Introduction to Fault Attacks

Josep Balasch KU Leuven ESAT / COSIC

IACR Summer School 2015

Chia Laguna, Sardinia (Italy) 19 October 2015

COSIC

KU LEUVEN

What are fault attacks?

- Active attacks against cryptographic implementations
- Electronic devices are subject to (usually) rare faults
 - Software
 - Hardware
- Reason: combination of strange events
- A fault can cause errors
- An errors can be exploited to expose secrets

input

History

- Single Event Upsets (SEU)
 - Random bit flips occurring in storage elements

3

From *accidental* faults to *intentional* faults

- #1: Hacking community vs. DirecTV (late 90s)
 - PayTV technology, broadcast only
 - Smart-card based subscription model
 - Phone line to communicate with provider
- Hacking community:
 - Read/write access to smart cards
 - Change to unlimited subscription model
- **Reply from DirecTV**
 - Possibility to update cards through broadcast channel
 - Disable hacked cards by inserting an inifinite loop

booting inf loop: JMP inf loop // continue

From accidental faults to intentional faults

- Reply from the hacker community
 - Unlooper: device that was able to unlock the card

From accidental faults to intentional faults

- #2: The Bellcore Attack [BDL97]
 - Target: implementations of RSA with CRT
 - Main operation: s = m^d mod n , where d is private key
 - Security of RSA: intractability of factoring large integers (n = p·q)
 - RSA-CRT allows to speed-up computations:

$$s_{p} = m_{p}^{dP} \mod p$$

$$s_{q} = m_{q}^{dQ} \mod q$$

$$s = (((s_{q}-s_{p}) \cdot p_{inv}) \mod q) \cdot p + s_{p}$$

- Attack steps:
 - 1. Input m, collect s
 - 2. Input m, inject any fault on s_p or s_q , collect \hat{s}
 - 3. Compute gcd(s- ŝ,n) to factorize RSA modulus
- Devastating effects
- Today countermeasures extensively studied and deployed

The fault attack jungle

The embedded design space

The fault model

- 1. Granularity: how many bits dare affected by the fault?
 - 1. Single bit
 - 2. Few bits
 - 3. Word
- 2. Modification (aka fault type)
 - 1. Stuck-at, e.g. zero or one
 - 2. Flip
 - 3. Random
- 3. Control: on the fault location <u>and</u> on timing
 - 1. Precise
 - 2. Loose
 - 3. None
- 4. Duration or effect of the fault
 - 1. Transient
 - 2. Permanent
 - 3. Destructive

Categories of fault injection

- Non-invasive
 - No physical damage to device
 - Modify working conditions
 - Moderate knowledge/equipment
- Semi-invasive
 - Chip decapsulation
 - Milling, etching, cleaning
 - Affordable equipment

src: AirClean Systems

src: Dr. Sergei Skobogoratov

- Invasive
 - Establish electrical contact to chip
 - Modification, destruction, ...
 - Expensive equipment, e.g. semiconductor diagnostics

src: ZEISS

src: Bridge Technology

Glitches and spikes

- Most popular form of non-invasive attacks
- Both precise timing control, single or multiple
- Clock glitches
 - Temporal overclocking
 - Critical path violations

- Voltage spikes
 - Temporal switch to higher (or lower) voltages

[KQ07]

Time

[SH08]

Glitches and spikes

- Effects on program flow
 - Replacement of instructions (sometimes skipping)
 - Tampering with loops and conditional statements
 - Change of program counter
- Effects on data flow
 - Computation errors
 - Corrupted memory pointers
 - No bit transitions on data bus

Other Non-invasive Methods

- Underpowering
 - Reduce supply voltage
 - Transient vs. Permanent
 - Increase propagation delay of combinational logic

Temperature

- Device on heating plate
- Errors appear for a short window
 - Low-controlability
 - Low-frequency
- Cooling: data retention

Optical Fault Injection

- Semiconductors are inherently sensitive to light
- Effect of optical pulses
 - Switching a transistor
- The chip die needs to be exposed
 - Semi-invasive method
- Example of fault injection setups:
 - Photo flash in micro-probing station
 - Laser beam on XY table, with microscope view and camera

[SA02]

src: Opto

Optical Fault Injection

- Many configurable parameters
 - Position (X,Y coordinates)
 - Wavelength
 - Spot size

- Energy / Peak power
- Pulse vs. Continuous
- Repetition rate

[WWM11]

- Search space grows exponentially !
- Many fault models possible

src: Dr. Sergei Skobogoratov, Semi-invasive attakcs, page 98

EM Fault Injection

- Injection of faults via the EM channel
 - Induction of Eddy current
 - Camera flash-gun connected to an active probe
 - Spark-gap transmitter
 - EM Pulses with micro probes
 - Effects:
 - Switching transistors
 - Critical path violations
 - (Non-) and semi- invasive approach

Micro-

Antenna

[QS3]

RF

Generator

Power

Amplifier

EM illumination

model

Back to the PIN example

Assume the function *check(...)* runs in constant time

- Attacker can target the main function with an active attack
 - "Skip" conditional statement
 - E.g. by glitches/spikes during condition check
 - Prevent the counter increase
 - E.g. by disconnecting power supply
 - ...

Differential Fault Analysis

- Ask for a cryptographic computation twice
 - With any input and no fault (reference)
 - With the same input and fault injection
- Infer information about the key from the output differential

- Sometimes a single fault injection is enough!
 - Recall #2: Bellcore attack

Fault analysis on block ciphers

- DFA Differential Fault Analysis [BS97]
 - Similar to classical differential cryptanalysis

2/3 faulty encryptions, 4 key bytes, 2¹⁶ complexity

Fault analysis on block ciphers

• CFA – Collision Fault Analysis [H04]

- Stuck-at fault model assumed, e.g. zero
- Target operations in first round(s)
- Attack steps:
 - 1. Random plaintext, fault @SB_1:
 - 2. Random plaintext, no faults:
 - 3. When $\hat{C} == C$, recover key byte:

SB(*P1 xor K1*_*11*) = *0x00*

ciphertext Ĉ

ciphertext C

Introduction to Fault Attacks

SB(*P1 xor K1*_11) = 0*x*00

Differences with CFA:

1.

2.

3.

Larger number of faults, not required to know the ciphertext !

Fault analysis on block ciphers

[BS03]

[C07]

IFA – Ineffective Fault Analysis

Target operations in first round(s)

Random plaintext, no faults:

Same plaintext, fault @SB_1:

When $\hat{C} == C$, recover key byte:

ciphertext C ciphertext Ĉ

Countermeasures

You **cannot** prevent the adversary from trying to mount an attack

- But you can try to make it more difficult !
- Typical countermeasures against fault attacks:
 - *Hardening* hardware:
 - "Hide" sensitive parts of the chip:
 - glue logic, bus scrambling, memory encryption, ...
 - metal layers (passive shielding)
 - Add filters and/or security sensors:
 - power, clock
 - light, temperature, wire mesh (active shielding)

Countermeasures

- Hardening computations:
 - Information redundancy
 - Addition of parities, linear codes
 - Ring embeddings
 - Infective computations
 - Hiding countermeasures
 - Branchless implementations
 - Parallel execution or inverse execution

... but second-order fault attacks are possible

Conclusions

- Fault attacks are a very powerful tool
 - Specialized equipment available to wider class of adversaries
- There is no 100% protection
 - With enough resources and time, attacks can be mounted
- Arms-race attacks vs. countermeasures

Bibliography

[BDL97] D. Boneh, R. DeMillo, and R. Lipton, "On the importance of checking cryptographic protocols for faults", CRYPTO, 1997.

[BGV11] J. Balasch, B. Gierlichs, and I. Verbauwhede, "An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs", FDTC, 2011.

[BGVLV12] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, I. Verbauwhede, "Power Analysis of Atmel CryptoMemory - Recovering Keys from Secure EEPROMs", CT-RSA, 2012.

[BS97] E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key Cryptosystems", CRYPTO, 1997.

[BS03] J. Blömer and J.-P. Seifert, "Fault Based Cryptanalysis of the Advanced Encryption Standard (AES)", FC, 2003.

[C07] C. Clavier, "Secret External Encodings Do Not Prevent Transient Fault Analysis", CHES, 2007.

[CLFT14] F. Courbon, P. Loubet-Moundi, J. Fournier, A. Tria, "Adjusting laser injections for fully controlled faults", COSADE, 2014.

Bibliography

[HS13] M. Hutter, J.-M. Schmidt, "The Temperature Side Channel and Heating Fault Attacks", CARDIS, 2013.

[HSP08] M. Hutter, J.-M. Schmidt, T.Plos, "RFID and its Vulnerability to Faults", CHES, 2008.

[H04] L. Hemme, "A Differential Fault Attack Against Early Rounds of (Triple-) DES", CHES, 2004.

[KQ07] C. H. Kim and J.-J. Quisquater, "Fault attacks for CRT based RSA: new attacks, new results, and new countermeasures", WISTP, 2007.

[QS03] J.-J. Quisquater and D. Samyde, "Eddy current for Magnetic Analysis with Active Sensor", *Esmart*, 2002.

[SH08] J.-M. Schmidt and C. Herbst, "A Practical Fault Attack on Square and Multiply", FDTC, 2008.

[SA02] S. Skorobogatov, R. Anderson, "Optical Fault Induction Attacks", CHES, 2002.

[WWM11] J.van Woudenberg, M. Witteman and F. Menarini, "Practical optical fault injection on secure microcontrollers", FDTC, 2011.

Bibliography

[VKS11] I. Verbauwhede, D. Karaklajić, and J.-M. Schmidt, "The Fault Attack Jungle - A Classification Model to Guide You", FDTC, 2011.

[ZL79] J.F. Ziegler and W.A. Landford, "Effect of cosmic rays on computer memories", Science, 1979.

Thanks for your attention!

Josep Balasch: josep.balasch@esat.kuleuven.be