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Scheduling Overview
! Scheduler runs when we context switching among 

processes/threads to pick who runs next
u Under what situation does this occur?
u What should it do?  Does it matter?

! Making this decision is called scheduling

! Now, we’ll look at:
u The goals of scheduling
u Starvation
u Various well-known scheduling algorithms
u Standard Unix scheduling algorithm
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Multiprogramming
! Increase CPU utilization and job throughput by 

overlapping I/O and CPU activities
! Mechanisms vs. policy
! We have covered the mechanisms

u Context switching, how and when it happens
u Process queues and process states

! Now we’ll look at the policies
u Which process (thread) to run, for how long, etc.

! We’ll refer to schedulable entities as jobs (standard 
usage) – could be processes, threads, people, etc.
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Scheduling Goals
! Scheduling works at two levels in an operating system

1. Control multiprogramming level –number of 
jobs loaded into memory

» Moving jobs to/from memory is often called swapping
» Long term scheduler: infrequent

2.   To decide what job to run next
» Does it matter?  What criteria?
» Short term scheduler: frequent
» We are concerned with this level of scheduling
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Scheduling
! The scheduler is the OS module that manipulates the process 

queues, moving jobs to and fro

! The scheduling algorithm determines which jobs are chosen to 
run next and what queues they wait on

! In general, the scheduler runs:
u When a job switches from running to waiting
u When an interrupt occurs
u When a job is created or terminated



Preemptive vs. Non-
preemptive scheduling

! We’ll discuss scheduling algorithms in two contexts
u In preemptive systems the scheduler can interrupt a running job 

(involuntary context switch)

u In non-preemptive systems, the scheduler waits for a running job to 
explicitly block (voluntary context switch)
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Scheduling Goals
! What are some reasonable goals for a scheduler?
! Scheduling algorithms can have many different goals:

u CPU utilization
u Job throughput (# jobs/unit time)
u Turnaround time (Tfinish – Tstart)

» Normalized turnaround time = Turnaround time/process length
u Avg Waiting time (Avg(Twait): avg time spent on wait queues)
u Avg Response time (Avg(Tready): avg time spent on ready queue)

! Batch systems
u Strive for job throughput, turnaround time (supercomputers)

! Interactive systems
u Strive to minimize response time for interactive jobs (PC)



CSE 153 – Lecture 11 – Scheduling 8

Starvation

Starvation is a scheduling “non-goal”:
! Starvation: process prevented from making progress 

because other processes have the resource it requires
u Resource could be the CPU, or a lock (recall readers/writers)

! Starvation usually a side effect of the sched. Algorithm
u E.g., a high priority process always prevents a low priority 

process from running on the CPU
u E.g., one thread always beats another when acquiring a lock

! Starvation can be a side effect of synchronization
u E.g., constant supply of readers always blocks out writers



First In First Out (FIFO)
! Schedule tasks in the order they arrive

u Continue running them until they complete or give up the 
processor

! Example: memcached
u Facebook cache of friend lists, …

! On what workloads is FIFO particularly bad?
u Imagine being at supermarket to buy a drink of water, but get 

stuck behind someone with a huge cart (or two!) 
» …and who pays in pennies!

u Can we do better?
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Shortest Job First (SJF)
! Always do the task that has the shortest remaining 

amount of work to do
u Often called Shortest Remaining Time First (SRTF)

! Suppose we have five tasks arrive one right after each 
other, but the first one is much longer than the others
u Which completes first in FIFO? Next?
u Which completes first in SJF? Next?
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FIFO vs. SJF

Time

Tasks

(1)

(2)

(3)

(4)

(5)

FIFO

SJF

(1)

(2)

(3)

(4)

(5)

Whats the big deal? 
Don’t they finish at 
the same time?
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SJF Example

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33



SJF

! Claim: SJF is optimal for average 
response time
u Why?

! For what workloads is FIFO optimal?
u For what is it pessimal (i.e., worst)?

! Does SJF have any downsides?
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Shortest Job First (SJF)
! Problems?

u Impossible to know size of CPU burst
» Like choosing person in line without looking inside basket/cart 

u How can you make a reasonable guess?
u Can potentially starve

! Flavors
u Can be either preemptive or non-preemptive
u Preemptive SJF is called shortest remaining time first (SRTF)



Round Robin
! Each task gets resource for a fixed period of time (time 

quantum)
u If task doesn’t complete, it goes back in line

! Need to pick a time quantum
u What if time quantum is too long?  

» Infinite?
u What if time quantum is too short?  

» One instruction?
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Round Robin

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

Round Robin (100 ms time slice)

(1)

(2)

(3)

(4)

(5)

rest of task 1

rest of task 1
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Round Robin vs. FIFO

! Many context switches can be costly
! Other than that, is Round Robin always 

better than FIFO?
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Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

FIFO and SJF

(1)

(2)

(3)

(4)

(5)

Round Robin vs. FIFO
Is Round Robin always fair?
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Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues 
  I/O 
request

     I/O
completes

gets 
CPU

     I/O
completes
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Priority Scheduling
! Priority Scheduling

u Choose next job based on priority
» Airline checkin for first class passengers

u Can implement SJF, priority = 1/(expected CPU burst)
u Also can be either preemptive or non-preemptive

! Problem?
u Starvation – low priority jobs can wait indefinitely

! Solution 
u “Age” processes

» Increase priority as a function of waiting time
» Decrease priority as a function of CPU consumption
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More on Priority Scheduling
! For real-time (predictable) systems, priority is often 

used to isolate a process from those with lower 
priority. Priority inversion is a risk unless all resources 
are jointly scheduled.

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

pr
io
ri
ty

time

pr
io
ri
ty

time

How can this be avoided?

PH

PL

PH

PL

PM



Priority inheritance
! If lower priority process is being waited on by a higher 

priority process it inherits its priority
u How does this help?
u Does it prevent the previous problem?

! Priority inversion is a big problem for real-time 
systems
u Mars pathfinder bug (link) 
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https://www.microsoft.com/en-us/research/people/mbj/?from=http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html


Problems of basic algorithms
! FIFO: Good: fairness; bad: turnaround time, response 

time
! SJF: good: turnaround time; bad: fairness, response 

time, need to estimate run-time 
! RR: good: fairness, response time; bad: turnaround 

time
! Is there a scheduler that balances these issues better?

u Challenge: limited information about a process in the 
beginning

u Challenge: how to prevent gaming the scheduler to get more 
run-time
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MLQ: combining algorithms
! Scheduling algorithms can be combined

u Have multiple queues
u Use a different algorithm for each queue
u Move processes among queues

! Example: Multiple-level feedback queues (MLFQ)
u Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.
u Queues have priorities, jobs on same queue scheduled RR
u Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior



Multi-level Feedback Queue 
(MFQ)

! Goals:
u Responsiveness
u Low overhead
u Starvation freedom
u Some tasks are high/low priority
u Fairness (among equal priority tasks)

! Not perfect at any of them!
u Used in Linux (and probably Windows, MacOS)
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MFQ
! Set of Round Robin queues

u Each queue has a separate priority
! High priority queues have short time slices

u Low priority queues have long time slices
! Scheduler picks first thread in highest priority queue
! Tasks start in highest priority queue

u If time slice expires, task drops one level

CSE 153 – Lecture 11 – Scheduling 27



MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O 
bound task

2

4

3

80

40

20

10

Round Robin Queues
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Unix Scheduler
! The canonical Unix scheduler uses a MLFQ

u 3-4 classes spanning ~170 priority levels
» Timesharing: first 60 priorities
» System: next 40 priorities
» Real-time: next 60 priorities
» Interrupt: next 10 (Solaris)

! Priority scheduling across queues, RR within a queue
u The process with the highest priority always runs
u Processes with the same priority are scheduled RR

! Processes dynamically change priority
u Increases over time if process blocks before end of quantum
u Decreases over time if process uses entire quantum
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Motivation of Unix Scheduler
! The idea behind the Unix scheduler is to reward 

interactive processes over CPU hogs
! Interactive processes (shell, editor, etc.) typically run 

using short CPU bursts
u They do not finish quantum before waiting for more input

! Want to minimize response time
u Time from keystroke (putting process on ready queue) to 

executing keystroke handler (process running)
u Don’t want editor to wait until CPU hog finishes quantum

! This policy delays execution of CPU-bound jobs
u But that’s ok



Other scheduling ideas
! Lottery scheduler: Give processes tickets proprotional 

to their priority
u Linux cgroup

! Stride Scheduler (also known as proportional share): 
Like lottery but more predictable
u Basis for Linux Completely Fair Scheduler

! Scheduling for heterogeneous systems
! Scheduling for distributed systems/cloud
! …
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Multiprocessor Scheduling
! This is its own topic, we wont go into it in detail

u Could come back to it towards the end of the quarter

! What would happen if we used MFQ on a 
multiprocessor?
u Contention for scheduler spinlock
u Multiple MFQ used – this optimization technique is called 

distributed locking and is common in concurrent programming
! A couple of other considerations

u Co-scheduling for parallel programs
u Core affinity
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Scheduling Summary
! Scheduler (dispatcher) is the module that gets invoked 

when a context switch needs to happen 
! Scheduling algorithm determines which process runs, 

where processes are placed on queues
! Many potential goals of scheduling algorithms

u Utilization, throughput, wait time, response time, etc.
! Various algorithms to meet these goals

u FCFS/FIFO, SJF, Priority, RR
! Can combine algorithms

u Multiple-level feedback queues
u Unix example
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Next class
! Deadlock


