Goals of this lecture

1. Show that software locks don’t work
 - We need help from the hardware
2. Introduce some hardware primitives that can help us
 - Use them to build locks
 - Understand their properties
3. Start building higher level synchronization mechanisms
 - Introducing Semaphores
Recall – why Locks

withdraw (account, amount) {
 acquire(lock);
 balance = get_balance(account);
 balance = balance – amount;
 put_balance(account, balance);
 release(lock);
 return balance;
}

Why is the “return” outside the critical section? Is this ok?
What happens when a third thread calls acquire?
Synchronization so far...

- We looked at how to build software locks
 - Difficult
 - Worse: it doesn’t really work
 - Compilers don’t think multi-threaded
 - Hardware reorders memory ops: memory consistency models
- Lets get help from the hardware!

```java
while (true) {
    try1 = true;
    turn = 2;
    while (try2 && turn != 1) ;
    critical section
    try1 = false;
    outside of critical section
}
```

Compiler transforms to

```java
try1 = false;
turn = 2;
while (true) {
    while (try2 && turn != 1) ;
    critical section
    outside of critical section
}
```
Hardware to the rescue

- Crux of the problem:
 - We get interrupted between checking the lock and setting it to 1
 - Software locks reordered by compiler/hardware

- Possible solutions?
 - Atomic instructions: create a new assembly language instruction that checks and sets a variable atomically
 » Cannot be interrupted!
 » How do we use them?
 - Disable interrupts altogether (no one else can interrupt us)
Atomic Instructions: Test-And-Set

- The semantics of test-and-set are:
 - Record the old value
 - Set the value to indicate available
 - Return the old value
- Hardware executes it atomically!

```c
bool test_and_set (bool *flag) {
    bool old = *flag;
    *flag = True;
    return old;
}
```

- When executing test-and-set on “flag”
 - What is value of flag afterwards if it was initially False? True?
 - What is the return result if flag was initially False? True?
Using Test-And-Set

- Here is our lock implementation with test-and-set:

```c
struct lock {
    int held = 0;
};
void acquire (lock) {
    while (test-and-set(&lock->held));
}
void release (lock) {
    lock->held = 0;
}
```

- When will the while return? What is the value of held?
- Does it satisfy critical region requirements? (mutex, progress, bounded wait, performance?)
Still a Spinlocks

- The problem with spinlocks is that they are wasteful
 - Although still useful in some cases; lets discuss advantages and disadvantages

- If a thread is spinning on a lock, then the scheduler thinks that this thread needs CPU and puts it on the ready queue

- If N threads are contending for the lock, the thread which holds the lock gets only 1/N’th of the CPU
Another solution: Disabling Interrupts

- Another implementation of acquire/release is to disable interrupts:

```c
struct lock {
}
void acquire (lock) {
    disable interrupts;
}
void release (lock) {
    enable interrupts;
}
```

- Note that there is no state associated with the lock
- Can two threads disable interrupts simultaneously?
On Disabling Interrupts

- Disabling interrupts blocks notification of external events that could trigger a context switch (e.g., timer)
- In a “real” system, this is only available to the kernel
 - Why?

- Disabling interrupts is insufficient on a multiprocessor
 - Back to atomic instructions

- Like spinlocks, only want to disable interrupts to implement higher-level synchronization primitives
 - Don’t want interrupts disabled between acquire and release
Summarize Where We Are

- **Goal:** Use mutual exclusion to protect critical sections of code that access shared resources
- **Method:** Use locks (spinlocks or disable interrupts)
- **Problem:** Critical sections can be long

Spinlocks:
- Threads waiting to acquire lock spin in test-and-set loop
- Wastes CPU cycles
- Longer the CS, the longer the spin
- Greater the chance for lock holder to be interrupted
- Memory consistency model causes problems (out of scope of this class)

Disabling Interrupts:
- Should not disable interrupts for long periods of time
- Can miss or delay important events (e.g., timer, I/O)
Higher-Level Synchronization

- Spinlocks and disabling interrupts are useful for short and simple critical sections
 - Can be wasteful otherwise
 - These primitives are “primitive” – don’t do anything besides mutual exclusion
- Need higher-level synchronization primitives that:
 - Block waiters
 - Leave interrupts enabled within the critical section
- All synchronization requires atomicity
- So we’ll use our “atomic” locks as primitives to implement them
Implementing Locks (4)

- Block waiters, interrupts enabled in critical sections

```c
struct lock {
    int held = 0;
    queue Q;
}
void acquire (lock) {
    Disable interrupts;
    if (lock->held) {
        put current thread on lock Q;
        block current thread;
    }
    lock->held = 1;
    Enable interrupts;
}
void release (lock) {
    Disable interrupts;
    if (Q)
        remove and unblock a waiting thread;
    else
        lock->held = 0;
    Enable interrupts;
}
```

acquire(lock) Interrupts Disabled

Critical section Interrupts Enabled

release(lock) Interrupts Disabled
Higher-Level Synchronization

- We looked at using locks to provide mutual exclusion
- Locks work, but they have some drawbacks when critical sections are long
 - Spinlocks – inefficient
 - Disabling interrupts – can miss or delay important events
- Instead, we want synchronization mechanisms that
 - Block waiters
 - Leave interrupts enabled inside the critical section
- Look at two common high-level mechanisms
 - Semaphores: binary (mutex) and counting
 - Monitors: mutexes and condition variables
- Use them to solve common synchronization problems
Semaphores

- Semaphores are an **abstract data type** that provide mutual exclusion to critical sections
 - Block waiters, interrupts enabled within critical section
 - Described by Dijkstra in THE system in 1968
- Semaphores are integers that support two operations:
 - `wait(semaphore)`: decrement, block until semaphore is open
 - Also `P()`, after the Dutch word for test, or `down()
 - `signal(semaphore)`: increment, allow another thread to enter
 - Also `V()` after the Dutch word for increment, or `up()
 - That's it! No other operations – not even just reading its value – exist
- Semaphore safety property: the semaphore value is always greater than or equal to 0
Blocking in Semaphores

- Associated with each semaphore is a queue of waiting threads/processes
- When wait() is called by a thread:
 - If semaphore is open, thread continues
 - If semaphore is closed, thread blocks on queue
- Then signal() opens the semaphore:
 - If a thread is waiting on the queue, the thread is unblocked
 - If no threads are waiting on the queue, the signal is remembered for the next thread
Semaphore Types

- Semaphores come in two types
- **Mutex** semaphore (or **binary** semaphore)
 - Represents single access to a resource
 - Guarantees mutual exclusion to a critical section

- **Counting** semaphore (or **general** semaphore)
 - Multiple threads pass the semaphore determined by count
 - mutex has count = 1, counting has count = N
 - Represents a resource with many units available
 - or a resource allowing some unsynchronized concurrent access (e.g., reading)
Using Semaphores

- Use is similar to our locks, but semantics are different

```c
struct Semaphore {
    int value;
    Queue q;
} S;

withdraw (account, amount) {
    wait(S);
    balance = get_balance(account);
    balance = balance - amount;
    put_balance(account, balance);
    signal(S);
    return balance;
}
```

It is undefined which thread runs after a signal.
Using Semaphores

- We’ve looked at a simple example for using synchronization
 - Mutual exclusion while accessing a bank account

- We’re going to use semaphores to look at more interesting examples
 - Counting critical region
 - Ordering threads
 - Readers/Writers
 - Producer consumer with bounded buffers
 - More general examples
Example Problem(s)

- Create a critical region where up to three threads (but no more) may enter at a time
 - Exploits the counting feature of semaphores

- Order operations across two threads; thread A executes first, then thread B executes
 - Exploits the ability to initialize semaphores to different values