Hardware Trojans: Taxonomy and Detection Methods

Julien Francq julien.francq@cassidian.com

Cassidian CyberSecurity

2014, July the 15th

Outline

The HINT Project

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Side-Channels: Challenges & Solutions

Some Subtleties

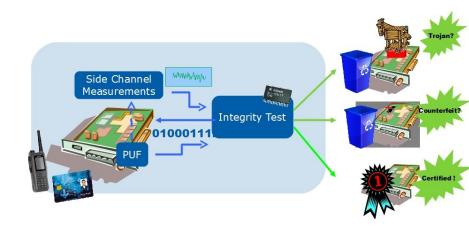
Summary

HINT Project Profile

- HINT = Holistic Approaches for Integrity of ICT-Systems
- ► Project Number: 317930
- Project website: www.hint-project.eu
- ▶ Project start: October 1, 2012
- ► Project duration: 3 years
- ► Total Costs: €5.103.893
- ► EC-Contribution: €3.350.000
- Project is co-financed by the European Commission under Seventh Framework Programme

Missions

- Development of a common framework for system integrity checking
- Use developed technologies on real-time applications
- Prepare adoption by future security evaluation schemes


Motivation

- Authenticity and integrity of hardware components in modern ICT systems
- Security challenged by improving attacks Recent trends:
 - Counterfeiting of hardware components
 - "Hardware Trojans": Hidden functions in Integrated Circuits
- HINT proposal: Novel technologies to support assurance of genuineness and integrity

Technical Approach

► Holistic Integrity Checking for Components in ICT-Systems

Objectives

- Main objective: Improve security of architectures and platforms based on tamper-resistant integrated circuits
- Development of methods to:
 - Perform at-time-of-use integrated checking of the global integrity of a system for hardware and embedded software
 - Check the "genuineness" of the secure integrated circuits by detecting functional clones or counterfeited circuits
 - ► Detect the presence of Hardware Trojans
- Main technologies used:
 - Physically Unclonable Functions, enabling to authenticate a hardware component using a physical, intrinsic and unique property of the device
 - Side Channel based analysis to monitor the behaviour of hardware components and to detect changes from their original specifications and implementations

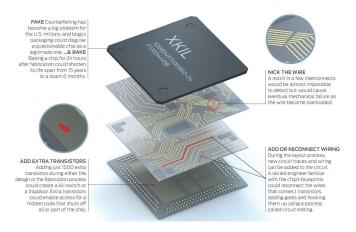
Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

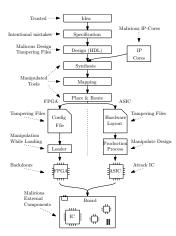
Overview

Logic Testing: Challenges & Solutions


Side-Channels: Challenges & Solutions

Some Subtleties

Summary


Hardware Trojan (HT)

 Malicious modifications of an Integrated Circuit (IC) during its design flow

Context

- Outsourcing of the fabrication of the ICs
- ▶ Difficult to ensure the trust in all the steps of the design flow

Hardware Trojans in Practice

- ▶ 2005: US Department of Defense
- ▶ 2007: DARPA "Trust in IC Program"
- ▶ 2009: "Hot Topic" of CHES conference
- After 2009: other conferences (DATE, HOST, CARDIS, ReConFig, etc.)
- [Skorobogatov et al.: "Breaktrough Silicon Scanning Discovers Backdoor in Military Chip", CHES 2012
- ► [Becker *et al.*: "Stealthy Dopant-Level Hardware Trojans", CHES 2013]
- Research projects like HINT (European funded)
- ► ⇒ HTs: real and emerging threat

Possible Payloads

- Kill switch
 - Fighters
- Dysfonctional circuit
 - Satellite which works only 6 months
- Secret information leakage
 - Ciphered communications
- Help a malware by providing a backdoor
 - Privilege escalation, automatic login, password theft
- Prevent from going to sleep mode
 - Autonomy
- etc.

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

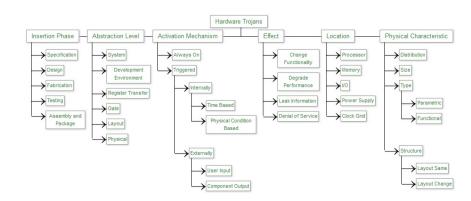
HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Sama Subtlation

C Subtleties


Hardware Trojan Taxonomy

- ► Taxonomy: tree where each branch defines a different property
- ▶ In the ideal case, a specific HT must be on only one leaf of the tree

Benefits of the taxonomy

- Systematic study of their characteristics
- Specific detection methods for each HT class
- ▶ Benchmark circuits for each class
- ▶ Best existing taxonomy: Trust-Hub

Trust-Hub Taxonomy

Factoring the Taxonomy

- ▶ 4 (effects) × 5 (locations) × 5 (insertion phases) × 6 (abstraction levels) × 5 (activation mechanisms) = 3000 different HTs!
- Very rich taxonomy!
- ▶ Impossible to implement them all, and then detect them
- ► ⇒ Factoring this taxonomy
- ► Total: ~ 100 HTs

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

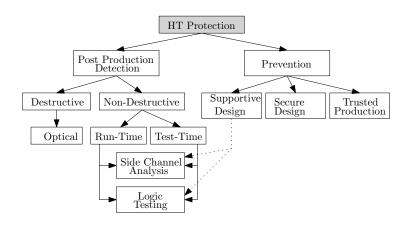
Overview
Logic Testing: Challenges & Solu

Side-Channels: Challenges & Solutions

Some Subtleties

Summary

Introduction to Hardware Trojans


Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions Side-Channels: Challenges & Solutions Some Subtleties Summary

HT Detection Methods Overview

▶ No method is 100% successfull!

Detect HTs? Not so easy...

- Systems on Chip are more and more complex, and detecting a small malicious modification is difficult
- 2. Reverse-engineering inspection is costly and difficult
 - ► No guarantee that the remaining ICs are HT-free
- 3. By nature, HTs are designed to be stealthy
 - Not easily detectable with conventional logic testing
- By nature, HTs are small to be not easily detected by optical analysis
 - Difficult to detect them with side-channel (power consumption, electromagnetic radiations, etc.) analysis

Introduction to Hardware Trojans

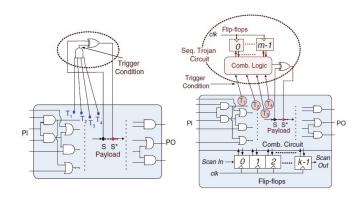
Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Side-Channels: Challenges & Solutions


Some Subtleties

Summary

Test Generation (1/2)

- ► Conventional logic testing cannot be used to reliably detect HT
- ► Manufacturing defects (stuck-at-faults) ≠ HT effects
- ► Difficult to trigger a HT
 - ► Time-bombs
- Some HTs have no impact on functional outputs (Trojan Side-Channels)
- Vast spectrum of possible HTs

Test Generation (2/2)

- ► HTs are on low controllability and observability nodes for a rare triggering
- Extremely challenging to exhaustively generate test vectors for triggering a HT

Deterministic vs. Probabilistic Approach

- Deterministic approach difficult
 - Many possible HTs
 - ▶ Function of some IC nodes
 - ► ⇒ Exhaustive enumeration impossible
- Statistic approach :
 - 1. Find rare events in the circuit
 - 2. Get a list of HTs which can be inserted
 - 3. Generate test vectors and estimate their coverage
 - 4. ⇒ Set of high quality test vectors
- ▶ 85% reduction in testset length compared to a random approach, but less efficient with big triggers and takes a long time

Introduction to Hardware Trojans

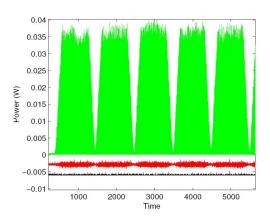
Hardware Trojan Taxonomy

HT Detection Methods

Overview
Logic Testing: Challenges & Solutions
Side-Channels: Challenges & Solutions
Some Subtleties

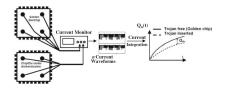
Summary

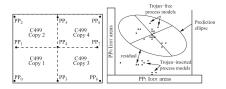
Side-Channel Analysis


- ▶ Any HT in the IC should modify its leakage current (IDDQ), dynamic power trace (IDDT), path-delay characteristic, ElectroMagnetic (EM) radiation.
- Don't need to trigger a HT for measuring its effects
- Test vectors generation easier than for logic testing
- Needs HT-free circuits
 - Get side-channel measurements and then reverse-engineering to check if the IC is HT-free
- ▶ If so, the measurements become a reference, and we can then compare the side-channels of the other circuits

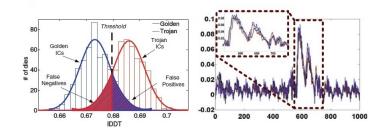
Global Side-Channel Analysis

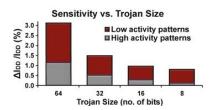
► Green: RSA signal


► Red: Process noise (offset)


▶ Black: HT signal (offset)

Local Side-Channel Analysis


- ► Local Side-Channel Analysis more efficient than global ones
- ► Needs again HT-free circuits



► Maximize/Minimize the activity of some IC areas

Noise and Sensitivity

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Some Subtleties

Summary

Some Subtleties

- Added circuitry for the HT detection must not be infected itself
 - ► At best, the added circuitry is disabled (e.g., fault countermeasure)
 - At worst, it can be turned into a backdoor (e.g., scan chain)
- A HT triggering logic can exploit the "Test/Scan Enable" control line to disable itself
- ▶ Parametric HTs very difficult to detect

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Sama Subtlation

Summary

Summary

	Logic testing approach	Side-channel approach
Pros	(a) Effective for small Trojans(b) Robust under process noise	(a) Effective for large Trojans(b) Test generation is easy
Cons	(a) Test generation is complex(b) Large Trojan detection challenging	(a) Vulnerable to process noise(b) Small Trojan detection challenging

- ► Complementary methods
- ► Combine test-time and run-time methods
- Modify the IC for assistive and preventive methods
 - ► ⇒ Design for Hardware Trust

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

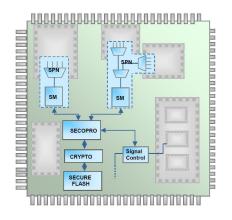
Overview

Logic Testing: Challenges & Solutions

Side-Channels: Challenges & Solutions

Some Subtleties

Summary


Introduction

- ▶ To improve HT detection rate, modify the IC
- ▶ ⇒ Design for Hardware Trust
 - Prevent from the insertion of HT
 - Ease side-channel analysis and logic testing
- ▶ 4 main methods:
 - Delay-Based Methods
 - Rare Event Removal
 - Design for Trojan Test
 - Proof-Carrying Hardware
- Run-Time Detection Methods

Run-Time Methods

- ► Last line of defense
- ▶ On-line monitoring of the IC in real-time, for checks:
 - Critical operations,
 - ► Idle mode,
 - Security policies,
 - Performance or availability of some units,
 - etc.
- Costly

Run-Time Methods

- Disable one suspect block or force one operation
- ► SPN : Signal Probe Network
- ightharpoonup SM : Security Monitor (\sim FSM)
- ► SECOPRO : Security and Control Processor
- Configurations ciphered and stored in secured Flash memory
- Overhead?

Conclusion

- ► Hardware Trojans are real threats for integrated circuits
- ► HT taxonomy is very rich
- ▶ No HT detection method of the state-of-the-art is 100% successful
- ▶ 3 lines of defense:
 - Design for Hardware Trust
 - Test-Time Methods
 - Run-Time Methods
- ► A European initiative: HINT project
 - Let's talk about it during the coffee breaks!
- Very encouraging first results:
 - Infected benchmark circuits are available
 - Detection with side-channel analysis
 - Internal circuit delays extraction

Thanks! Questions?

