However, there are some important
differences between NIMP and HyperWall. First, HyperWall’s
threat model only assumes untrusted hypervisor, but the guest
operating systems running inside the VMs are assumed to be
trusted. NIMP’s threat model is more restrictive, as we assume
that neither the hypervisor, nor the guest OSes can be trusted
and we protect applications from possible attacks that can be
initiated by any level in the system software stack. Second,
instead of checking for the validity of page permissions, NIMP
hardware checks for the validity of permission transition rules,
which are expressed with the purpose of disallowing the most
common attacks, but without inhibiting normal functionality
of programs. Since NIMP accomplishes this using a small
number of pre-specified generic rules with one set of rules
shared by the entire system, the applications are isolated from
the permission management tasks — the OS still manages the
permissions, but the NIMP hardware just verifies that the page
permission changes are allowed. In contrast, CIP tables in the
HyperWall architecture require customer specifications to be
set up. Third, page permissions in the CIP tables are set and

10

checked in HyperWall at the granularity of VMs, while NIMP
allows more fine-grained management at the application level.

Similar to NIMP, H-SVM [47] reduces the trusted comput-
ing base only to hardware. Nested page tables are stored in
a protected memory region, which is only accessible to the
H-SVM hardware. The H-SVM hardware validates all page
table updates initiated by the hypervisor through a series of
microcode routines. While H-SVM focuses on the integrity of
page tables (that are themselves stored in the protected space),
our NIMP design only protects the page permission bits, which
are decoupled from the main page table structures and are in-
dexed by the physical page number. Since the protection in
H-SVM is implemented for virtual pages, it is unclear how
the situation would be handled where two virtual pages map
the same physical page, but with different access rights. This
may allow some attacks to still be possible. This is the reason
why the NIMP design (as well as HyperWall solution) provide
protection directly for physical pages. Finally, H-SVM pro-
tections are only implemented at the granularity of individual
VMs. The NIMP design, however, directly applies to both
virtualized systems, as well as systems without virtualization,
using the same unified framework to protect against various
cross-layer attacks considered in our threat model.

HyperCoffer [59] is built on the idea of placing a new layer
— VM-Shim — in-between a VM and the hypervisor. Each
VM-Shim instance executes in a separate protected context
and only declassifies necessary information designated by the
VM to the hypervisor and external environments. Some hard-
ware modifications are also needed. Security of HyperCoffer
depends on the integrity of VM-Shim code. NIMP, in contrast,
does not rely on any software layers to be secure. Bastion
architecture [8] provides hardware-supported compartments
to support secure execution environment for software modules.
However, Bastion still relies on the security of the modified
hypervisor to accomplish these goals. SecureMe [10] uses
a security model where it automatically protects the entire
address space of applications from a compromised OS using
memory cloaking (a technique that was also used in Over-
shadow [9]), permission paging and system call protection.
SecureMe relies on a small trusted hypervisor as part of its
TCB.

There are also a number of other works that provide isolated
environments for trusted software modules [32, 50, 31, 18, 35,
2, 24, 6, 36]. Although the end result of these schemes may
be similar to solutions such as NIMP, HyperWall and H-SVM,
the threat models, TCB assumptions, as well as techniques
and mechanisms for achieving security are different.

A related industry development is the recent introduction
by Intel of its SMEP/SMAP mechanism to protect some user-
level pages from being executed and/or accessed by supervisor
mode code. However, to support proper functionality, SMAP
has to be toggled on and off to allow the OS to access user-
space buffers. Trusting the OS to toggle SMAP removes any
protection against a malicious OS, which is at the core of our
threat model.

8. Conclusions
In this paper, we proposed NIMP — a new architecture to

support non-inclusive permissions for the physical memory
pages across different privilege levels of software. In contrast
to the traditional designs where a higher-privileged software
layer has all access rights to the pages of a lower-privileged
layer, NIMP gives each layer its own minimal set of permis-
sions sufficient to carry out its functionality. Changes to the
page permissions are controlled by a set of rules and are en-
forced by the hardware — the OS and the hypervisor cannot
change the page permissions if this request is not approved
by the NIMP hardware. This essentially removes both the
hypervisor and the guest OSes from the TCB and limits the
TCB only to hardware and the loader. We demonstrate that
such a permission management scheme retains all system func-
tionality, while at the same time stopping many types of recent
attacks that are due to the vulnerabilities either in the OS or
in the hypervisor. We demonstrate that such protection is
achieved with minimal performance loss, modest additional
hardware and small changes to the OS and hypervisor code.

Acknowledgments
This publication was made possible by the support of the

NPRP grant 4-1593-1-260 from the Qatar National Research
Fund. The statements made herein are solely the responsibility
of the authors.

References
[1] Marssx86: Micro-architectural and system simulator for x86-based

systems, 2013. http://marss86.org. Simulator source code and
documentation.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for cpu based attestation and sealing. In Wkshp. on Hardware and
Architectural Support for Security and Privacy, with ISCA’13, 2013.

[3] Anonymous. Xbox 360 Hypervisor Privilege Escalation Vulnerability,
2007. Available online: http://www.securityfocus.com/
archive/1/461489.

[4] A. Azab, P. Ning, E. Sezer, and X. Zhang. HIMA: A Hypervisor-Based
Integrity Measurement Agent. In Proc. Annual Computer Security
Applications Conference (ACSAC), pages 461–470, 2009.

[5] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky. Hy-
perSentry: Enabling Stealthy in-context Measurement of Hypervisor
Integrity. In Proc. of the ACM Conference on Computer and Communi-
cations Security (CCS), 2010.

[6] R. Boivie. Secureblue++: Cpu support for secure execution, 2012.
[7] S. Bugiel, S. Heuser, and A. Sadeghi. Flexible and fine-grained manda-

tory access control on android for diverse security and privacy policies.
In Proceedings of USENUX Security Symposium, 2013.

[8] D. Champagne and R. Lee. Scalable architectural support for trusted
software. In Proceedings of HPCA, 2010.

[9] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, D. Boneh, J. D.
Dan, and R. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In Proceedings
of ASPLOS, 2008.

[10] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Secureme: A
hardware-software approach to full system security. In Proc. Interna-
tional Conference on Supercomputing (ICS), June 2011.

[11] CVE-2007-4993: Xen guest root can escape to domain 0 through
pygrub, 2007. Available online: http://cve.mitre.org/
cgibin/cvename.cgi?name=CVE-2007-4993.

[12] CVE-2007-5497: Vulnerability in XenServer could result in privilege
escalation and arbitrary code execution, 2007. Available online:http:
//support.citrix.com/article/CTX118766.

[13] CVE-2009-1897: NULL dereference and mmap of /dev/net/tun
in Linux kernel allows privilege escalation, 2009. Available
online: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2009-3527.

11

http://marss86.org
http://www.securityfocus.com/archive/1/461489
http://www.securityfocus.com/archive/1/461489
http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-4993
http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-4993
http://support.citrix.com/article/CTX118766
http://support.citrix.com/article/CTX118766
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527

[14] CVE-2009-3527: Race condition in Pipe (IPC) close in
FreeBSD allows privilege escalation, 2009. Available online:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-1897.

[15] CVE-2010-4258: do_exit does not properly handle a KER-
NEL_DS value allowing privilege escalation, 2010. Available
online: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-4258.

[16] CVE-2012-5513: XENMEM_exchange handler does not properly
check the memory address allowing privilege escalation, 2012.
Available online: http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2012-5513.

[17] R. de C Valle. Linux sock_sendpage() null pointer
dereference, 2009. Available online: http://
packetstormsecurity.com/files/81212/
Linux-sock_sendpage-NULL-Pointer-Dereference.
html.

[18] J. Dwoskin and R. Lee. Hardware-rooted trust for secure key manage-
ment and transient trust. In Proceedings of CCS, 2007.

[19] EDB-9477: sock_sendpage() Local Root Exploit in Linux,
2009. Available online: http://www.exploit-db.com/
exploits/9477/.

[20] EDB-17391: DEC Alpha Linux <= 3.0 Local Root Exploit,
2011. Available online: http://www.exploit-db.com/
exploits/17391/.

[21] H. Fang, Y. Zhao, H. Zang, H. Huang, Y. Song, Y. Sun, and Z. Liu.
VMGuard: An Integrity Monitoring System for Management Virtual
Machines. In Proc. of International Conference on Parallel and Dis-
tributed Systems (ICPADS), 2010.

[22] Xilinx 7 Series FPGAs Overview. Available online:
http://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf visited Sept.
2013.

[23] T. Garfinkel and M. Rosenblum. A Virtual Machine Intersopection
Based Architecture for Intrusion Detection. In Proc. Network and
Distributed Systems Security Symposium, pages 191–206, 2003.

[24] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, and V. Phegade. Using
innovative instructions to create trustworthy software solutions. In Wk-
shp. on Hardware and Architectural Support for Security and Privacy,
with ISCA’13, 2013.

[25] O. Hofmann, S. Kim, A. Dunn, M. Lee, and E. Witchel. Inktag: Secure
applications on an untrusted operating system. In Proceedings of
ASPLOS, 2013.

[26] X. Jiang and X. Wang. Out-of-the-box Monitoring of VM-based High-
Interaction Honeypots. In Recent Advances in Intrusion Detection
(RAID), pages 198–218, 2007.

[27] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection through
VMM-based out-of-the-box Semantic View Reconstruction. In Proc.
of ACM Conference on Computer and Communications Security (CCS),
2007.

[28] V. Kemerlis, G. Portokalidis, and A. Keromytis. kguard: lightweight
kernel protection against return-to-user attacks. In Proceedings of
the 21st USENIX conference on Security symposium, pages 39–39.
USENIX Association, 2012.

[29] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM.

[30] K. Kortchinsky. Hacking 3D (and Breaking out of VMWare). In
BlackHat USA, 2009.

[31] R. B. Lee, P. C. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for protecting critical secrets in microprocessors. In Com-
puter Architecture, 2005. ISCA’05. Proceedings. 32nd International
Symposium on, pages 2–13. IEEE, 2005.

[32] D. Lie, M. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz. Architectural support for copy and tamper resistant
software. In Proceedings of ASPLOS, 2000.

[33] L. Litty, H. Lagar-Cavilla, and D. Lie. Hypervisor Support for Iden-
tifying Covertly Executing Binaries. In Proc. 17th Usenix Security
Symposium, 2008.

[34] P. Loscocco and S. Smalley. Integrating flexible support for security
policies into the linux operating system. In Proceedings of USENIX
Annual Technical Conference, 2001.

[35] F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar. Innovative instructions and
software model for isolated execution. In Wkshp. on Hardware and
Architectural Support for Security and Privacy, with ISCA’13, 2013.

[36] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and
A. Vadudevan. Oasis: On achieving a sanctuary for integrity and
secrecy on untrusted platforms. In Proceedings of CCS, 2013.

[37] B. Payne, M. Carbone, and W. Lee. Secure and Flexible Monitor-
ing of Virtual Machines. In Proc. of the Annual Computer Security
Applications Conference, 2007.

[38] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architec-
ture for secure active monitoring using virtualization. In Proc. IEEE
Symposium on Security and Privacy, 2008.

[39] D. Perez-Botero, J. Szefer, and R. B. Lee. Characterizing hypervisor
vulnerabilities in cloud computing servers. In Proceedings of the 2013
international workshop on Security in cloud computing, pages 3–10.
ACM, 2013.

[40] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention of Kernel
Rootkits with VMM-Based Memory Shadowing. In Recent Advances
in Intrusion Detection (RAID), pages 1–20, 2008.

[41] J. Rutkowska. Introducing the Blue Pill, 2006. Available
Online:http://theinvisiblethings.blogspot.com/
2006/06/introducing-blue-pill.html.

[42] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Imple-
mentation of a TCG-based Integrity Measurement Architecture. In
Proc. of the 13th Usenix Security Symposium, Aug. 2004.

[43] Cve details: The ultimate security vulnerability datasource, 2013.
Accessed Nov. 2013 at http://www.cve-details.com/
vulnerability-list.

[44] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 335–350, New York, NY, USA, 2007.
ACM.

[45] BID-36939: Microsoft Windows Kernel NULL Pointer Dereference
Local Privilege Escalation Vulnerability, 2009. Available online:
http://www.securityfocus.com/bid/36939.

[46] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM Monitor-
ing using Hardware Virtualization. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2009.

[47] S.Jin, J.Ahn, S.Cha, and J.Huh. Architectural support for secure vir-
tualization under a vulnerable hypervisor. In Proceedings of MICRO,
2011.

[48] S. Smalley and R. Craig. Security enhanced (se) android: Bringing
flexible mac to android. In Proceedings of NDSS, 2013.

[49] C. D. Spradling. Spec cpu2006 benchmark tools. SIGARCH Comput.
Archit. News, 35(1):130–134, 2007.

[50] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Aegis:
Architecture for tamper-evident and tamper-resistant processing. In
Proceedings of International Conference on Supercomputing, 2003.

[51] J. Szefer, E. Keller, R. Lee, and J. Rexford. Eliminating the hypervisor
attack surface for a more secure cloud. In Proceedings of CCS, 2011.

[52] J. Szefer and R. Lee. Architectural support for hypervisor-secure
virtualization. In Proceedings of ASPLOS, 2012.

[53] TPM Main Specification. Available online: http:
//www.trustedcomputinggroup.org/resources/
tpm_main_specification visited Sept. 2013.

[54] J. Wang, A. Stavrou, and A. Ghosh. HyperCheck: A Hardware-
Assisted Integrity Monitor. In Proc. Recent Advances in Intrusion
Detection (RAID), pages 158–177, 2010.

[55] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on
Security and Privacy, pages 380–395, 2010.

[56] Z. Wang and R. Lee. New cache designs for thwarting software cache-
based side channel attacks. In Proc. International Symposium on
Computer Architecture (ISCA), June 2007.

[57] Z. Wang and R. Lee. A novel cache architecture with enhanced perfor-
mance and security. In Proc. International Symposium on Microarchi-
tecture (MICRO), Dec. 2008.

[58] R. Wojtczuk. Subverting the Xen hypervisor. In BlackHat USA, 2008.
[59] Y. Xia, Y. Lin, and H. Chen. Architecture support for guest-transparent

vm protection from untrusted hypervisor and physical attacks. In
Proceedings of HPCA, 2013.

[60] F. Zhang, J. Chen, H. Chen, and B.Zang. Cloudvisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested virtu-
alization. In Proceedings of SOSP, 2011.

[61] D. Zovi. Hardware Virtualization Based Rootkits. In BlackHat
USA, 2006, 2006. Available Online: http://blackhat.com/
presentations/bh-usa-06/BH-US-06-Zovi.pdf.

12

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://packetstormsecurity.com/files/81212/Linux-sock_sendpage-NULL-Pointer-Dereference.html
http://www.exploit-db.com/exploits/9477/
http://www.exploit-db.com/exploits/9477/
http://www.exploit-db.com/exploits/17391/
http://www.exploit-db.com/exploits/17391/
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://www.cve-details.com/vulnerability-list
http://www.cve-details.com/vulnerability-list
http://www.securityfocus.com/bid/36939
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf

	Introduction
	Threat Model & Assumptions
	NIMP Design Overview
	Description of Permissions
	MPM and Assignment of Permissions
	PRM and Verification of Permissions

	NIMP Implementation Details
	Permission Store
	Memory Permission Manager
	Rule Database and Secure System Boot
	Hardware Support for NIMP
	Initial Page Permission Setup
	Permission Changes During Execution

	Permission Reference Monitor
	Other Considerations

	Attack Mitigation
	Mitigating Malicious Supervisor Attacks
	Mitigating Page Remapping Attacks
	Mitigating Memory Escalation Attacks

	Performance and Complexity Evaluation of NIMP
	Performance Evaluation
	Evaluating NIMP Hardware Complexity

	Related Work
	Software Approaches
	Hardware-Supported Approaches

	Conclusions

