
SCRAP: Architecture for Signature-Based Protection from Code Reuse Attacks

Mehmet Kayaalp, Timothy Schmitt, Junaid Nomani,
Dmitry Ponomarev and Nael Abu-Ghazaleh

Computer Science Dept.,
Binghamton University

{mkayaalp,jnomani1,tschmitt1,dima,nael}@cs.binghamton.edu

Abstract

Code Reuse Attacks (CRAs) recently emerged as a new
class of security exploits. CRAs construct malicious pro-
grams out of small fragments (gadgets) of existing code, thus
eliminating the need for code injection. Existing defenses
against CRAs often incur large performance overheads or
require extensive binary rewriting and other changes to the
system software. In this paper, we examine a signature-based
detection of CRAs, where the attack is detected by observing
the behavior of programs and detecting the gadget execution
patterns. We first demonstrate that naive signature-based
defenses can be defeated by introducing special "delay gad-
gets" as part of the attack. We then show how a software-
configurable signature-based approach can be designed to
defend against such stealth CRAs, including the attacks that
manage to use longer-length gadgets. The proposed defense
(called SCRAP) can be implemented entirely in hardware us-
ing simple logic at the commit stage of the pipeline. SCRAP
is realized with minimal performance cost, no changes to the
software layers and no implications on binary compatibility.
Finally, we show that SCRAP generates no false alarms on a
wide range of applications.

1. Introduction
Exploits targeting software vulnerabilities remain one of

the primary security threats to computer systems, with costs
estimated in the 100s of billions of dollars [5].The NIST
national vulnerability database includes tens of thousands
of vulnerabilities, with an average reporting rate of 10 new
vulnerabilities per day [40]. Thus, it is critical to build
systems that make exploits difficult to launch and that detect
and limit their effect quickly.

Most current attacks start by exploiting a buffer overflow
vulnerability. Despite significant efforts in devising solutions
that prevent buffer overflows [18, 22, 23, 52], they remain
prevalent. Early code injection attacks overwrote the buffer
with the malicious code on the stack and simultaneously over-
wrote the return address to point at the start of the exploit
code [3,43]. A number of software and hardware approaches
to protect against such attacks were devised [6, 15, 17, 44].
These efforts have culminated in the recent deployment of
hardware memory protection mechanisms that do not allow

a memory page to be both writable and executable at the
same time (the so called W ⊕X protection). These hardware
extensions are supported by both AMD and Intel proces-
sors and deployed in both Linux and Windows operating
systems [4, 54].

1.1. Code Reuse Attacks: Bypassing W ⊕X

In response to these defenses new Code Reuse Attacks
(CRAs) emerged that construct a malicious program by
stitching together carefully selected fragments of the ex-
isting library code; these snippets are called gadgets [47].
One example of a CRA is the return-oriented programming
(ROP) attack, where each gadget ends with a return instruc-
tion to trigger the execution of the next gadget pointed to by
the next return address on the stack. All the attacker has to
do is to inject a proper sequence of return addresses onto the
stack to point to the needed gadgets. ROP was shown to be
Turing-complete on a variety of platforms [9, 12, 19, 27, 34].
Automated tools have been developed that allow unsophis-
ticated attackers to construct arbitrary malicious programs
using ROP [24, 25, 31, 46].

Several defense mechanisms against ROP have been re-
cently proposed [13, 20, 33, 35, 49, 58]. Perhaps the sim-
plest of these solutions are the ones that utilize a shadow
call/return stack, where the return instructions are matched
against the corresponding calls using protected memory
space [35, 49, 58]. We assume that such an enforcement
of call-return pairs is already in place and therefore simple
ROP-based attacks are defeated.

Unfortunately, a new form of CRA was developed that
does not rely on return instructions [8, 11, 14]. In this jump-
oriented programming (JOP) model, the attacker chains the
gadgets using a sequence of indirect jump instructions, rather
than return instructions. A special dispatcher gadget is used
to orchestrate the control flow among the gadgets. A high
level example of the JOP attack model is shown in Figure 1.
This diagram shows how the attack will jump from the dis-
patcher gadget to functional gadgets which will then return
the control back to the dispatcher gadget. The jump locations
change based on the addresses popped off the stack by the
dispatcher gadget, and will ultimately result in the execution
of a system call.

1

Figure 1. Example of a simple JOP attack

1.2. Proposed Solution: Signature-based CRA De-
tection

Although it may appear that CRAs are a narrow form
of attack, they represent a wide-open vulnerability that is
increasingly used to exploit common buffer overflows. For
example, many recent approaches to jailbreak and software
unlock smart phones are CRA-based [50]. Thus, it is critical
to develop solutions that protect against this major vulnera-
bility, preferably in a way that protects legacy binaries.

In this paper, we propose Signature-based CRA Protec-
tion (SCRAP): a simple and low-overhead hardware scheme
to protect against JOP attacks that are based on the dynamic
detection of attack signatures, or the patterns of executed
instructions that are indicative of the JOP attack. SCRAP
works because the attack patterns are significantly different
from those of the regular programs. Previous work [13] in-
vestigated this type of defense for ROP attacks and showed
that it has promise.They implemented a defense mechanism
called DROP in software using Valgrind tool to detect the
ROP pattern. Because it is implemented in software, DROP
incurs over 5X performance loss on the average across simu-
lated workloads, mainly due to the overhead of Valgrind.

Starting from DROP, we made several observations about
existing signature-based detection that motivated this work.
First, the ideas of signature-based detection can be extended
to protect against the JOP attacks if one uses the indirect
jumps as the gadget boundaries. Second, the high perfor-
mance overhead of DROP (appropriately adapted to protect
against JOP attacks) can be avoided by implementing the
checking logic in hardware, placing this hardware off-the-
critical path in the commit stage of the pipeline, and perform-
ing simple checks during instruction commitment. If success-
ful, this approach can provide protection with much lower
overhead and complexity compared to the previous solutions
and can naturally protect the existing binaries. Third, and
most important, the naive implementations of the signature-
based detection along the lines of DROP can be bypassed
because of the strong assumptions it makes about usable gad-
get lengths. For example, we demonstrate an attack that uses
a delaying gadget through a function call in the middle of the
attack with the only purpose to distort the attack signatures
expected by a DROP-like signature-based defense. Finally,
the thresholds on the length of gadgets assumed by DROP
are not absolute: although difficult, it is possible to find
longer gadgets and integrate them into an attack, avoiding
detection. In this paper, we present a complete working ex-
ample of such a stealth JOP attacks integrating delay gadgets,

and using gadgets longer than the DROP thresholds.
Motivated by these observations, we propose an attack

signature detection logic that protects against such stealth
JOP attacks by filtering out the spurious function calls in the
middle of the attack from the attack signature. We develop a
language for the possible attack sequences and derive from
it a state machine implementation of the detection logic.
We show that the proposed mechanism generates no false
alarms in any of the regular workloads that we considered
and successfully detects CRAs, even when delay gadgets are
used, for a large number of shellcodes. Finally, we extend
the detectors to tolerate infrequent use of longer gadgets.

SCRAP has the following key characteristics:
• It successfully detects all JOP attacks that we were able

to generate, while resulting in zero false alarms across
regular code base.

• It incurs minimal performance cost (less than 2%) and
only requires simple hardware at the commit stage of the
pipeline. There is also no impact on the processor cycle
time.

• It does not require complex binary rewriting, binary an-
notation, or construction of a full control flow graph of a
program. It also does not require compiler or ISA support
and can be used to protect legacy binaries.

• With a simple hardware support, it performs checks for
unintended jumps (in variable instruction-length archi-
tectures, such as x86) thus closing the potential security
vulnerability of purely software-based solutions.

2. CRA Mechanics and Example
In this section, we overview a fully functional example

of a JOP attack. We follow by discussing how variable
length ISAs such as x86 and x86-64 significantly increase
the number of gadgets available for attacks.

2.1. Functional JOP Attack Example
Figure 2 shows an example of the malicious shell code

to be executed by the attacker. The purpose of this simple
code is to execute a system call that starts a new shell. As
we discussed previously, since the attacker can no longer
directly inject this code and execute it, this code has to be
assembled from the existing library code. For this exam-
ple, we use the standard C library (libc 2.11.3) as the
code base for the gadget composition. Table 1 shows the
gadgets that we found in libc to carry out the functionality
of the attack from Figure 2. Finally, we show the dynamic
sequence of the discovered gadgets to execute this attack
and explain the functionality and purpose of each dynamic
gadget invocation.

Gadget Gadget Function

g0
popa

Dispatchercmc
jmp [ebp+0x62]

g1 add [esi+edi*4-0xD], bl Null-Writer
jmp eax

g2 int 0x80 System Call

Table 1. Gadgets Used in Example Attack

In order to launch a shell using the gadgets in Table 1,

; Load 0x0000000b (the syscall number) to register eax
xor eax, eax
mov al, 0x0b

; Point ecx and edx to a null word, 0x00000000
mov ecx, 0xf7fc5fe3
mov edx, 0xf7fc5fe3

; Point eax to the string "/bin/sh"
mov ebx, 0xffffd6e9

; Make a system call to execve
int 0x80;

Figure 2. Example Shellcode in Assembly

this type of attack has to accomplish two things: the correct
parameters for a system call must be placed in the argument
registers and a system call must be made. To launch a shell,
our example attack makes a system call to execve. When
the system call is made, registers ecx and edx must point to
a null word, 0x00000000, and ebx must point to the string
"/bin/sh". Both null words and the string "/bin/sh" can
be found in memory; we can place their addresses onto the
stack and let the JOP attack pop them into the appropriate
registers. The remaining step in the attack is to initialize the
value of the eax register.

When the system call is made, eax must contain
0x0000000b, indicating a call to execve. However, a JOP
attack typically depends on exploiting a buffer overflow;
these attacks typically rely on a buffer overflow which is
exploited by the attacker to place data on the stack. The
buffer is typically a string buffer, so a 0x00 byte causes the
system to terminate reading the string; the attacker cannot
use null values in the initial overflow. If the attack needs
any null values, such as those in the word 0x0000000b, the
attack must generate them itself.

We make use of a null-writer gadget to create null values
on the stack that will eventually be popped into eax. Our
null-writer is constructed with an add instruction, adding
the byte held in bl to the byte on the stack pointed to by
esi+edi*4-0xD. If we place bytes holding 0xff on the
stack as part of the initial overflow attack and ensure that
bl contains 0x01, we can add 0x01 to 0xff on the stack,
overflowing to a 0x00. Using this method, our attack creates
the word 0x0000000b on the stack where it can be popped
into eax as the final step before the system call gadget is
used.

In the remainder of this section we show how the attack
executes using the gadgets described in Table 1. We assume
the attacker has exploited a buffer overflow to place data on
the stack and redirect control flow to the dispatcher gadget
(g0). From the dispatcher gadget, the attack proceeds to
execute the null-writer gadget (g1), then g0, g1, g0, g1, g0,
and finally, the system call (g2). Below, each step starts
with the gadget number followed by an explanation of how
it advances the attack.
Step 1 - g0 The dispatcher gadget initiates the attack with

a popa instruction. This instruction populates the reg-
isters with useful values the attacker has placed on the
stack. The second instruction, cmc, has no meaningful
effect on this attack. After initializing the registers with
values necessary for an attack, the dispatcher jumps to
the null-writer gadget.

Step 2 - g1 The null-writer gadget adds the byte held in bl
to the byte that esi+edi*4-0xD points to. In Step 1,
the dispatcher gadget populated the registers so that bl
contains 0x01 and esi+edi*4-0xD points to the value
0xff in the future value of eax on the stack.

Step 3 - g0 Populate the registers with the values necessary
to perform the null-writer a second time.

Step 4 - g1 Write 0x00 to a second byte in the future value
of eax.

Step 5 - g0 Populate the registers with values for a third and
final execution of the null-writer.

Step 6 - g1 Write the final null value onto the stack where
eax is popped from.

Step 7 - g0 Populate the registers with the appropriate val-
ues for a system call. The value that is popped from the
stack to eax is 0x0000000b.

Step 8 - g2 Make a system call to execve(), launching a
new shell.

While the above example represents a straightforward
attack (we chose this for the ease of demonstration), more
sophisticated shellcodes, including the ones that contain
multiple system calls, can be trivially implemented using
this attacking technique.

2.2. Gadgets and Unintended Instructions

For ISAs such as x86 with variable size instructions, the
attackers can find gadgets that are unintended by the pro-
grammer. Specifically, these are instructions that start at a
byte in the middle of a multi-byte instruction. These instruc-
tions account for a large number of the gadgets exploitable
by attackers [8].

Intended piece of code from libc

Unintended gadget code with indirect jump

89 74 24 08 8b bb bc FF FF FF 65 8b 37

or [ebx-0x4345], cl jmp ebp-0x75

mov [esp-0x8], esi mov edi, [ebx-0x44] mov esi, gs:[edi]

Figure 3. Example Gadget with Unintended Jump

To illustrate the concept of unintended branches, we show
a sequence of bytes from the libc library in the top part of
Figure 3. If the decoding starts after skipping the first four
bytes, a different instruction sequence can be decoded as
shown at the bottom of Figure 3, containing an indirect jump
that the programmer did not intend to execute. We show later
that these unintended gadgets make up the majority of the
gadgets available for the attackers, significantly improving
the attackers ability to mount attacks. However, although
unintended gadgets far exceed intended gadgets in number,
they are often harder to utilize because they can include
rarely-used instructions with complicated addressing modes
and constants. Thus, only short unintended gadgets are
typically usable.

3. Understanding Signatures of JOP Attacks
Signature based defenses can only work if the instruction

patterns exhibited by the attack code can be distinguished
from those of normal programs. The JOP attack patterns
(the number and length of gadgets used) are different from
the patterns of ROP attacks examined in [13] because of
two factors: 1) the reliance on indirect jumps instead of
returns; and 2) the need to execute the dispatcher gadget
to orchestrate the gadget-level control flow, thus requiring
more gadgets for an attack.

In terms of the number of gadgets, Chen et al. [13] re-
ported that at least three consecutive gadgets are needed to
carry out even a simple ROP attack. For JOP, the number
of gadgets needed is higher because of the need to call the
dispatcher gadget after every functional gadget. In addition,
it is much easier to compose an attack using short-length
gadgets to limit the undesirable side effects on the program
state.

All existing tools for automatic gadget discovery [8, 47]
therefore limit the gadget size to at most five instructions
and only consider usable the gadgets that perform one op-
eration (and one state update). The work of [13] also used
gadget sizes of at most five instructions for implementing the
shellcodes in ROP-style attack. Signature based detection
relies critically on these threshold values, so it is important
to verify that they hold.

3.1. Gadget Analysis for JOP Attack
The size of a usable gadget is limited by the side-effects

that the gadget has on the program state (including memory
locations and registers). Large gadgets typically overwrite
many registers and/or memory locations, thus corrupting
the state and making attack continuation very difficult or
impossible. This is especially true for the gadgets that are
comprised of unintended instructions.

To understand the side-effect properties of the JOP gad-
gets, we performed extensive gadget analysis within the code
base of several libraries. Our gadget discovery algorithm
starts with building the gadget trie as described by Shacham
et al. [47]. In a gadget trie, indirect jump instructions are
represented as nodes immediately under a dummy root node.
A child node under an indirect jump represents a possible
decoding of an instruction preceding the parent instruction.
Since multiple possible instructions (all but one unintended)
can precede an indirect branch, the trie can branch leading to
multiple gadgets ending at the same indirect branch. Once
the trie is constructed, the algorithm traverses the nodes start-
ing with an indirect branch toward its children, and every
path along this traversal represents a possible gadget.

Signature detection relies critically on the observation
that usable gadgets are short allowing us to distinguish at-
tacks from normal programs where the distance between
indirect branches are significantly longer. We base our ap-
proach to the usability of gadgets on the number of state
updates that a gadget performs. State updates are register
limiting instructions such as register writes or indirect mem-
ory accesses (which force registers to be a specific value in
order to prevent illegal accesses). We contend that longer
gadgets that make multiple state updates are difficult to use
without destroying the attack state.

2 3 4 5 6 7 8 9 10 11

0%

5%

10%

15%

20%

25%

30%

35%

Gadget Length

P
er

ce
nt

ag
e

of
 T

ot
al

 G
ad

ge
ts

 F
ou

nd

State Changes ≤ 2 State Changes ≤ 1

Figure 4. Libc statistics on gadget length and state changes

Figure 4 shows the total number of gadgets discovered
by the algorithm in the standard C library (libc), as well
as the number of gadgets that remain after we remove the
gadgets that do more state changes than each given threshold.
Figure 5 shows the same gadget statistics for other common
libraries. The top part of the figure shows the total number
of gadgets of a given length (each length is a separate figure).
The bottom part shows the number of gadgets present (of the
same length as the corresponding top figure) with at most
one state update. While a significant number of gadgets of
various sizes obviously exist in the libraries, there are no
gadgets of size eight instructions or more that perform less
than two state updates (to memory or registers).

Figure 6 shows the average number of side effects as the
gadget length increases. It also shows the minimum number
of side effects in gadgets of that length found across all the
libraries we studied. As the gadget length grows the number
of side effects grows linearly making them increasingly more
difficult to use.

Even at a threshold of 7, there exists only one gadget with
a single state update in libc, and another one in libglib-2.0.
Upon further examination, we found both of these gadgets
not to be usable because they use unintended instructions that
cannot be used. Since no suitable gadgets of seven instruc-
tions or more were found in multiple libraries, a threshold
of seven instructions can be used by SCRAP to identify a
gadget. However, using this length as a hard threshold rep-
resents a strong assumption: the attacker may be able to
tolerate some of the side-effects in a long gadget, allowing
her to use it as a delay gadget and bypass the detection. We
later relax this assumption to build signature detectors that
are resilient to the presence of some longer gadgets.

4. Stealth JOP Attacks: Concealing Attack Pat-
terns With Delay Gadgets

From the discussion in the previous section, it appears that
simple signature-based detection can be effectively applied
to protect against JOP attacks. However, when designing
security solutions it is important to assume that the attacker
is aware of the particular defense that is implemented and
consider possible attack modifications that would bypass this
protection.

All JOP and ROP variations developed to date only con-
sidered the functional requirements of the attack. Therefore,
all gadgets used by the attackers were performing some use-

libc
libm

libcrypt
libglib

libpthread

0

4000

8000

12000

16000
Size ≥ 5

T
ot

al
 G

ad
ge

ts

Unintended
Intended

libc
libm

libcrypt
libglib

libpthread

0

4000

8000

12000

16000
Size ≥ 6

libc
libm

libcrypt
libglib

libpthread

0

4000

8000

12000

16000
Size ≥ 7

libc
libm

libcrypt
libglib

libpthread

0

4000

8000

12000

16000
Size ≥ 8

libc
libm

libcrypt
libglib

libpthread

0

20

40

60

80
Size ≥ 5

F
ilt

er
ed

 G
ad

ge
ts

libc
libm

libcrypt
libglib

libpthread

0

20

40

60

80
Size ≥ 6

libc
libm

libcrypt
libglib

libpthread

0

20

40

60

80
Size ≥ 7

libc
libm

libcrypt
libglib

libpthread

0

20

40

60

80
Size ≥ 8

Figure 5. Gadget Length and Side Effect Analysis: Top figures show the total number of gadgets of a given length while the bottom figure
shows the gadgets for the same length with the shown number of side effects.

5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

Av erage
Minimum

Gadget Length

N
um

be
r

of
 S

id
e

E
ff

ec
ts

Figure 6. Number of Side effects as gadget length increases

ful part of the attack code. In addition, to avoid the necessity
of dealing with gadget side-effects, the existing automatic
tools for generating JOP and ROP attacks only consider
small gadget sizes. Signature-based approaches are effective
under these assumptions, as shown in [13] and also by the
analysis in the previous section.

However, what if the attacker is aware of the signature-
based protection and modifies the attack to distort its exe-
cution patterns from those expected by the defense? One
approach for accomplishing this is to introduce a delay gad-
get in the middle of the attack. The purpose of a delay gadget
is not to execute any part of the attack code, but rather per-
form some spurious computations in a way that would not
corrupt the machine state needed by the attack. At the same
time, the gadget would be long enough to reset the gadget
count used by the signature detector, before an attack is de-
tected. In this section, we introduce such delay gadgets and
demonstrate how the attack shown in the background section
can be modified to incorporate it.

The analysis in the previous section showed that long
gadgets have too many side effects to be usable; however,
it is possible to create a small sized delay gadgets by using
a call to a function. Since most functions have no side ef-
fects, they represent an ideal vehicle for implementing delay
gadgets without destroying the program state. If a function
call results in executing a larger number of instructions the
signature based attack detector will reset (assuming that this
is a valid program), allowing the attacker to continue the
attack. In the remainder of this section, we demonstrate how

to implement a delay gadget using a function call (using
atoi()).

Gadget Gadget Function

g3

call, [ecx-0x56000a00]

Delay
add bl, bh
inc ebx
add dh, bh
jmp edi

Table 2. Delay Gadget Used in Stealth JOP Attack

An example of a delay gadget that makes a call to the
atoi() function is shown in Table 2, this gadget was found
in the libc library. atoi() executes many more instructions
than the typical JOP gadgets, bypassing signature based
detection. When atoi() returns, some registers such as eax,
ecx, and edx may have been altered and do not contain data
that is meaningful to the attack. However, by convention,
other registers such as ebx, esi, edi, esp, and ebp are
saved. As long as the delay gadget ends with an indirect
jump based on one of these saved registers, the attack can
return to the dispatcher gadget which can recover from any
side effects caused by the delay.

This new attack, which we call Stealth-JOP, is mounted
using the same series of gadgets as our previous example,
but with delay gadgets called periodically to avoid detection.
Our previous JOP attack jumped from the dispatcher gadget
to a functional gadget, and then back to the dispatcher. The
Stealth-JOP attack example jumps from the dispatcher to a
functional gadget, and then to the delay gadget. After the
delay gadget has executed, the control returns to the dis-
patcher. Thus, there is no sequence in the code with multiple
consecutive short gadgets, making DROP-like signature de-
tection fail. At the same time, the attacker is able to execute
arbitrary code using the short functional gadgets.

In addition to considering delay gadgets through function
calls, it is important to note that if even one gadget of length
higher than the detection threshold in DROP can be used (or
at least tolerated) in an attack, then an attacker can exploit
this gadget to bypass signature detection. We build the basic
SCRAP detectors first assuming that the gadget lengths de-
rived in Section 3 represent hard limits; that is, every gadget

that makes 2 side effects or more is not usable. However,
it is highly likely that a motivated attacker will be able to
find at least some longer gadgets whose side effects can be
tolerated; we were able to identify multiple such gadgets in
constructing our attacks. We first develop signature detectors
assuming these hard limits on gadget lengths. However, we
then relax this assumption and develop more sophisticated
signature detectors that are able to tolerate the presence of
some longer gadgets and still detect an attack.

5. Threat Model, Assumptions and Limitations
We use standard CRA assumptions on the attacker’s ac-

cess to memory; this could be obtained using a buffer over-
flow, a string formatting attack, or a non-local jump buffer
(using setjmp and longjmp [30]). We assume that the sys-
tem has NX support for writable memory such that code
injection attacks are not possible.

We assume that the attacker can find arbitrary gadgets
limited only by the attack lengths as per the analysis we
showed in Section 3. Later we relax this assumption by
allowing the use of longer gadgets. Throughout the paper,
we present real attacks constructed from existing library code.
However, rather than assume security due to our inability to
find gadgets in the current version of the libraries, we make
the assumption of the existence of arbitrary gadgets such
that the defense works with any future code base, and not
just the ones we used for the analysis.

We assume that the vulnerability exploited to initiate the
attack does not lead to a privilege escalation. If privilege
escalation is achieved from the initial vulnerability, then a
CRA attack is not necessary. The attacker may seek to obtain
privilege escalation through the CRA.

The new stealth JOP attack proposed in this paper uses
delay gadgets to obfuscate the JOP execution pattern. We
explored the use of function calls as delay gadgets because of
the limited side-effects that they generate. Our analysis also
showed traditional gadgets are ineffective beyond a certain
length because of the presence of state updates. However,
there is a possibility that additional patterns of generating
delay gadgets may exist (e.g., a loop gadget), although we
have not been able to find and exploit such gadgets. We
believe that the detection logic can be extended to capture
such delay patterns as well.

6. Expressing Attack Signatures in Formal
Language

In this section, we formalize the attack pattern as a
context-free grammar. This formal description is used as
the basis for the hardware implementation of SCRAP logic.
We encode executions of instructions as strings of symbols
denoting types of instructions, called signatures. The attacks
are then formalized as formal languages of signatures. The
alphabet used in this section is given in Table 3.

6.1. Expressing Attacks Without Delay Gadgets
We observe that basic CRAs, such as ROP and JOP at-

tacks, can be expressed as a formal language defining an
attack as the following regular expression that uses POSIX
Extended Regular Expressions:

Symbol Instruction
w Indirect Jump
x Indirect Call
y Call
z Return
a All Other

Table 3. Signature Alphabet

V ={Attack, P, Gadget, Delays, Delay,

Call, Body, Return, Gadget, Indirect,

NotGadget, NotAttack}
Σ ={w,x,y,z,a}

Rules ={
Attack→P P P

P→Gadget Delays | Delays Gadget

Gadget→Indirect | a Indirect | a a Indirect |
a a a Indirect | a a a a Indirect |
a a a a a Indirect

Indirect→w | x
Delays→Delay Delays | ε
Delay→Call Body Return

Call→x | y
Return→z

Body→Delays Body | Body Delays

Body→a Body | Body a | ε
Body→NotGadget NotAttack

NotGadget→a a a a a a Indirect | a NotGadget

NotAttack→ε | P | P P}

Figure 7. Definition of G5,3 = (V,Σ,Rules,Attack)

RN,S = (a{0,N}(w|x)){S,}

Here, w denotes an indirect jump and x denotes an indirect
call, while a denotes any other type of instruction. N is a
parameter that specifies the number of instructions that a
gadget can have, while S specifies the number of consecutive
gadgets considered as an attack. For example, in R5,3 case,
three consecutive gadgets each having no more than five
instructions form an attack.

6.2. Expressing Attacks with Delay Gadgets
With the inclusion of function calls as delays, the formal

language defining the attack becomes a context free lan-
guage, formalized as the context-free grammar GN,S, where
again N is the number of instructions that a gadget can have
and S is the number of consecutive gadgets considered as
an attack. The definition of G5,3 = (V,Σ,Rules,Attack) is
given in Figure 7.

The grammar starts with Attack which is expanded to
S = 3 phases, each including a gadget and an unbounded
number of delays. A gadget is the same as the GN,S regular
expression defined above in Section 6.1. A delay starts with
a Call and ends with a Return and a Body between them
which we further define to capture complex delay gadgets
consisting of nested function calls. Specifically, the delay
gadget can have any number of delay function calls, and any

number of unimportant instructions. It can also include less
than S gadgets in it as long as there is a NotGadget sequence
before it. A NotGadget has more than N instructions before
the Indirect instruction.

The grammar is given for specific N and S values, but it
can be reformulated for any N and S value by simply chang-
ing some of the production rules. Attack has S number of P
expansions and Gadget allows N many a’s before Indirect.
NotGadget and NotAttack would also have to be changed
accordingly.

Signature ∈∈∈ R5,3? ∈∈∈G5,3?
aaawaawaaw Yes Yes
awaaxaaaaw Yes Yes
awaxaaaaaazaxaw No Yes
awaxaayaazazaxaw No Yes

Table 4. Example Attack Signatures

Table 4 shows example attack signatures and whether they
are considered as an attack under prior approaches described
in Section 6.1 and under the grammar that excludes delays.
The parts of the signature that are matched as delays under
G5,3 are highlighted.

7. SCRAP: Hardware-based Signature Detec-
tion

In this section, we demonstrate an efficient hardware im-
plementation to recognize the formal grammar that expresses
the attack signatures shown in the previous section. The pro-
posed logic required by SCRAP involves less than 200 bytes
of storage (for a 4-way superscalar processor) and is located
at the commit stage of the pipeline off of the critical timing
path. In the subsections below, we describe the components
of SCRAP, building from a single state machine towards
developing the complete solution. This is a standard exercise
of translating the language grammar into the hardware imple-
mentation; however, because up to four instructions commit
every cycle, we introduce an optimization that significantly
simplifies the logic without having any adverse impact on
the performance.

7.1. SCRAP State Machine
The SCRAP state machine is shown in Figure 8. We

use a counter to keep track of the current gadget length,
and a comparator to decide whether it is above the gadget
length threshold. When a gadget end is detected (w or x
event in the language), the gadget length is used to transition
through the shown finite state machine. The remaining step
to implement the push down automata is to note that when
a call instruction is encountered, we push the current state
number to the shadow stack. This number is restored when
a return instruction is encountered.

7.2. Integrating State Counters into Secure Call
Stack

As we discussed previously, a shadow call stack is a
mechanism that has been proposed to defend against simple
ROP attacks [32, 35, 49, 58]. Both software and hardware
implementations of this stack have been developed. SCRAP

saturating counter

0 0 0 0 0 0

t1 0 0 1 0 0 0

a: increase counter
w, x: if counter < t1, output S

else output L

x, y: push the state

z: pop the state

q0start q1 q2 q3 qa

L

L L L

S S S S

1Figure 8. State Machine for SCRAP

relies on a hardware implementation of the call stack, which
is backed up by a a software stack. In our design, each entry
of the hardware stack is augmented with the counter that
keeps track of the number of potential attack gadgets that
executed consecutively. This makes it possible to track the
information about the state of the attack even across function
calls, eliminating their use as delay gadgets.

7.3. The SCRAP Microarchitecture
We now describe the microarchitectural changes needed

for an out-of-order superscalar processor to implement
SCRAP. First, as the instructions are decoded, the infor-
mation about the relevant instruction types is extracted and
placed in the Reorder Buffer (ROB) entries allocated for the
instructions. For this purpose, all instructions are classified
into five types, as defined by the attack grammar in Section 6,
thus requiring a new 3-bit wide field within each ROB entry
to carry this information. When the instructions reach the
commit stage of the pipeline, this information is used to
update the SCRAP state machine counters.

The complexity of the counter update logic depends on
the superscalar width (i.e. how many instructions commit
per cycle) and also on the thresholds on the gadget length
and the number of consecutive gadgets used by SCRAP. To
simplify the logic, to ensure that only one counter update can
be performed per cycle, and also to ensure that in a single
cycle we operate on the counters within a single entry of
the secure stack, we propose a technique called Commit
Throttling.
7.3.1. Simplifying SCRAP through Commit Throttling
To simplify the SCRAP state machine counter update logic,
we propose Commit Throttling (CT), which allows only one
of the following instructions to be committed in a single
cycle: CALL, indirect CALL, indirect jump, and RET. The
number of these instructions in typical programs is small
(less than 5% combined according to our analysis based
on the binary instrumentation of SPEC 2006 benchmarks).
When encountering the second instruction from this list in
the co-committing group in the same cycle, the commit logic
blocks and delaying the commit the second instruction to the
next cycle. An additional requirement that we impose is that
whenever a return instruction is encountered, the commit
process also stops to ensure that we always operate on the
counters within the same stack entry in each cycle. The
impact of CT optimizations on the performance is negligible

(less than 0.03% on the average for SPEC 2006 benchmarks),
but it allows us to significantly limit the number of different
instruction patterns coming out of the commit stage in a
single cycle in terms of their impact on the SCRAP detection
state.

We implemented the SCRAP logic in Verilog HDL on a
Xilinx Spartan-3E XC3S100E FPGA with a 90nm process,
using Xilinx ISE WebPACK 14.1. The delay of the SCRAP
logic is 3.51 nanoseconds, allowing a clock frequency of
284 MHz. For comparison, the delay is 2.97 ns for an 8-bit
counter update logic and 3.35 ns for a 16-bit one. The FPGA
implementation shows that the delay is well under the cycle
period of a superscalar processor.

7.4. Allowing software configuration of SCRAP

We allow the SCRAP detector thresholds to be config-
urable using a privileged system call that sets the detection
machine state. We build large detector allowing up to 10
gadgets in a row to be detected. The configuration can be
changed to Gx,y by changing the t1 threshold register to x
and by marking the yth state in the detector to be the finish
state detecting the presence of an attack.

The choice of software configurability is made for two
reasons. First we observed significant divergence in appli-
cation behavior. Without software configurability, we are
forced to use the worst case thresholds that do not generate
false positives across any applications. Many applications do
not use indirect branch and call instructions frequently, and
can benefit from lower thresholds which further increase the
difficulty of attacks. At the same time, we want to protect
against the potential of an application that does generate false
positives against our thresholds. If the thresholds are fixed
in hardware, then such an application cannot be supported.
Allowing the thresholds to be changed, or the detector to be
disabled (for example, for applications that do not communi-
cate with untrusted parties), supports these cases in a manner
similar to how the NX bit can be disabled by software.

8. Performance Evaluation of SCRAP
For evaluating the performance impact of SCRAP, we

used PTLsim [59] - a cycle-accurate x86 processor simulator.
We simulated a 4-wide issue out-of-order core with 64KB
L1 data and instruction caches, 512KB L2 cache and 2 MB
L3 cache. Memory latency was assumed to be 100 cycles.
We used 18 C and C++ SPEC CPU2006 [51] benchmarks
for our experiments. The benchmarks were compiled using
GCC-4.2 compiler on a x86 machine running Ubuntu with
kernel version 2.6.24.

Each benchmark was simulated for 2 billion committed
instructions after fast-forwarding for the first 100 million
instructions.

First, we studied the impact of the Commit Throttling
optimization. We discovered that there was negligible slow-
down due to CT (less than 0.1% on average). To explain
this slowdown, we show in Figure 9 the percentage of cycles
where CT initiated a commit block. The cost of most of
these stalls is hidden by out-of-order execution, resulting in
the observed low impact on overall performance.

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lb
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

xa
la

nc
bm

k

0%

2%

4%

6%

8%

10%

P
er

ce
nt

ag
e

of
 C

T
 c

yc
le

s

Figure 9. Percentage of cycles where commit is blocked by CT

as
ta
r

bz
ip
2

gc
c

go
bm

k
h2
64
re
f

hm
m
er

lb
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

pe
rlb
en
ch

po
vr
ay

sj
en
g

so
pl
ex

sp
hi
nx
3

xa
la
nc
bm

k
av
er
ag
e

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

S
lo
w
do
w
n

Figure 10. Performance Slowdown of SCRAP

For a 4-entry hardware call stack, the performance over-
head of SCRAP is just over 1% on the average and it is less
than 6% for all benchmarks as shown in Figure 10. This
includes the overhead of stalls due to CT cycles as well as
the overhead of the overflow of the hardware shadow stack.
We used a hardware shadow stack of size four entries.

9. Security Analysis of SCRAP
In this section, we analyze the SCRAP detection effective-

ness. We first demonstrate that it results in no false positives
for normal programs and then analyze detection of actual
shellcodes.

9.1. False Positives in Regular Codes
Next, we examine the impact of SCRAP on the execution

of real programs to determine if SCRAP generates any false
alarms during legal program execution. The results are pre-
sented for SPEC 2006 benchmarks in Figure 11 and Figure
12. The benchmarks (the entire suite) were instrumented
using Pin tool and were run to completion. As seen from
these figures, the rate of false alarms depends on the selected
thresholds. We observe that for the thresholds with three
consecutive gadgets and at most seven instructions in each
gadget, none of our benchmarks generated false positives;
i.e., a SCRAP detector G7,3 generates no false positives.

We also performed experimental evaluation on Apache 2
Web Server for 28 threads, executing one billion instructions
in total, while Apache is trying to serve a static webpage of
about 65KBs to the ab tool which is sending thousands of re-
quests running remotely. We performed a similar evaluation
for Mozilla 14.0.1 with 18 threads/processes, also for a total

of one billion instructions, while it was trying to access a
Wikipedia entry. Apache had no false positives for G<9,>=3.
Even though Firefox started showing false positives for G7,3,
there were no false positives for G7,>3 or G<7,>=3.

5 6 7 8 9 10 11 12 13

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%

1 2 3 4 5

Gadget Length

F
al

se
 P

os
iti

ve
 R

at
e

max. gadgets

Figure 11. False positive rates for different number of consecutive
gadgets

1 2 3 4 5 6 7 8

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

5 6 7 8 9 10

Number of Consecutive Gadgets

F
al

se
 P

os
iti

ve
 R

at
e

max. gadget length

Figure 12. False positive rates for different gadget lengths

9.2. Detecting JOP Attacks
With a SCRAP detector G7,3, SCRAP is capable of de-

tecting any JOP attack that does not use a gadget of length 7
or more. Thusfar, every published attack, and every attack
automation tool uses gadgets of size 5 or less [13, 25, 47].
As seen in Section 4, gadgets that call functions can be used
in an attack because they preserve half of the registers due
to assembly convention. However, SCRAP is capable of
detecting attacks that implement these gadgets, while a JOP
version of DROP would fail. As discussed in Section 3, in
general long gadgets that do not use function calls have too
many side effects to be used in an attack. Therefore, all
currently published attacks would be detected by SCRAP.
However, if an attacker is aware of the SCRAP protection,
they may be able to find longer gadgets whose side effects
can be tolerated or repaired by a subsequent gadget. Thus,
we extend SCRAP in Section 10 to defend against such
possible JOP attacks that manage to use an occasional long
gadget in the middle of the attack to avoid detection.

To further assess SCRAP detection capabilities, we imple-
mented 140 shell code attacks available from the Shell-Storm
Linux shellcode repository [48]. These shellcodes ranged in
complexity from simple single system calls, to attacks with
multiple system calls, conditional branches, and loops. Even
the most basic attack required at least 6 gadgets, which is

greater than the minimum number of consecutive gadgets
necessary to be detected by SCRAP. Gadgets longer than
6 instructions were extremely difficult to incorporate due
to side effects. However, we were able to include a small
number of gadgets of intermediate length, a few instructions
longer. Attacks that use these longer gadgets are defeated by
the improved detector presented in Section 10.

10. Tolerating Longer Gadgets
Thusfar, we have assumed that the length of the gadgets

usable by attackers is limited to a hard threshold chosen in a
way that makes false positives impossible. This assumption
is based on the analysis in Section 3 where we showed that
longer gadgets create too many state updates, making them
difficult to use (e.g., Figure 6). However, it may be possible
for attackers to identify some longer gadgets whose side
effects do not completely destroy the attack state. Such
gadgets can be used as a delay gadget to avoid detection
by the basic SCRAP detector. In our own implementation
of shellcodes, although it was difficult, we were able to
identify a few such gadgets that are longer than the detection
threshold and could be integrated into an attack successfully,
avoiding detection by the basic SCRAP. These gadgets, for
example, updated registers that were not needed for the
attack, modified a non-critical memory location while being
able to avoid illegal accesses, or had a side-effect that could
be undone by another gadget. Thus, for practical signature
based detection, it is imperative that we detect attacks even
in the presence of some of these longer gadgets.

In the remainder of this section we propose a new multi-
threshold detector that is able to detect CRAs quickly, while
tolerating the use of longer gadgets. Intuitively, the detector
assumes that attackers may be able to find some gadgets
longer than the SCRAP threshold whose side-effects can be
tolerated or undone by subsequent gadgets. These interme-
diate gadgets are not easy to find or use constructively in
an attack since the number of side effects made by a gadget
grows quickly with the length of the gadget. Side effects also
increase the number of gadgets necessary for an attack; a
repair gadget must be called in order to correct state changes
and a dispatcher gadget must be called in order to reach the
repair gadget.

The new detector detects attacks as a sequence of gadgets
of length t1 or shorter, while allowing the use of intermediate
gadgets (IGs) of length t2 or shorter such that t2 > t1. Since
IGs typically do not advance the attack but are used only to
avoid detection, we do not advance the gadget count (move
closer to detection) like we do with short gadgets. At the
same time we only reset to the initial state with gadgets of
length greater than t2. Now, for every other IG the gadget
counter is reduced by one to take advantage of the additional
gadgets necessary to repair side effects. To detect an attack,
we still need k short gadgets(<t1) before a very long gadget
(>t2). The state machine for the multi-threshold detector is
shown in Figure 13. We call a detector of this type Gt1,t2,l
where l is the gadget count that is needed to detect an attack.
Note that all three thresholds are software configurable in
privilege mode.

The false positive rate is increased by this new multi-
threshold detector. Previously, medium length gadgets reset

saturating counter

0 0 0 0 0 0

t1 0 0 1 0 0 0

t2 1 1 0 0 1 0

a: increase counter
w, x: if counter < t1, output S

else if counter < t2, output M

else output L

x, y: push the state

z: pop the state

q0start

q′1

q1

q′2

q2

q′3

q3 qa

L

L L L

L
L

M

M M M

S S

S

M, L M M

S S S S

1

Figure 13. State Machine for the two threshold Detector

SCRAP to its initial state, setting all counters to 0, making
it more difficult to detect an attack (but making it possible
for attackers to avoid detection). Table 5 shows the total
false positive rate for the entire SPEC 2006 benchmark suite.
The results show that t1 can be set to 8, and t2 can be set
to a very high length of 50 without any false positives with
gadget count, l, of 7. Gadgets of length 50 in the libraries we
examined have a minimum of 15 side effects and an average
of 20 side effects (Figure 6)–it is extremely improbable that
they can be used without destroying the critical attack state.

l 8-10 8-15 8-20 8-25 8-50
1 1136837 3183299 2148070 3147423 12403895
2 335186 1446333 499522 517931 631640
3 4022 494252 129540 165565 186011
4 0 116485 4 2478 2837
5 0 1 1 1 31
6 0 0 0 0 8
7 0 0 0 0 0

Table 5. False positives for with varying detection thresholds t1 and
t2

As a further enhancement, a simple G7,3 SCRAP module,
as discussed in Section 9, could be used concurrently with
this multi-threshold detector to catch attacks that use three
short gadgets in a row. The overhead of this approach is
linear in the number of detectors since a new state machine
has to be implemented for each detector, and a space on the
stack is needed to save each detector’s state upon a function
call.

We also evaluated latency for a two threshold detector
using ten bits for counters (to allow reconfiguration of l up
to a value of 10). The logic can be clocked at up to 222 MHz
with a period of 4.5 nanoseconds in the FPGA process we
used as a target. For comparison, a 32-bit counter update
logic in the same process has a delay of 4.52 ns.

11. Related Work

In this section, we overview different approaches to pro-
tecting against CRA attacks. The related work is organized
into three parts: (1) defenses against buffer overflow attacks;
(2) comprehensive defenses; and (3) defenses specific to
Code Reuse Attacks (CRAs).

11.1. Defenses against Buffer Overflows

Buffer overflows are one of the most common software
exploits in languages without type safety such as C/C++.
A buffer overflow is necessary to initiate the CRA attack.
Several approaches were developed to defeat buffer over-
flows [6, 15–17, 26, 56]. Stackguard [17] and ProPolice [26]
are GCC extensions that use canaries. StackShield separates
return addresses into a separate stack at compile time mak-
ing it impossible for stack buffer overflows to overwrite the
return address [56]; similar works save a copy of the return
address and validate it before a function return [6, 15]. All
the preceding approaches require compiler support and can-
not protect legacy binaries. They also cannot prevent heap
overflow attacks or attacks on function pointers [43].

Hardware solutions have been proposed to protect against
stack smashing. StackGhost uses the register window feature
of the Sun Sparc architecture to verify that return addresses
have not been overwritten [28]. Recently, the advent of the
NoExecute (NX) bit and its support by mainstream operating
systems have made code injection attacks ineffective [4, 54].

11.2. Comprehensive Defenses

Memory bounds checking (MBC) annotate pointers with
their legal address range and check every memory access
against the base and bound of the associated data struc-
ture [22, 23, 29, 36]. However, the overhead of MBC is
substantial. MBC cannot prevent all memory exploits: it can-
not protect legacy binaries and externally linked or loaded
components. It is difficult to track legal memory bounds
around memory aliasing, variable length function argument
lists, complex data types and other programming language
constructs.

Dynamic Information Flow Tracking (DIFT) taints the
information coming from insecure sources, and dynamically
tracks and propagates the taint through processor registers
and memory locations. If a tainted address is used for writ-
ing into the stack, a security exception is raised. The draw-
back is that DIFT is a heavy-weight approach that entails a
significant redesign of the processor datapath and memory
system if implemented in hardware [18, 42, 52], or incurs
a substantial performance overhead if implemented in soft-
ware [39, 45]. In addition, DIFT solutions may suffer from
false positives, where the tainted state of the system rapidly
expands in a domino fashion.

Data flow integrity [10] derives the data flow graph dur-
ing compile-time and instrument the program to enforce
conformance with the flow in the graph; note that this is a
dual approach to control flow integrity. Using similar analy-
sis, WIT [2] associates instructions with their allowed target
objects and enforces integrity of each write operation.

11.3. CRA Attacks and Defenses
The first CRA attack proposed was the return-into-libc

(RILC) attack [21], where the attacker subverts the control
flow to call a function in the standard C library. Extensions to
basic RILC have been proposed to allow a static chain of libc
functions to be called [37] and recently to allow a general
data-dependent form of chaining of libc functions [55]. With
the exception of the last attack [55] which relies on a form of
jump oriented programming described below, RILC attacks
cannot support arbitrary computation on the victim machine.

Return-oriented Programming (ROP) attacks were re-
cently proposed [47], and the number of solutions to them
were introduced [13, 33, 35, 49, 58]. We discussed those
solutions in detail in earlier sections of this paper.

The newer defenses against ROP attacks also attempt to
address JOPs. For example, Onarlioglu et al. first use binary
rewriting to remove unintended branches and returns [41].
To protect intended branches, they use function-specific
markers on each stack frame; they call these markers stack
cookies. They also insert checks after every branch to check
the stack cookie. However, if gadgets are available in a func-
tion to replace the cookie before leaving, this protection may
be defeated. Because it requires binary rewriting, the ap-
proach cannot easily protect legacy binaries; it also increases
the code footprint by over 25%.

Kayaalp et al [32] propose branch regulation, a hardware
supported techniques to protect against JOPs. Using binary
rewriting, they insert markers at the beginning of every func-
tion, which include a magic number to mark a legal function
entry, as well as the length of the function. Branch regulation
requires binary rewriting and cannot easily protect legacy
binaries. It is also possible that a function may exist that can
provide sufficient gadgets to mount an attack; security is not
completely guaranteed.

Control flow integrity [1] is an approach to enforce legal
control flow inside of programs; CFI would identify the
illegal control flow necessary for code reuse attacks. CFI
requires deep analysis of the source or binary to derive the
CFG and substantial overhead to track the control flow of
the program.

Address space layout randomization (ASLR) [53] ran-
domly offsets the program location in memory. ASLR and
other optimized heap allocation models [7, 57] hide the cor-
rect address of the malicious code hiding the location of the
gadgets. Unfortunately, exploits against ASLR are known;
for example, a a format string attack can expose the stack
location to an attacker allowing the random offset to be de-
rived [38]. Schwartz et al show that even a small part of
the code being unrandomized is sufficient to construct CRA
attacks [25].

12. Concluding Remarks
In this paper, we presented SCRAP, a new hardware-

based architecture for protecting against the emerging class
of code reuse attacks (CRAs). We demonstrated that the
latest incarnation of CRAs - jump oriented programming
(JOP) attacks - have execution patterns that are clearly distin-
guishable from the patterns exhibited by regular programs.
However, we also demonstrated a new attack that renders

previously proposed signature-based approaches ineffective
by introducing delay gadgets. Delay gadgets are gadgets
whose only purpose is to obfuscate the execution patterns of
the attack without performing any useful computation. We
developed a complete working JOP attack that incorporates
delay gadgets. We then proposed and developed the SCRAP
architecture for efficiently detecting such stealth JOP attacks.
Our design started from the development of the formal lan-
guage describing the stealth JOP attack signature and then
subsequent demonstration of the hardware implementation.
We also proposed a new microarchitecture optimization to
simplify the SCRAP logic without encountering any perfor-
mance loss.

In summary, SCRAP architecture protects unmodified
legacy binaries, involves no changes to the software layers
and incurs very small performance degradation: less than
2% on the average across the SPEC 2006 benchmarks. We
also show that with appropriate selection of the detection
thresholds, SCRAP successfully detects all JOP attacks used
to implement many existing shellcodes, but at the same time
results in no false alarms for the regular applications. It is
therefore an effective and low-overhead protection, which in
the very least increases the attack complexity dramatically,
if not making it completely impossible. SCRAP can be
configured in software to allow the thresholds to adapt to
applications or to disable protection if it is not desired.

We extended the basic SCRAP detector to allow it to
tolerate the presence of longer gadgets using a two threshold
detector. The new detector can tolerate the presence of
intermediate gadgets of length up to 50 instructions, without
generating any false positives on the SPEC 2006 benchmark.
We implemented both SCRAP and the two-threshold SCRAP
in a hardware description language; the required hardware is
small and fast. It also resides at the commit stage and does
not affect any of the critical pipeline stages.

13. Acknowledgements
We would like to thank the anonymous reviewers for their

comments and suggestions. This material is based on re-
search sponsored by Air Force Research Laboratory under
agreement number FA8750-09-1-0137 and by National Sci-
ence Foundation grants CNS-1018496 and CNS-0958501.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
and endorsements, either expressed or implied, of Air Force
Research Laboratory, National Science Foundation, or the
U.S. Government.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In Proceedings of CCS, pages 340–353. ACM, 2005.
[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Prevent-

ing memory error exploits with WIT. Security and Privacy, IEEE
Symposium on, 0:263–277, 2008.

[3] Aleph One. Smashing the stack for fun and profit, Nov. 1996.
[4] S. Andersen. Part 3: Memory protection technologies. In

Changes to Functionality in Microsoft Windows XP Service
Pack 2. Microsoft Corp., 2004. http://technet.microsoft.com/en-
us/library/bb457155.aspx.

[5] W. Baer and A. Parkinson. Cyberinsurance in IT Security Manage-
ment. IEEE Security and Privacy, 5(3):50–56, may/june 2007.

[6] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense
against stack smashing attacks. In Proceedings of the USENIX Annual
Technical Conf., pages 251–262, 2000.

[7] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety
for unsafe languages. In Proceedings of PLDI, pages 158–168. ACM,
2006.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of
ASIACCS, pages 30–40. ACM, 2011.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: generalizing return-oriented programming to
risc. In Proceedings of CCS, pages 27–38. ACM, 2008.

[10] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. In Proceedings of OSDI, pages 147–160. USENIX
Association, 2006.

[11] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of CCS, pages 559–72. ACM Press, oct 2010.

[12] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W.
Felten, and H. Shacham. Can DREs provide long-lasting security?
The case of return-oriented programming and the avc advantage.
In Proceedings of EVT/WOTE. USENIX/ACCURATE/IAVoSS, aug
2009.

[13] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: De-
tecting return-oriented programming malicious code. In Proceedings
of ICISS, pages 163–177. Springer-Verlag, 2009.

[14] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Automatic
construction of jump-oriented programming shellcode (on the x86).
In Proceedings of ASIACCS, pages 20–29. ACM, 2011.

[15] T. cker Chiueh and F.-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. In ICDCS’01, 2001.

[16] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguardtm: pro-
tecting pointers from buffer overflow vulnerabilities. In Proceedings
of USENIX Security, pages 7–7. USENIX Association, 2003.

[17] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In
Proceedings of USENIX Security, volume 7, 1998.

[18] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible informa-
tion flow architecture for software security. In Proceedings of ISCA,
pages 482–493. ACM, 2007.

[19] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Return-
Oriented Programming without returns on ARM. Technical report,
System Security Lab - Ruhr University Bochum, 2010.

[20] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic integrity mea-
surement and attestation: towards defense against return-oriented
programming attacks. In Proceedings of ACM STC, pages 49–54.
ACM, 2009.

[21] S. Designer. "return-to-libc" attack, 1997. Bugtraq.
[22] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-

bound: architectural support for spatial safety of the c programming
language. In Proceedings of the ASPLOS, pages 103–114, New York,
NY, USA, 2008. ACM.

[23] D. Dhurjati and V. Adve. Backwards-compatible array bounds check-
ing for C with very low overhead. In Proceedings of ICSE, pages
162–171. ACM, 2006.

[24] T. Dullien and T. Kornau. A framework for automated architecture-
independent gadget search, 2010.

[25] T. A. Edward J. Schwartz and D. Brumle. Q: Exploit hardening made
easy. In Proceedings of USENIX Security, 2011.

[26] H. Etoh and K. Yoda. Propolice: Improved stack-smashing attack
detection. IPSJ SIG notes on computer security, Oct 2001.

[27] A. Francillon and C. Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of CCS, 2008.

[28] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack
protection. In Proceedings of USENIX Security, pages 5–5. USENIX
Association, 2001.

[29] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Waxman. Ar-
chitectural support for low overhead detection of memory violations.
In Proceedings of DATE, 2009.

[30] T. O. Group. IEEE Std 1003.1, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/functions/setjmp.html.

[31] R. Hund, T. Holz, and F. C. Freiling. Returnoriented rootkits: By-
passing kernel code integrity protection mechanisms. In Proceedings
of Usenix Security, 2009.

[32] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev. Branch
regulation: Low overhead mitigation of code reuse attacks. In Pro-
ceedings of ISCA, 2012.

[33] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
return-oriented rootkits with "return-less" kernels. In Proceedings of
EuroSys, pages 195–208, New York, NY, USA, 2010. ACM.

[34] F. Lindner. Developments in cisco ios forensics. con-
fidence 2.0. presentation, 2009. http://www.recurity-
labs.com/content/pub/FX_Router_Exploitation.pdf.

[35] J. McGregor, D. Karig, Z. Shi, and R. Lee. A processor architecture
defense against buffer overflow attacks. In Proceedings of ITRE,
pages 243 – 250, aug. 2003.

[36] S. Nagarakatte, M. Martin, and S. Zdancewic. Watchdog: Hardware
for safe and secure manual memory management and full memory
safety. In Proceedings of ISCA, 2012.

[37] Negral. The advanced return-into-lib(c) attacks, 2001.
http://www.phrack.org/issues.html?issue=58&id=4.
Retrieved June 2012.

[38] T. Newsham. Format string attacks, September 2000.
http://julianor.tripod.com/bc/tn-usfs.pdf.

[39] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In Proceedings of NDSS, feb 2005.

[40] NIST national vulnerability database, 2012. Available online at
http://nvd.nist.gov.

[41] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. Gfree:
Defeating return-oriented programming through gadget-less binaries.
In Proceedings of ACSAC, pages 49–58, 2010.

[42] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri. SIFT: A
low-overhead dynamic information flow tracking architecture for smt
processors. In Proceedings of CF, May 2011.

[43] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in
exploiting buffer overruns. IEEE Security and Privacy, 2:20–27, July
2004.

[44] M. Prasad and T. cker Chiueh. A binary rewriting defense against
stack based overflow attacks. In Proceedings of the USENIX Annual
Technical Conf., pages 211–224, 2003.

[45] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A low-
overhead practical information flow tracking system for detecting
security attacks. In Proceedings of MICRO, pages 135–148. IEEE
Computer Society, 2006.

[46] R. G. Roemer. Finding the bad in good code: Automated return-
oriented programming exploit discovery. Master’s thesis, University
of California, San Diego, 2009.

[47] H. Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of CCS,
pages 552–61. ACM Press, Oct. 2007.

[48] The shell storm linux shellcode repository, 2012. Accessed
Sept. 2012 at http://www.shell-storm.org/shellcode/
shellcode-linux.php.

[49] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime
shadow stack: Protection against malicious return address modifica-
tions, 2008.

[50] SOGETI ESEC R&D Lab. Analysis of the jail-
breakme v3 font exploit, 2012. Retrieved Septem-
ber 2012 from http://esec-lab.sogeti.com/post/
Analysis-of-the-jailbreakme-v3-font-exploit.

[51] C. D. Spradling. Spec cpu2006 benchmark tools. SIGARCH Comput.
Archit. News, 35(1):130–134, 2007.

[52] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of
ASPLOS, pages 85–96. ACM, 2004.

[53] P. Team. Pax address space layout randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt.

[54] P. Team. Pax non-executable pages design & implementation.
http://pax.grsecurity.net/docs/noexec.txt.

[55] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning.
On the expressiveness of return-into-libc attacks. In Proceedings of
RAID, Sept. 2011.

[56] Vendicator. Stack shield technical info file v0.7, January 2001.
http://www.angelfire.com/sk/stackshield/.

[57] O. Whitehouse. An analysis of address space layout randomization
on windows vista, 2007.

[58] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer. Architecture support
for defending against buffer overflow attacks. In Proceedings of
Workshop on Evaluating and Architecting Systems for Dependability,
2002.

[59] M. T. Yourst. Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In Proceedings of ISPASS, pages 23–34, 2007.

http://pubs.opengroup.org/onlinepubs/009695399/functions/setjmp.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/setjmp.html
http://www.phrack.org/issues.html?issue=58&id=4
http://www.shell-storm.org/shellcode/shellcode-linux.php
http://www.shell-storm.org/shellcode/shellcode-linux.php
http://esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit
http://esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit

