CSE 153
Design of Operating
Systems

Winter 2023

Lecture 5: Processes (2)

Last time

e Defined virtualization

e Processes as the abstraction to virtualize the CPU

+ Looked at the state that the process encapsulates
» Address space, registers, control registers, resources (files, ...)

+ Looked at the conceptual behavior of the process

» Execution states and the transition between them
= Connect to the sleeping beauty model and events that trigger transitions

CSE 153 — Lecture 5—- Processes (ll) 2

Execution State Graph

Create
Process
Read
y /O Done
Unschedule Schedule
Process Process
/IIO,/ Page
Terminated Fault, etc.
Process

Exit

CSE 153 — Lecture 5 — Processes (ll)

How does the OS support this
model?

We will discuss three issues:

1. How does the OS represent a process in the kernel?

The OS data structure representing each process is called the
Process Control Block (PCB)

2. How do we pause and restart processes?
We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the
system?
A lot of queues!

CSE 153 — Lecture 5—- Processes (ll) 4

Xv6 struct proc

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {

uint sz; //
pde_tx pgdir; //
char xkstack; //
enum procstate state; //
volatile int pid; //
struct proc xparent; //
struct trapframe xtf; //
struct context kcontext; //
void skchan; //
int killed; //
struct file *xofile[NOFILE]; //
struct inode kcwd; //
char name[16]; //

Size of process memory (bytes)
Linear address of proc's pgdir
Bottom of kernel stack for this process
Process state

Process ID

Parent process

Trap frame for current syscall
Switch here to run process

If non-zero, sleeping on chan
If non-zero, have been killed
Open files

Current directory

Process name (debugging)

CSE 153 — Lecture 5— Processes (Il)

struct proc (Solaris)

/*

* One structure allocated per active process. It contains all

* data needed about the process while the process may be swapped

* out. Other per-process data (user.h) is also inside the proc structure.

* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

*/

typedef struct proc {
/*
* Fields requiring no explicit locking
*/
struct vnode *p_exec;
struct as *p_as;
struct plock *p_lockp;
kmutex_t p_crlock;
struct cred *p_cred;
/*
* Fields protected by pidlock
*/
int p_swapcnt;
char p_stat;
char p_wcode;
ushort_t p_pidflag;
int p_wdata;

/* pointer to a.out vnode */

/* process address space pointer */
/* ptr to proc struct's mutex lock */
/* lock for p_cred */

/* process credentials */

/* number of swapped out lwps */
/* status of process */

/* current wait code */

/* flags protected only by pidlock */

/* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock
*/
kcondvar_t p_cv;
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some Iwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */
/* to to be held. */
/* unused */
/* protected while set. */

/* proc struct's condition variable */

ushort_t p_pad1;
uint_t p_flag;

/* flags defined below */
clock_t p_utime;
clock_t p_stime;
clock_t p_cutime;
clock_t p_cstime;
caddr_t *p_segacct;
caddr_t p_brkbase;
size_t p_brksize;

I*

* Per process signal stuff.
*/

k_sigset_t p_sig;

/* user time, this process */

/* system time, this process */

/* sum of children's user time */

/* sum of children's system time */
/* segment accounting info */
/* base address of heap */

/* heap size in bytes */

/* signals pending to this process */
k_sigset_t p_ignore; /* ignore when generated */
k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */
struct sigghdr *p_sigghdr; /* hdr to sigqueue structure pool */
struct sigghdr *p_signhdr; /* hdr to signotify structure pool */
uchar_t p_stopsig; /* jobcontrol stop signal */

CSE 153 — Lecture 5—- Processes (ll)

* Special per-process flag when set will fix misaligned memory
* references.

*/

char p_fixalignment;

/*

* Per process Iwp and kernel thread stuff

*/

id_t p_lwpid; /* most recently allocated Iwpid */

int p_lwpent;
int p_lwprent;
int p_lwpwait;
int p_zombcnt;
int p_zomb_max;
id_t *p_zomb_tid;
kthread_t *p_tlist;

/*

* Jproc (process filesystem) debugger interface stuff.
*/
k_sigset_t p_sigmask;
k_fltset_t p_fltmask;
struct vnode *p_trace;

/* number of lwps in this process */
/* number of not stopped Iwps */
/* number of lwps in lwp_wait() */
/* number of zombie lwps */
/* number of entries in p_zomb_tid */
/* array of zombie lwpids */
/* circular list of threads */

/* mask of traced signals (/proc) */
/* mask of traced faults (/proc) */
/* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */
kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */
struct watched_area *p_warea; /* list of watched areas */
ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */
int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */
struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;
size_t p_stksize; /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling
*/
hrtime_t p_mstart;
hrtime_t p_mterm;

/* hi-res process start time */
/* hi-res process termination time */

struct proc (Solaris) (2)

hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acctNMSTATES]; /* microstate sum over defunct lwps */
struct Irusage p_ru; /* Irusage sum over defunct lwps */

struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */

uint_t p_defunct; /* number of defunct lwps */

I*

* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/

kmutex_t p_pflock;
struct prof p_prof;

/* protects user profile arguments */
/* profile arguments */

/*
* The user structure
Wi

struct user p_user; /* (see sys/user.h) */

I*
* Doors.

*/

kthread_t *p_server_threads;

struct door_node *p_door_list; /* active doors */
struct door_node *p_unref_list;

kcondvar_t p_server_cv;

char p_unref_thread; /* unref thread created */
I*

* Kernel probes

*/

uchar_t p_tnf_flags;

CSE 153 — Lecture 5—- Processes (ll)

struct proc (Solaris) (3)

/* #if defined(__ia64)

:/CZ Security (C2_AUDIT) caddr_t p_upstack; /* base of the upward-growing stack */

caddr_t p_audit_data; /* per process audit structure */ size_t p_upstksize; /" size of that stack, in bytes */

kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */ uchar_t p_isa; /* which instruction set is utilized */
#if defined(i386) || defined(__i386) || defined(__ia64) #endif

I void *p_ree; /* resource control extension data */

:/LDT support. struct task *p_task; /* our containing task */

kmutex_t p_ldtlock: /* protects the following fields */ struct proc *p_taskprev; /* ptr to previous process in task */

struct seg_desc *p_ldt; /* Pointer to private LDT */ struct proc *p_tasknext; /* ptr to next process in task */

struct seg_desc p_lIdt_desc; /* segment descriptor for private LDT */ int p_lwpdaemon; /* number of TP_DAEMON Iwps */
, d!;\t p_ldtlimit; /* highest selector used */ int p_lwpdwait; /* number of daemons in lwp_wait() */

o !size_t p_swrss; /* resident set size before last swap */ kthread_t “p_tidhash; /" tid (IV‘_Ip'd) lookup hash table */
structaio *p_aio; /* pointer to async 1/O struct */ struct sc_data *p_schedctl; /* available schedctl structures */
struct itimer **p_itimer; /* interval timers */ } proc_t;

k_sigset t p_notifsigs; /* signals in notification set */
kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */

uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */
caddr_t p_usrstack; /* top of the process stack */

uint_t p_stkprot; /* stack memory protection */
model_t p_model; /* data model determined at exec time */
struct lwpchan_data *p_lcp; /* lwpchan cache */

/*

* protects unmapping and initilization of robust locks.

*/

kmutex_t p_lcp_mutexinitlock;

utrap_handler_t *p_utraps; /* pointer to user trap handlers */
refstr_t *p_corefile; /* pattern for core file */

CSE 153 — Lecture 5—- Processes (ll)

How to pause/restart processes?

e When a process is running, its dynamic state is in memory and some
hardware registers

+ Hardware registers include Program counter, stack pointer, control registers, data
registers, ...

+ To be able to stop and restart a process, we need to completely restore this state

e When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

e When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

e Changing CPU hardware state from one process to another is called a
context switch

+ This can happen 100s or 1000s of times a second!
CSE 153 — Lecture 5—- Processes (ll) 9

How does the OS track processes?

e The OS maintains a collection of queues that
represent the state of all processes in the system

e Typically, the OS at least one queue for each state
+ Ready, waiting, etc.

e Each PCB is queued on a state queue according to its
current state

e As a process changes state, its PCB is unlinked from
one queue and linked into another

CSE 153 — Lecture 5—- Processes (ll) 10

State Queues

Ready Queue Firefox PCB X Server PCB Outlook PCB

A
Y
A
Y
A
Y

Disk /0 Queue Emacs PCB Is PCB

<
<

Y
A
Y

Console Queue

Sleep Queue There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

CSE 153 — Lecture 5—- Processes (ll) 1

How to support the process
abstraction?

e Finally, we see the process interface offered to programs

+ How to use this abstraction?
+ What system calls are needed?

CSE 153 — Lecture 5—- Processes (ll) 12

Process system call API

e Process creation: how to create a new process?

e Process termination: how to terminate and clean up a
process

e Coordination between processes

+ Wait, waitpid, signal, inter-process communication,
synchronization

e Other

+ E.g., set quotas or priorities, examine usage, ...

CSE 153 — Lecture 5—- Processes (ll)

13

Process Creation

e A process is created by another process
+ Why is this the case?
+ Parent is creator, child is created (Unix: ps “PPID” field)
+ What creates the first process (Unix: init (PID 0 or 1))?

e In some systems, the parent defines (or donates)
resources and privileges for its children

+ Unix: Process User ID is inherited — children of your shell
execute with your privileges

e After creating a child, the parent may either wait for it
to finish its task or continue in parallel (or both)

CSE 153 — Lecture 5—- Processes (ll)

14

Process Creation: Windows

e The system call on Windows for creating a process is
called, surprisingly enough, CreateProcess:

(simplified)

e CreateProcess

*

*

*

Creates and initializes a new PCB

Creates and initializes a new address space

Loads the program specified by “prog” into the address space
Copies “args” into memory allocated in address space

Initializes the saved hardware context to start execution at
main (or wherever specified in the file)

Places the PCB on the ready queue

CSE 153 — Lecture 5—- Processes (ll) 15

Process Creation: Unix

e In Unix, processes are created using fork()

o fork()

+ Creates and initializes a new PCB
+ Creates a new address space

+ Initializes the address space with a copy of the entire
contents of the address space of the parent

+ Initializes the kernel resources to point to the resources used
by parent (e.g., open files)
+ Places the PCB on the ready queue
e Fork returns twice

+ Returns the child’ s PID to the parent, “0” to the child

CSE 153 — Lecture 5—- Processes (ll)

16

fork()

int main(int argc, char *argv([])
{
char *name = argv|[0];
int child pid = fork();
if (child pid == 0) {
printf (“Child of %$s is %d\n”, name, getpid()):;
return O;

} else {
printf (“My child is %d\n”, child pid);
return O;

}

What does this program print?

CSE 153 — Lecture 5—- Processes (ll) 17

Example Output

[well ~]$ gcec t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486

CSE 153 — Lecture 5—- Processes (ll)

18

Duplicating Address Spaces

PC—>

child_pid = 486
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

Parent

=)

child_pid =0
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

~— PC

Child

CSE 153 — Lecture 5—- Processes (ll)

19

Divergence

PC —

child_pid = 486
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

Parent

=)

child_pid =0
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

~— PC

Child

CSE 153 — Lecture 5—- Processes (ll)

20

Example Continued

[well ~]$ gcec t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486

[well ~]$./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?

CSE 153 — Lecture 5—- Processes (ll)

21

Why fork()?

e Very useful when the child...
+ Is cooperating with the parent
+ Relies upon the parent’ s data to accomplish its task
e Example: Web server
while (1) {
int sock = accept():;
if ((child pid = fork()) == 0) {
Handle client request

} else {
Close socket

}

CSE 153 — Lecture 5—- Processes (ll)

22

Process Creation: Unix (2)

e Wait a second. How do we actually start a new
program?

o exec()
+ Stops the current process
+ Loads the program “prog” into the process’ address space
+ Initializes hardware context and args for the new program
+ Places the PCB onto the ready queue
+ Note: It does not create a new process

e \What does it mean for exec to return?
e \What does it mean for exec to return with an error?

CSE 153 — Lecture 5—- Processes (ll)

23

Process Creation: Unix (3)

e fork() is used to create a new process, exec is used to
load a program into the address space

e What happens if you run “exec csh” in your shell?
e What happens if you run “exec Is” in your shell? Try it.

e fork() can return an error. Why might this happen?

CSE 153 — Lecture 5—- Processes (ll) 24

Process Termination

e All good processes must come to an end. But how?
o Unix: exit(int status), NT: ExitProcess(int status)

e Essentially, free resources and terminate
+ Terminate all threads (next lecture)
+ Close open files, network connections
+ Allocated memory (and VM pages out on disk)
+ Remove PCB from kernel data structures, delete

e Note that a process does not need to clean up itself
+ OS will handle this on its behalf

CSE 153 — Lecture 5—- Processes (ll)

wait() a second...

e Often it is convenient to pause until a child process
has finished

+ Think of executing commands in a shell

o Use wait() (WaitForSingleObject)

+ Suspends the current process until a child process ends
+ waitpid() suspends until the specified child process ends

e Wait has a return value...what is it?

e Unix: Every process must be reaped by a parent
+ What happens if a parent process exits before a child?
+ What do you think is a “zombie” process?

CSE 153 — Lecture 5—- Processes (ll)

26

Unix Shells

while (1) {
char *cmd = read command() ;
int child pid = fork();
if (child pid == 0) {
Manipulate STDIN/OUT/ERR file descriptors for pipes,
redirection, etfc.

exec (cmd) ;

panic (“exec failed’) ;
} else {

if (! (run_in background))

waitpid(child pid);

CSE 153 — Lecture 5—- Processes (ll)

27

Processes: check your
understanding

e \What are the units of execution?
+ Processes

e How are those units of execution represented?
+ Process Control Blocks (PCBs)

e How is work scheduled in the CPU?
+ Process states, process queues, context switches

e \What are the possible execution states of a process?
+ Running, ready, waiting, ...

e How does a process move from one state to another?
+ Scheduling, 1/O, creation, termination

e How are processes created?
+ CreateProcess (NT), fork/exec (Unix)

CSE 153 — Lecture 5—- Processes (ll)

28

