
A High-Resolution Side-Channel Attack on Last-Level Cache

Mehmet Kayaalp
IBM Research

mkayaal@us.ibm.com

Nael Abu-Ghazaleh
University of California, Riverside

naelag@ucr.edu

Dmitry Ponomarev
Binghamton University

dima@cs.binghamton.edu

Aamer Jaleel
Nvidia Corporation
ajaleel@nvidia.com

ABSTRACT
Recently demonstrated side-channel attacks on shared Last Level
Caches (LLCs) work under a number of constraints on both the sys-
tem and the victim behavior that limit their applicability. This pa-
per demonstrates on a real system a new high-resolution LLC side
channel attack that relaxes some of these assumptions. Specifically,
we introduce and exploit new techniques to achieve high-resolution
tracking of the victim accesses to enable attacks on ciphers where
critical events have a small cache footprint. We compare the qual-
ity of the side-channel in our attack to that obtained using FLUSH+
RELOAD attacks, which are significantly more precise but work
only when the sensitive data is shared between the attacker and the
victim. We show that our attack frequently obtains an equal qual-
ity channel, which we also confirmed by reconstructing the victim
cryptographic key.

1. INTRODUCTION
Systems and applications extensively rely on cryptographic op-

erations for security. Although a cipher may be cryptographically
secure, it can still leak sensitive information through side channels.
Recent side channel attacks target shared resources in conventional
microprocessors, including shared caches [1–11]. Attacks on these
resources are attractive because they do not require physical access;
a spy is simply a co-located process that monitors and accesses
shared resources without special privileges. Side-channel attacks
can even be used to steal secrets from systems that support secure
isolated execution environments [12–15].

Cache-based side-channel attacks exploit the fact that cache ac-
cesses performed by a victim process can be monitored by an at-
tacker’s spy process that shares the cache with the victim. The
cache sets accessed by the victim as it performs encryption corre-
late with the indices to the cryptographic tables that are used by
many ciphers for performance reasons (we attack the Advanced
Encryption Standard, AES, in this paper). This information is of-
ten sufficient for reconstructing a secret key in a short amount of
time [1].

Initially, cache-based attacks were performed through L1 caches.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16 Austin, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

In this case, the attacker needs to achieve co-residency with the
victim on the same core, which is not trivial to accomplish in prac-
tice [16, 17]. Moreover, a number of defenses are effective in mit-
igating such attacks [2–4]. For these reasons, the focus of recent
attacks shifted from first-level caches to shared Last-Level Caches
(LLC) [1,10,11,18,19]. In contrast to L1 caches, the LLC is shared
by all cores. Therefore, the co-residency of the victim and the at-
tacker from the standpoint of the LLC is achieved naturally, making
the LLC an attractive attack target.

1.1 LLC Attack Strategies
FLUSH+RELOAD attacks [1,18,19] assume implementations where

the cryptographic lookup tables, which are not a secret by them-
selves, are located in a memory region that is shared between the
victim and the spy process. In such a setting, the spy can use a
cache flush instruction (e.g., clflush in x86) to flush specific cache
lines that contain the cryptographic tables from all cache levels, in-
cluding the LLC [20]. Later, the attacker can determine if the vic-
tim accessed this data by re-accessing this memory line and timing
the access. A miss indicates that the data has not been accessed by
the victim, and a hit indicates that the access took place, and there-
fore the data is in the cache again. Although FLUSH+RELOAD was
developed in the context of an L1 attack, it can be used to attack the
LLC as well; a spy on a different core can observe victim accesses
in the LLC because flush removes the data from all levels of the
cache.

A
ffe

ct
 th

e
vi

ct
im

's
ca

ch
e

st
at

e

Flush+Reload Attack

attacker
victim

L1 LLC

clflush(T[x])

attacker
victim

L1 LLC

foreach LLC way:
 load(alias(T[x]))

O
bs

er
ve

 v
ic

tim
's

ch
an

ge
s

to
 th

e
ca

ch
e

L1 LLC

start timer
load(T[x])
stop timer

L1 LLC

start timer
foreach LLC way:
 load(alias(T[x]))
stop timer

mem mem
miss

hit

(accessed by victim)
hit

miss
(evicted by victim)

1
2

Prime+Probe Attack

A
tta

ck
 s

te
ps

Figure 1: PRIME+PROBE vs FLUSH+RELOAD Attacks

Although extremely powerful, FLUSH+RELOAD does not work
when the critical data is not shared. An alternative way to exploit
the cache side channel in the absence of cryptographic data sharing
is PRIME+PROBE attack [10, 11] (Figure 1). In order to evict vic-
tim’s data from the cache, the attacker needs to populate all cache

ways, instead of surgically flushing only the cryptographic table
cache lines as in FLUSH+RELOAD attack. The attacker times its
accesses after it fills the cache; the presence of a cache miss indi-
cates that the victim accessed the corresponding cache line causing
the spy’s data to be removed.

S LP Sync KC

FLUSH+RELOAD Attacks:
Cache Games (S&P’11) [1] Yes N/A No No
Irazoqui et al. (RAID’14) [19] Yes N/A Yes Yes
Yarom et al. (USENIX’14) [18] Yes N/A No No

PRIME+PROBE Attacks:
Liu et al. (S&P’15) [10] No Yes No No
S$A (S&P’15) [11] No Yes Yes Yes
OUR ATTACK No No No No

S: Attacker and Victim Share Memory
LP: Requires Large Pages
Sync: Assumes Synchronization
KC: Known Ciphertext

Table 1: Comparison of LLC Attacks

1.2 Contributions of this paper
Recent work [10] demonstrated the first PRIME+PROBE attack

applied to the LLC. This attack was accomplished in the context
of the El-Gammal cipher, which looks up large multiplier values in
cryptographic tables. These multiplier values span a large number
of cache sets, which results in substantial leakage that is detectable
by the spy even in the presence of noise.

In this paper, we advance PRIME+PROBE LLC attacks such that
they can be applied to ciphers that require high-resolution infor-
mation of the cache access pattern; these include ciphers such as
AES and Blowfish. The high-resolution attack uses the following
relaxed conditions: 1) It does not rely on the use of large pages or
cryptographic data sharing between the victim and the attacker; 2)
It does not require synchronization between the victim and the at-
tacker, and does not rely on the knowledge of the ciphertext; 3) It
does not assume knowledge of virtual-to-physical page mappings
neither for a victim nor for an attacker; and 4) It does not require
any knowledge of the virtual address of victim’s critical tables. Ta-
ble 1 contrasts the attack to recently proposed LLC side channel
attacks.

We pursue these improvements using two general techniques:
(1) we develop accurate cache reverse-engineering algorithms to
derive the detailed behavior of real LLCs. As a by-product, we
relax the assumption of large memory pages present in the most
recent attacks, and also more effectively probe the cache and more
accurately interpret the results of the probes; (2) we use a concur-
rent attack on the cache sets containing victim’s instructions. This
allows the attacker to identify the progression of the victim within
the cryptographic algorithm, improving the signal and reducing the
noise.

In summary, this paper makes the following contributions:

• We propose a new PRIME+PROBE-style high-resolution LLC at-
tack that works with arbitrary page sizes and does not rely on
the sharing of cryptographic data between the victim and the at-
tacker. In addition, our attack assumes no knowledge of virtual-
to-physical page mappings neither for a victim nor for an at-
tacker. A key component of our attack is a series of mechanisms
to discover precise groups of addresses that map into the same
LLC set in the presence of physical indexing, index hashing and
varying cache associativity across the LLC sets.

• We demonstrate the new attack against AES cipher on an Intel
SandyBridge processor with an 8MB shared LLC, and show (us-
ing side channel vulnerability metrics and key reconstruction)
that our attack is practically as effective as previously proposed
FLUSH+RELOAD attack on AES. Note that FLUSH+RELOAD
is significantly less general than our attack because it relies on
sharing of cryptographic libraries between the victim and the at-
tacker to precisely identify the victim accesses; this sharing can
be easily disabled to defeat FLUSH+RELOAD attacks.

2. HIGH-RESOLUTION LLC ATTACK
Figure 2 shows the main components of the attack. The pre-

attack phase has three parts. The first part reverse-engineers the
LLC hardware to discover its operation, including idiosyncrasies
that make LLCs different from traditional textbook designs, but
that affect the collection and interpretation of the side channel data.
The next part uses this information to discover groups of memory
addresses that map to each set of the LLC (we call these collision
groups). The third part populates the LLC with the collision groups
to discover the location of the victim’s critical data based on the
victim’s access frequency and pattern.

Active AttackConcurrent Attack on
Data & Instructions

Pre-AttackForm
Collision
Groups

Reverse
Engineer
Cache

Hardware

Determine
Critical
Sets

Part I Part II Part III

Post-AttackKey
ReconstructionNoise Removal

Part I Part II

LLC Side Channel

Figure 2: The New Attack Flow and Components

2.1 Pre-Attack I: Discovering LLC Details
The first step of the attack is the reverse engineering of the cache

to derive some important characteristics that are necessary for the
remainder of the attack.

2.1.1 Reverse-Engineering Index Hashing
LLCs have multiple banks that can be accessed concurrently.

Index hashing is a technique used to increase the probability that
nearby data will be placed in different banks, allowing for concur-
rent accesses, balanced cache utilization and heat distribution [21].
While the index hash functions are proprietary, they are not de-
signed for security and therefore can be reverse-engineered. Deriv-
ing the index hashing is necessary to understand the mapping from
memory accesses to cache sets.

We developed a systematic approach to reverse-engineer the hash-
ing mechanism. Although the particular hash function that we dis-
covered is specific to SandyBridge, the proposed method is appli-
cable in general. The step-by-step reverse-engineering process and
the resulting hash function are shown in Figure 3. The LLC of the
SandyBridge processor used in our experiments has a cache line of
64 bytes, 8192 (213) sets, and 16 ways.

The resulting LLC index hashing function for SandyBridge pro-
cessor was previously reported by Hund et al. [22] as part of their
effort to reverse-engineer the kernel space layout using timing side

for(n=16; ; n++) {
 //ignore any miss on first run
 for(fill=0; !fill; fill++) {
 //set pmc to count LLC miss
 reset_pmc();
 for(a=0; a<n; a++)
 //set_count*line_size=2^19
 load(a*2^19);
 }
 //get the LLC miss count
 if(read_pmc()>0) {
 min = n; break;
 }
}

Result:
min=65

Set_A={};
for(s=0; s<min; s++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(a=0; a<min; a++)
 if(a!=s)
 load(a*2^19);
 }
/* if skipping removes the miss
 then add it to Set_A */
 if(read_pmc()==0)
 Set_A+={s};
}

Set_B={2,7,8,13,19,22,25,28,32,
 37,42,47,50,52,59,62,65}

Determine the minimum number of
sequential loads that cause a miss
A Identify the set of 17 loads (16 ways,

plus 1) that cause the miss
B

Repeat A to find the next point of
misses when the identified set is excluded
C

for(n=min+1; ; n++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(a=0; a<n; a++)
 if(a Set_A)∉
 load(a*2^19);
 }
 if(read_pmc()>0) {
 min = n; break;
 }
}

min=66

Repeat B to identify the next setD

Set_B={};
for(s=0; s<min; s++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(a=0; a<min; a++)
 if(a Set_A && ∉ a!=s)
 load(a*2^19);
 }
 if(read_pmc()==0)
 Set_B+={s};
}

Set_A={3,6,9,12,18,23,24,
29,33,36,43,46,48,53,58,63,64}

Set_C={1,4,11,14,16,21,26,31,35,
 38,41,44,49,55,56,61,66}

Repeat C excluding both setsE

for(n=min+1; ; n++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(a=0; a<n; a++)
 if(a Set_A∉ && a Set_B∉)
 load(a*2^19);
 }
 if(read_pmc()>0) {
 min = n; break;
 }
} min=67

Repeat D to identify the Sets C & DF

Set_C={}; Set_D={};
for(s=0; s<min; s++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(a=0; a<min; a++)
 if(a Set_A && ∉ a Set_B &&∉ a!=s)
 load(a*2^19);
 }
 if(read_pmc()==0) Set_C+={s};
 else Set_D+={s};
}

Set_D={0,5,10,15,17,20,27,30,34,
 39,40,45,51,54,57,60}

Access 16 elements of Set A, plus one
address with all bits zero except one
G

Repeat G for each setH

//line_size=2^6, phys. address bits=36
for(i=6; i<36; i++) {
 for(fill=0; !fill; fill++) {
 reset_pmc();
 for(j=0; j<16; j++)
 load(Set_A[j]*2^19);
 load(2^i);
 }
 if(read_pmc()>0) Set_A_pow+={i};
}

Set_A_pow={18,25,27,30,32}

Set_B_pow={17,20,22,24,26,28,33}
Set_C_pow={19,21,23,29,31,34}

Assign 2-bit values (S0 and S1) for sets
A through D, and construct a truth table
to identify which address bits determine
set outcomes (S0 and S1)

I

Using the 64 addresses with known
sets construct a truth table and derive the
boolean expression for bits 19 through 24

J

D
C
B
A

Set S1 S0

 0 1
 0 0

 1 1
 1 0

333332222222222111
432109876543210987
000000000000000000
000000000000000001
000000000000000010
000000000000000100
000000000000001000
000000000000010000
000000000000100000
000000000001000000
000000000010000000
000000000100000000
000000001000000000
000000010000000000
000000100000000000
000001000000000000
000010000000000000
000100000000000000
001000000000000000
010000000000000000
100000000000000000

SS
10
00
10
11
01
10
01
10
01
10
11
10
11
10
01
11
01
11
10
01

a change in bit 34

alters S0 but not

S1: bit 34 is an

input for

computing S0 but

not for S1 (see K :

bit 34 is connected

to the upper gate

and not the lower

gate)

S0=F0(B18,B19,B21,B23,B25,B27,
 B29,B30,B31,B32,B34)
S1=F1(B17,B18,B20,B22,B24,B25,
 B26,B28,B28,B30,B32,B33)

222221
432109
000000
000001
000010
⋯

111110
111111

SS
10
00
01
10
⋯
10
11

0
1
2
⋯
62
63

S0=B19⊕B21⊕B23
S1=B20⊕B22⊕B24

all inputs are XORed:
F0 and F1 are simply XOR

Putting it
all together:
K

67891011121314151617181920212223242526272829303132333435

XOR

XOR

13-bit Hashed Set Index: 012345678910S0S1
unused

Figure 3: Reverse-Engineering the Index Hashing

channels. However, their reverse engineering procedure consists of
hundreds of experiments followed by a manual effort to identify a
hashing relationship consistent with the experiments. In contrast,
we demonstrate a generalized step-by-step procedure that can be
used to automate reverse-engineering of caches. Concurrent with
our effort, reverse-engineering of cache indexing has also been
demonstrated in two other recent works [23, 24].

2.1.2 Accounting for Cache Banks and Cavity Sets
Using the above approach and timing the cache accesses across

each physical core, we also determined the hashing mechanism for
individual cache banks. SandyBridge features four cores and four
2MB cache banks, aligned under the cores. The 13-bit hashed set
index, X , is used in the following way to generate 2 bits, H0 and
H1, that correspond to different cache banks.
H0 =X0 ⊕X4 ⊕X6 ⊕X8 ⊕X10 ⊕X12

H1 =X0 ⊕X1 ⊕X4 ⊕X5 ⊕X6 ⊕X7 ⊕X8 ⊕X9 ⊕X10 ⊕X11

Figure 4 shows the correspondence of hashed bits to banks with
respect to the physical cores. Our experiments also showed that
cache sets in the leftmost cache bank (H0 = H1 = 0) have only
15 ways instead of 16. We call these sets cavity sets. Identifying
this effect was crucial to improving the precision of the attack as
these sets produce false positive accesses if they are primed with
collision groups designed for a 16-way cache. Making adjustments
for cavity sets during the next step of discovering collision groups
is necessary, as we demonstrate below.

Memory Controller & IO

Graphics
Cache Bank
H0 = 0
H1 = 0

Cache Bank
H0 = 1
H1 = 1

Cache Bank
H0 = 0
H1 = 1

Cache Bank
H0 = 1
H1 = 0

Core 0 Core 1 Core 2 Core 3

Misc.

Figure 4: Identifying Cache Banks on SandyBridge Die Map

2.2 Pre-Attack II: Collision Groups
We now describe how an attacker can discover collision groups

to populate the cache sets. Every virtual page can map into
S
W
P

different physical locations in the LLC, where S is the LLC size,
W is the number of LLC ways, and P is the size of a page. For
the 16-way 8MB cache used in our experiments, 4KB pages can
have 128 different mappings. Note that the two-bit output of the
index hash is not affected by the offset within the page; thus, it is
sufficient to do the mapping at the page level to learn the collision
groups for all the cache lines within the page. Our objective in
this part of the attack is thus to find collision groups of W pages,
for each of the 128 locations, which are sufficient to cover the full
cache.

First, we allocate a large chunk of memory 1. Second, starting
from an empty set Φ, we take one page (ρ) at a time from the pool
of allocated pages, add it to Φ and measure t[n]—the number of
cycles to access the n pages in Φ. If the difference in t caused by
the addition of ρ, d = t[n] − t[n − 1], exceeds a predetermined
number of cycles (d > TDIFF), we conclude that the addition of
this last page resulted in an LLC miss, because now there areW+1
pages in Φ that map to the same LLC set.

Third, similar to Step B in Figure 3, we remove one page at a
time from Φ and measure the access time for the rest of the ad-
dresses. If the removed page is one of the W + 1 addresses, the
measured access time will be considerably smaller since a conflict
miss is eliminated. At the end of this step, we identifyW +1 pages
from a single LLC set, and remove them from Φ.
1The physical memory corresponding to this allocated memory
space must have sufficient addresses to form conflict groups for
each set. Note that we can always allocate additional memory if
the full set of 128 conflict groups could not be obtained from the
first chunk. However, in all of our experiments, we were able to
obtain sufficient coverage of the cache with a single allocation four
times the size of the cache.

Fourth, we recheck the identified addresses to make sure that
they do indeed form a collision group. Erroneous identification
occasionally occurs for reasons such as cache accesses generated
by the instructions. In addition, before adding the new page ρ to
Φ, we check ρ against every collision group identified so far. If it
matches, we discard it without adding it to Φ. This way, duplicate
collision groups can be avoided. The process stops after all 128
collision groups have been discovered. The entire process takes 2
minutes and 35 seconds to complete on our Sandy Bridge platform.
We repeated the experiment many times and were able to identify
collision groups for all cache sets with 100% accuracy.

2.3 Pre-Attack III: Identifying Critical Cache
Sets

Thusfar, we have been able to determine conflict sets correspond-
ing to all cache lines in the cache. However, we have not estab-
lished the mapping of these sets to the physical page addresses, or
more importantly the cache sets in the cache being used for the
sensitive data. In this next step, we identify this correspondence to
allow the attacker to focus only on these critical collision groups
rather than priming and probing the full LLC, significantly speed-
ing up the attack.

Assuming that the critical pages of AES are aligned at the page
boundary, the four 1KB tables fit into a single page. If the attacker
accesses the collision groups that map to the same LLC sets as AES
critical data, then the victim will experience many LLC misses for
the table lookups and considerable slowdown. By measuring the
time it takes for the victim to finish its computation, the attacker
can determine whether the victim’s critical table is in the probed
location.

0

0.2

0.4

0.6

0.8

1
3.58 1.29

la
te

n
c

y
 (

s
)

kernel
scheduling

data AES
instructions

AES critical
table

AES data
stack

Figure 5: Timing Analysis to Determine Victim’s Page Mapping

Figure 5 shows the latency (median of 100 measurements) of
encrypting 320 bytes of data, for each of the 128 collision groups
discovered in the previous step. When the probed location is used
by the victim for the critical data, stack, or instruction memory, tim-
ing peaks are observed. The most significant slowdown is achieved
when the evicted data is used by the operating system for context
switching. From the remaining possibilities, the location of criti-
cal tables is determined by examining the memory access patterns.
Indeed, while the accesses to the stack are sequential, the critical
table lookups exhibit random access patterns, and the instruction
accesses indicate a tight loop for every AES round. This pattern
allows us to identify the instruction cache sets corresponding to the
AES code, which we use to identify the start of encryption blocks,
and to reduce noise.

When the tables are not aligned to the page boundary, two smaller
peaks are observed for AES critical table in Figure 5. They can be
identified easily, since the tables span two consecutive pages in this
case, e.g., last 1KB of one page, and first 3KB of another page.
Thus, there is no need to determine the virtual address of the vic-
tim’s critical table: this also defeats defense approaches based on
hiding or randomizing the layout of the victim’s critical data.

2.4 Active Attack Phase: Concurrent Attack
on AES Data and Instructions

The active attack phase consists of a concurrent attack on the
LLC sets corresponding to critical data and the AES instructions.
These sets are accessed using two synchronized threads. In each
iteration, the attacker fills the critical LLC sets with appropriate
collision groups and times its cache accesses. Some of the ob-
served LLC misses are due to the victim’s activity, while other
misses correspond to noise. The concurrent attack which probes
the sets containing the AES code instructions helps the attacker to
identify which data accesses belong to the victim at what phase of
the encryption the victim is executing.

Figure 6 shows a sample output of the side channel information
obtained from observing the sets containing the AES instructions.
The y-axis shows the cache sets that are being accessed that cor-
respond to the location of the AES instructions we identified in
Section 2.3. The x-axis shows the iterations of measurements, and
black boxes show the cache misses, which indicate accesses to the
cache sets by the victim. The instructions accessing the critical
tables are between sets 3 and 14. Individual AES rounds are alter-
nating between sets 3 to 6 and sets 7 to 10, and the instructions of
the final round are in sets 11 to 14. From the pattern, we identify
the execution of AES rounds which are marked with circles.

C
a
ch

e
 S

e
t

 0

 4

 8

 12

Figure 6: Results of the Attack on the LLC Sets Containing In-
structions (AES rounds are marked)

2.5 Post-Attack: Noise Removal and Key Re-
construction

Once the data is collected, we apply a number of heuristics to re-
move noise patterns. Figures 7(a) and 7(c) show the initial results
for the two types of attacks. We developed a script to remove re-
curring noise patterns and to group consecutive loads: Figures 7(b)
and 7(d) show the results after removing this noise. Finally, we
reconstruct the key using the mechanism described by Gullasch et
al. [1]. We modified the reconstruction procedure slightly to ac-
count for the differences between the two AES implementations:
the authors used one 2KB table each for encryption and decryption,
while our implementation uses four 1KB tables. Consequently, the
number of observable bits for every critical byte is reduced from
five to four in our case. As a result, our attack has to consider 16
times more possibilities when reconstructing each key column can-
didate, only introducing bounded amount of extra work.

3. ATTACK ANALYSIS
We compare the side channels obtained by Cache Games at-

tack [1] and our attack using three metrics. The first metric is
the True Positive Rate (TPR)—the number of true critical accesses
observed by the attacker, divided by the number of all critical ac-
cesses of the victim. The second metric is the False Discovery Rate
(FDR)—the number of false critical access observations by the at-
tacker, divided by the number of all measurements of the attacker.
The third metric is Cache Side-channel Vulnerability (CSV) that
was proposed in [25].

C
ac

he
 S

et

(a) Initial results for Flush+Reload attack

 0

 8

 16

 24

 32

 40

 48

 56

access measured by attacker noise true positive false positive critical accesses

(c) Initial results for Prime+Probe attack

access measured by attacker noise true positive false positive critical accesses

(b) Flush+Reload attack results
after noise removal

access measured by attacker noise true positive false positive critical accesses

(d) Prime+Probe attack results
after noise removal

access measured by attacker noise true positive false positive critical accesses

Figure 7: Sample Noise Removal Results for Two Attack Types

CSV is computed using an oracle trace that is perfectly aligned
with the attacker trace. Even though the trace of critical accesses
for the victim is available, aligning the time series is a challenge. To
approximate, we captured minimal timing information for the vic-
tim and assumed that any attacker measurement of the same critical
access that occurred immediately before or after is a correct mea-
surement. To align the two traces, we placed a "hole" value (-1) to
pair with missed and incorrect measurements.

The CSV metric was computed as the Pearson correlation of at-
tacker and victim traces, which are constructed as:

Mi,j =

{
1, if accessed seti at timej
0, otherwise

We converted the aligned traces of attacker and victim into such
matrices A and V , where each step has either one access or zero
accesses for hole values. Then we computed CSV as follows:

CSV =

∑
i,j(Ai,j − Ā)(Vi,j − V̄)√∑

i,j(Ai,j − Ā)2
∑

i,j(Vi,j − V̄)2

While CSV is also a relative metric, the absolute value of CSV
is a good indicator of the attacker’s capability of reconstructing the
secret key. The reason is that for the traces used in our analysis,
CSV is a direct metric of the percentage of critical accesses that
are captured by the attacker, the percentage of critical accesses that
are missed, and the percentage that are measured incorrectly. If
all measurements are correct, the CSV value is 1. Each critical
access that has not been captured by the attacker and each incorrect
measurement brings the CSV value down.

Figure 8 compares the two attacks in terms of these three met-
rics. Recall that Cache Games is a FLUSH+RELOAD attack which
requires shared critical data enabling precise eviction of victim data
and detection of its accesses. Thus, it has the best obtainable chan-
nel quality. We executed 100 experiments for both attack types and
sorted them for each metric. Our attack has inferior side channel
quality in some of the experiments. However, for a substantial num-
ber of experiments, the quality of the channels is comparable. To
present the likelihood of success in our attack, Figure 8 shows the
mean value for each metric for Cache Games attack along with the
percentage of our attacks that achieve the same mean. According
to all considered metrics, at least one in five instances of our attack
has the same side channel quality. For TPR, this number is two

out of three. These results demonstrate that using the methodology
for Cache Games attack described in [1], the secret key reconstruc-
tion can also be performed for our attack with comparable effort;
on average, our post-attack phase including noise removal and key
reconstruction took less than 3 minutes to complete.

The main reason for the inferior side-channel quality in some
PRIME+PROBE experiments is the collision of pages that contain
critical data with other memory pages in the LLC. For some ex-
periments, most of the cache sets are constantly accessed, as they
are used by either the scheduler, or the system calls used for the at-
tack on CFS scheduler. However, the attacker can force the critical
data to be mapped elsewhere if the memory is put under pressure
and the critical page is evicted out of physical memory. In our ex-
periments, we found that the kernel swap daemon kswapd can be
forced to run by allocating all available memory to evict victim’s
critical data. Upon reload, the critical page is likely to get a dif-
ferent mapping and therefore a different hashed index in the LLC.
Our estimates showed that claiming 16GB memory can force a new
hash in under 3 minutes.

4. CONCLUDING REMARKS
This paper contributes a new high-resolution attack on LLCs that

extracts leakage at high precision from the cache and does not re-
quire the use of large pages. To enable the attack, we first reverse
engineer the cache to identify the critical cache sets without rely-
ing on large pages. We also identify and account for idiosyncrasies
in the cache organization to allow a more accurate attack and in-
terpretation of the results. In addition, we carry out a concurrent
attack on the instruction cache to identify when the victim is ex-
ecuting encryption to distinguish relevant memory accesses from
noise. We showed that the attack allows to recover a secret key
within a few minutes, accounting for both the active probe phase
and the post-attack analysis.

5. ACKNOWLEDGEMENT
This material is based on research sponsored by the National Sci-

ence Foundation grant CNS-1422401.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CSV

Mean of Flush+Reload = 0.86Mean of top 26%
of Prime + Probe = 0.86

Flush+Reload Prime+Probe

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

SVF

Mean of Flush+Reload = 0.46

Mean of top 65%
of Prime + Probe = 0.46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

TPR

Mean of Flush+Reload = 0.82
Mean of top 69%

of Prime + Probe = 0.82

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

FDR

Mean of Flush+Reload = 0.10

Mean of top 22%
of Prime + Probe = 0.10

Figure 8: Comparison of the Two Attacks Using Different Metrics for 100 Runs

6. REFERENCES
[1] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games –

bringing access-based cache attacks on aes to practice,” in
Security and Privacy (SP), 2011 IEEE Symposium on,
pp. 490–505, 2011.

[2] Z. Wang and R. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proc.
International Symposium on Computer Architecture (ISCA),
June 2007.

[3] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable caches:
Low-complexity mitigation of cache side-channel attacks,”
in ACM Transactions on Architecture and Code
Optimization, Special Issue on High Performance and
Embedded Architectures and Compilers, Jan. 2012.

[4] Z. Wang and R. Lee, “A novel cache architecture with
enhanced performance and security,” in Proc. International
Symposium on Microarchitecture (MICRO), Dec. 2008.

[5] J. Kong, O. Aclicmez, J. Seifert, and H. Zhou,
“Hardware-software integrated approaches to defend against
software cache-based side channel attacks,” in Int. Symp. on
High Performance Comp. Architecture (HPCA), 2009.

[6] E. Tromer, A. Shamir, and D. Osvik, “Efficient cache attacks
on AES, and countermeasures,” in Journal of Cryptology,
2009.

[7] C. Percival, “Cache missing for fun and profit,” 2005.
http://www.daemonology.net/papers/htt.pdf.

[8] D. Bernstein, “Cache-timing attacks on AES,” 2005.
Available at:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[9] J. Bonneau and I.Mironov, “Cache-collision timing attacks
against AES,” in CHES Workshop, 2006.

[10] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in IEEE
Symposium on Security and Privacy (SP), 2015.

[11] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared
cache attack that works across cores and defies vm
sandboxing,” in IEEE Symposium on Security and Privacy
(SP), 2015.

[12] F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas,
H. Shafi, V. Shanbhogue, and U. Svagaonkar, “Innovative
instructions and software model for isolated execution,” in
Wkshp. on Hardware and Architectural Support for Security
and Privacy, with ISCA’13, 2013.

[13] “Intel Software Guard Extensions Programming Reference,”
2014. Accessed Mar. 2015 at https://software.intel.com/sites/

default/files/managed/48/88/329298-002.pdf.
[14] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A.

Ghazaleh, and R. Riley, “Iso-x: A flexible architecture for
hardware-managed isolated execution,” in Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, pp. 190–202, IEEE, 2014.

[15] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,”
2015.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security
(CCS), pp. 199–212, 2009.

[17] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem:
System-level protection against cache-based side channel
attacks in the cloud,” in USENIX Security Symposium, Aug.
2012.

[18] Y. Yarom and K. Falkner, “Flush+reload: a high resolution,
low-noise, l3 cache side-channel attack,” in Proc. USENIX
Security Symposium, Aug. 2014.

[19] G. Irazoqui, M. Inci, T. Eisenbarth, and B. Sunar, “Wait a
minute! a fast, cross-vm attack on aes,” in Research in
Attacks, Intrusions and Defenses (RAID), pp. 299–319, 2014.

[20] I. Intel, “Intel 64 and ia-32 architectures software developer’s
manual,” 2010.

[21] G. F. Grohoski, M. Shah, J. D. Davis, A. Saulsbury, C. Fu,
V. Iyengar, J.-Y. Tsai, and J. Gibson, “Level 2 cache index
hashing to avoid hot spots,” 2007. US Patent No. 7,290,116.

[22] R. Hund, C. Willems, and T. Holz, “Practical timing side
channel attacks against kernel space aslr,” in IEEE
Symposium on Security and Privacy (SP), pp. 191–205,
2013.

[23] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and
A. Francillon, “Reverse-engineering intel last-level cache
complex addressing using performance counters,” in Proc. of
18th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2015.

[24] Y. Yarom, Q. Ge, F. Liu, R. Lee, and G. Heiser, “Mapping
the intel last-level cache,” in Cryptology ePrint Archive:
Report 2015/905, 2015.

[25] T. Zhang, S. Chen, F. Liu, and R. Lee, “Side channel
vulnerability metrics: the promise and the pitfalls,” in
Workshop on Hardware-Assisted Security, held in
conjunction with HPCA-13, 2013.

