
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 5: Processes (2)

Last time
! Defined virtualization

! Processes as the abstraction to virtualize the CPU
u Looked at the state that the process encapsulates

» Address space, registers, control registers, resources (files, …)

u Looked at the conceptual behavior of the process
» Execution states and the transition between them

! Connect to the sleeping beauty model and events that trigger transitions

CSE 153 – Lecture 5– Processes (II) 2

CSE 153 – Lecture 5 – Processes (II) 3

Execution State Graph

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O, Page
Fault, etc.

I/O Done

Schedule
Process

Unschedule
Process

CSE 153 – Lecture 5– Processes (II) 4

How does the OS support this
model?

We will discuss three issues:
1. How does the OS represent a process in the kernel?

� The OS data structure representing each process is called the
Process Control Block (PCB)

2. How do we pause and restart processes?
� We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the
system?

� A lot of queues!

Xv6 struct proc

CSE 153 – Lecture 5– Processes (II) 5

CSE 153 – Lecture 5– Processes (II) 6

struct proc (Solaris)
/*
* One structure allocated per active process. It contains all
* data needed about the process while the process may be swapped
* out. Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/

typedef struct proc {
/*
* Fields requiring no explicit locking
*/

struct vnode *p_exec; /* pointer to a.out vnode */
struct as *p_as; /* process address space pointer */
struct plock *p_lockp; /* ptr to proc struct's mutex lock */
kmutex_t p_crlock; /* lock for p_cred */
struct cred *p_cred; /* process credentials */
/*
* Fields protected by pidlock
*/

int p_swapcnt; /* number of swapped out lwps */
char p_stat; /* status of process */
char p_wcode; /* current wait code */
ushort_t p_pidflag; /* flags protected only by pidlock */
int p_wdata; /* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock
*/

kcondvar_t p_cv; /* proc struct's condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some lwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */

/* to to be held. */
ushort_t p_pad1; /* unused */
uint_t p_flag; /* protected while set. */

/* flags defined below */
clock_t p_utime; /* user time, this process */
clock_t p_stime; /* system time, this process */
clock_t p_cutime; /* sum of children's user time */
clock_t p_cstime; /* sum of children's system time */
caddr_t *p_segacct; /* segment accounting info */
caddr_t p_brkbase; /* base address of heap */
size_t p_brksize; /* heap size in bytes */
/*
* Per process signal stuff.
*/

k_sigset_t p_sig; /* signals pending to this process */
k_sigset_t p_ignore; /* ignore when generated */
k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */
struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */
struct sigqhdr *p_signhdr; /* hdr to signotify structure pool */
uchar_t p_stopsig; /* jobcontrol stop signal */

CSE 153 – Lecture 5– Processes (II) 7

struct proc (Solaris) (2)
/*
* Special per-process flag when set will fix misaligned memory
* references.
*/

char p_fixalignment;

/*
* Per process lwp and kernel thread stuff
*/

id_t p_lwpid; /* most recently allocated lwpid */
int p_lwpcnt; /* number of lwps in this process */
int p_lwprcnt; /* number of not stopped lwps */
int p_lwpwait; /* number of lwps in lwp_wait() */
int p_zombcnt; /* number of zombie lwps */
int p_zomb_max; /* number of entries in p_zomb_tid */
id_t *p_zomb_tid; /* array of zombie lwpids */
kthread_t *p_tlist; /* circular list of threads */
/*
* /proc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask; /* mask of traced signals (/proc) */
k_fltset_t p_fltmask; /* mask of traced faults (/proc) */
struct vnode *p_trace; /* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */
kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */
struct watched_area *p_warea; /* list of watched areas */
ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */
int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */
struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;
size_t p_stksize; /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling
*/

hrtime_t p_mstart; /* hi-res process start time */
hrtime_t p_mterm; /* hi-res process termination time */

hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */
struct lrusage p_ru; /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */
uint_t p_defunct; /* number of defunct lwps */
/*
* profiling. A lock is used in the event of multiple lwp's
* using the same profiling base/size.
*/

kmutex_t p_pflock; /* protects user profile arguments */
struct prof p_prof; /* profile arguments */

/*
* The user structure
*/

struct user p_user; /* (see sys/user.h) */

/*
* Doors.
*/

kthread_t *p_server_threads;
struct door_node *p_door_list; /* active doors */
struct door_node *p_unref_list;
kcondvar_t p_server_cv;
char p_unref_thread; /* unref thread created */

/*
* Kernel probes
*/

uchar_t p_tnf_flags;

CSE 153 – Lecture 5– Processes (II) 8

struct proc (Solaris) (3)
/*
* C2 Security (C2_AUDIT)
*/

caddr_t p_audit_data; /* per process audit structure */
kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)
/*
* LDT support.
*/

kmutex_t p_ldtlock; /* protects the following fields */
struct seg_desc *p_ldt; /* Pointer to private LDT */
struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */
int p_ldtlimit; /* highest selector used */

#endif
size_t p_swrss; /* resident set size before last swap */
struct aio *p_aio; /* pointer to async I/O struct */
struct itimer **p_itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */
kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */
uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */
caddr_t p_usrstack; /* top of the process stack */
uint_t p_stkprot; /* stack memory protection */
model_t p_model; /* data model determined at exec time */
struct lwpchan_data *p_lcp; /* lwpchan cache */
/*
* protects unmapping and initilization of robust locks.
*/

kmutex_t p_lcp_mutexinitlock;
utrap_handler_t *p_utraps; /* pointer to user trap handlers */
refstr_t *p_corefile; /* pattern for core file */

#if defined(__ia64)
caddr_t p_upstack; /* base of the upward-growing stack */
size_t p_upstksize; /* size of that stack, in bytes */
uchar_t p_isa; /* which instruction set is utilized */

#endif
void *p_rce; /* resource control extension data */
struct task *p_task; /* our containing task */
struct proc *p_taskprev; /* ptr to previous process in task */
struct proc *p_tasknext; /* ptr to next process in task */
int p_lwpdaemon; /* number of TP_DAEMON lwps */
int p_lwpdwait; /* number of daemons in lwp_wait() */
kthread_t **p_tidhash; /* tid (lwpid) lookup hash table */
struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

9

How to pause/restart processes?

! When a process is running, its dynamic state is in memory and some
hardware registers
u Hardware registers include Program counter, stack pointer, control registers, data

registers, …
u To be able to stop and restart a process, we need to completely restore this state

! When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

! When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

! Changing CPU hardware state from one process to another is called a
context switch
u This can happen 100s or 1000s of times a second!

CSE 153 – Lecture 5– Processes (II)

CSE 153 – Lecture 5– Processes (II) 10

How does the OS track processes?

! The OS maintains a collection of queues that
represent the state of all processes in the system

! Typically, the OS at least one queue for each state
u Ready, waiting, etc.

! Each PCB is queued on a state queue according to its
current state

! As a process changes state, its PCB is unlinked from
one queue and linked into another

CSE 153 – Lecture 5– Processes (II) 11

State Queues
Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue
.
.

.

ls PCB

There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

How to support the process
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction?
u What system calls are needed?

CSE 153 – Lecture 5– Processes (II) 12

Process system call API
! Process creation: how to create a new process?

! Process termination: how to terminate and clean up a
process

! Coordination between processes
u Wait, waitpid, signal, inter-process communication,

synchronization

! Other
u E.g., set quotas or priorities, examine usage, …

CSE 153 – Lecture 5– Processes (II) 13

CSE 153 – Lecture 5– Processes (II) 14

Process Creation
! A process is created by another process

u Why is this the case?
u Parent is creator, child is created (Unix: ps “PPID” field)
u What creates the first process (Unix: init (PID 0 or 1))?

! In some systems, the parent defines (or donates)
resources and privileges for its children
u Unix: Process User ID is inherited – children of your shell

execute with your privileges

! After creating a child, the parent may either wait for it
to finish its task or continue in parallel (or both)

CSE 153 – Lecture 5– Processes (II) 15

Process Creation: Windows
! The system call on Windows for creating a process is

called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

! CreateProcess
u Creates and initializes a new PCB
u Creates and initializes a new address space
u Loads the program specified by “prog” into the address space
u Copies “args” into memory allocated in address space
u Initializes the saved hardware context to start execution at

main (or wherever specified in the file)
u Places the PCB on the ready queue

CSE 153 – Lecture 5– Processes (II) 16

Process Creation: Unix
! In Unix, processes are created using fork()

int fork()

! fork()
u Creates and initializes a new PCB
u Creates a new address space
u Initializes the address space with a copy of the entire

contents of the address space of the parent
u Initializes the kernel resources to point to the resources used

by parent (e.g., open files)
u Places the PCB on the ready queue

! Fork returns twice
u Returns the child’s PID to the parent, “0” to the child

CSE 153 – Lecture 5– Processes (II) 17

fork()
int main(int argc, char *argv[])
{

char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());
return 0;

} else {

printf(“My child is %d\n”, child_pid);
return 0;

}
}

What does this program print?

CSE 153 – Lecture 5– Processes (II) 18

Example Output
[well ~]$ gcc t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486

CSE 153 – Lecture 5– Processes (II) 19

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

CSE 153 – Lecture 5– Processes (II) 20

Divergence

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}
PC

PC

child_pid = 486 child_pid = 0

CSE 153 – Lecture 5– Processes (II) 21

Example Continued
[well ~]$ gcc t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486
[well ~]$./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?

CSE 153 – Lecture 5– Processes (II) 22

Why fork()?
! Very useful when the child…

u Is cooperating with the parent
u Relies upon the parent’s data to accomplish its task

! Example: Web server
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
} else {

Close socket
}

}

CSE 153 – Lecture 5– Processes (II) 23

Process Creation: Unix (2)
! Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

! exec()
u Stops the current process
u Loads the program “prog” into the process’ address space
u Initializes hardware context and args for the new program
u Places the PCB onto the ready queue
u Note: It does not create a new process

! What does it mean for exec to return?
! What does it mean for exec to return with an error?

CSE 153 – Lecture 5– Processes (II) 24

Process Creation: Unix (3)
! fork() is used to create a new process, exec is used to

load a program into the address space

! What happens if you run “exec csh” in your shell?
! What happens if you run “exec ls” in your shell? Try it.

! fork() can return an error. Why might this happen?

CSE 153 – Lecture 5– Processes (II) 25

Process Termination
! All good processes must come to an end. But how?

u Unix: exit(int status), NT: ExitProcess(int status)
! Essentially, free resources and terminate

u Terminate all threads (next lecture)
u Close open files, network connections
u Allocated memory (and VM pages out on disk)
u Remove PCB from kernel data structures, delete

! Note that a process does not need to clean up itself
u OS will handle this on its behalf

CSE 153 – Lecture 5– Processes (II) 26

wait() a second…
! Often it is convenient to pause until a child process

has finished
u Think of executing commands in a shell

! Use wait() (WaitForSingleObject)
u Suspends the current process until a child process ends
u waitpid() suspends until the specified child process ends

! Wait has a return value…what is it?
! Unix: Every process must be reaped by a parent

u What happens if a parent process exits before a child?
u What do you think is a “zombie” process?

CSE 153 – Lecture 5– Processes (II) 27

Unix Shells
while (1) {

char *cmd = read_command();
int child_pid = fork();
if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes,
redirection, etc.
exec(cmd);
panic(“exec failed”);

} else {
if (!(run_in_background))

waitpid(child_pid);
}

}

CSE 153 – Lecture 5– Processes (II) 28

Processes: check your
understanding

! What are the units of execution?
u Processes

! How are those units of execution represented?
u Process Control Blocks (PCBs)

! How is work scheduled in the CPU?
u Process states, process queues, context switches

! What are the possible execution states of a process?
u Running, ready, waiting, …

! How does a process move from one state to another?
u Scheduling, I/O, creation, termination

! How are processes created?
u CreateProcess (NT), fork/exec (Unix)

