
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 9: Semaphores

Last time
! Introduced hardware support for synchronization

u Two flavors:
» Atomic instructions that read and update a variable

" E.g., test-and-set, xchange, …
» Disable interrupts

! Blocking locks
u Spin lock only around acquire of lock

! Introduced Semaphores

CSE 153 – Lecture 9 – Semaphores and Monitors 2

3

Semaphores
! Semaphores are an abstract data type that provide mutual

exclusion to critical sections
u Block waiters, interrupts enabled within critical section

u Described by Dijkstra in THE system in 1968

! Semaphores are integers that support two operations:
u wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()

u signal(semaphore): increment, allow another thread to enter
» Also V() after the Dutch word for increment, or up()

u That's it! No other operations – not even just reading its value – exist

! Semaphore safety property: the semaphore value is always
greater than or equal to 0

CSE 153 – Lecture 9 – Semaphores and Monitors

CSE 153 – Lecture 9 – Semaphores and Monitors 4

Semaphore Types
! Semaphores come in two types
! Mutex semaphore (or binary semaphore)

u Represents single access to a resource
u Guarantees mutual exclusion to a critical section

! Counting semaphore (or general semaphore)
u Multiple threads pass the semaphore determined by count

» mutex has count = 1, counting has count = N
u Represents a resource with many units available
u or a resource allowing some unsynchronized concurrent

access (e.g., reading)

5

Using Semaphores
! Use is similar to our locks, but semantics are different

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

wait(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
signal(S);
return balance;

}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads
block

It is undefined which thread runs
after a signal

critical
section

CSE 153 – Lecture 9 – Semaphores and Monitors

6

Beyond Mutual Exclusion
! We’ve looked at a simple example for using

synchronization
u Mutual exclusion while accessing a bank account

! We’re going to use semaphores to look at more
interesting examples
u Counting critical region
u Ordering threads
u Readers/Writers
u Producer consumer with bounded buffers
u More general examples

CSE 153 – Lecture 9 – Semaphores and Monitors

CSE 153 – Lecture 9 – Semaphores and Monitors 7

Readers/Writers Problem
! Readers/Writers Problem:

u An object is shared among several threads
u Some threads only read the object, others only write it
u We can allow multiple readers but only one writer

» Let #r be the number of readers, #w be the number of writers
» Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

! Use three variables
u int readcount – number of threads reading object
u Semaphore mutex – control access to readcount
u Semaphore w_or_r – exclusive writing or reading

CSE 153 – Lecture 9 – Semaphores and Monitors 8

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
wait(w_or_r); // lock out readers
Write;
signal(w_or_r); // up for grabs

}

Readers/Writers

reader {
wait(mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r); // synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex); // unlock readcount

}

! w_or_r provides mutex between readers and writers
u Readers wait/signal when readcount goes from 0 to 1 or 1 to 0

! If a writer is writing, where will readers be waiting?
! Once a writer exits, all readers can fall through

u Which reader gets to go first?
u Is it guaranteed that all readers will fall through?

! If readers and writers are waiting, and a writer exits,
who goes first?

! Why do readers use mutex?
! What if the signal is above “if (readcount == 1)”?
! If read in progress when writer arrives, when can writer

get access?
CSE 153 – Lecture 9 – Semaphores and Monitors 9

Readers/Writers Notes

CSE 153 – Lecture 9 – Semaphores and Monitors 10

Bounded Buffer

! Problem: Set of buffers shared by producer and consumer threads
u Producer inserts jobs into the buffer set
u Consumer removes jobs from the buffer set

! Producer and consumer execute at different rates
u No serialization of one behind the other
u Tasks are independent (easier to think about)
u The buffer set allows each to run without explicit handoff

! Data structure should not be corrupted
u Due to race conditions
u Or producer writing when full
u Or consumer deleting when empty

CSE 153 – Lecture 9 – Semaphores and Monitors 11

Bounded Buffer (2)
! 0 £ np - nc £ N
! Use three semaphores:

u full – count of full buffers
» Counting semaphore
» full = ?

" (np – nc)

u empty – count of empty buffers
» Counting semaphore
» empty = ?

" N - (np - nc)

u mutex – mutual exclusion to shared set of buffers
» Binary semaphore

CSE 153 – Lecture 9 – Semaphores and Monitors 12

producer {
while (1) {

Produce new resource;
wait(empty); // wait for empty buffer
wait(mutex); // lock buffer list
Add resource to an empty buffer;
signal(mutex); // unlock buffer list
signal(full); // note a full buffer

}
}

Bounded Buffer (3)

consumer {
while (1) {

wait(full); // wait for a full buffer
wait(mutex); // lock buffer list
Remove resource from a full buffer;
signal(mutex); // unlock buffer list
signal(empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

CSE 153 – Lecture 9 – Semaphores and Monitors 13

Bounded Buffer (4)
! Why need the mutex at all?

! The pattern of signal/wait on full/empty is a common construct
often called an interlock

! Producer-Consumer and Bounded Buffer are classic examples of
synchronization problems

u We will see and practice others

CSE 153 – Lecture 9 – Semaphores and Monitors 14

Semaphore Summary
! Semaphores can be used to solve any of the

traditional synchronization problems
! However, they have some drawbacks

u They are essentially shared global variables
» Can potentially be accessed anywhere in program

u No connection between the semaphore and the data being
controlled by the semaphore

u Used both for critical sections (mutual exclusion) and
coordination (scheduling)

» Note that I had to use comments in the code to distinguish
u No control or guarantee of proper usage

! Sometimes hard to use and prone to bugs
u Another approach: Use programming language support

