
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 4: Processes

Last class
! OS structure, operation, and interaction with user progs

u Privileged mode: To enforce isolation and manage resources,
OS must have exclusive powers not available to users

» How does the switch happen securely?

u OS is not running unless there is an event:
» OS schedules a user process to run then goes to sleep
» It wakes up (who wakes it?) to handle events
» Many types of events

u Program view and system calls: program asks the OS when it
needs a privileged operation

CSE 153 – Lecture 4 – Processes 2

3

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal

4

System Calls
! For a user program to do something “privileged” (e.g.,

I/O) it must call an OS procedure
• Known as crossing the protection boundary, or a protected

procedure call

! Hardware provides a system call instruction that:
• Causes an exception, which invokes a kernel handler

• Passes a parameter determining the system
routine to call

• Saves caller state (PC, regs, mode) so it can be restored
• Why save mode?

• Returning from system call restores this state

5

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to
kernel mode,

save state

Trap handler

Find read
handler

Restore state,
return to user
level, resume

execution

Another view (FYI for now)

6

Kernel Stack

0x00000000

0xFFFFFFFF

Kernel Code

Address
Space

SP2

PC1

User Stack

User Code

PC2

SP1

0xC0000000

1G

3G

7

System Call Questions
! There are hundreds of syscalls. How do we let the

kernel know which one we intend to invoke?
• Before issuing int $0x80 or sysenter, set %eax/%rax with the

syscall number

! System calls are like function calls, but how to pass
parameters?
• Just like calling convention in syscalls, typically passed

through %ebx, %ecx, %edx, %esi, %edi, %ebp

8

Timer
! The key to a timesharing OS

! The fallback mechanism by which the OS reclaims control
• Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction
» When timer expires, generates an interrupt

! Handled by the OS, forcing a switch from the user program

» Basis for OS scheduler (more later…)

! Also used for time-based functions (e.g., sleep())

OS Abstractions

9

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

CSE 153 – Lecture 4 – Processes

Today, we start discussing the first abstraction that enables us to virtualize
(i.e., share) the CPU – processes!

What is virtualization?
! What is a virtual something?

u Somehow not real? But still functional?

! Provide illusion for each program of own copy of resources
u Lets say the CPU or memory; every program thinks it has its own
u In reality, limited physical resources (e.g., 1 CPU)

» It must be shared! (in time, or space)

! Frees up programs from worrying about sharing
u The OS implements sharing, creating illusion of exclusive resources

àVirtualization!

! Virtual resource provided as an object with defined operations on
it. à Abstraction 10

CSE 153 – Lecture 4 – Processes 11

Virtualizing the CPU -- Processes

! This lecture starts a class segment that covers processes,
threads, and synchronization
u Basis for Midterm and Project 1

! Today’s topics are processes and process management
u How do we virtualize the CPU?

» Virtualization: give each program the illusion of its own CPU
» What is the magic? We only have one real CPU

u How are applications represented in the OS?
u How is work scheduled in the CPU?

CSE 153 – Lecture 4 – Processes 12

The Process
! The process is the OS abstraction for execution

u It is the unit of execution
u It is the unit of scheduling

! A process is a program in execution
u Programs are static entities with the potential for execution
u Process is the animated/active program

» Starts from the program, but also includes dynamic state
» As the representative of the program, it is the “owner” of other

resources (memory, files, sockets, …)

! How does the OS implement this abstraction?
u How does it share the CPU?

How to support this
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction
u Next class

CSE 153 – Lecture 4 – Processes 13

CSE 153 – Lecture 4 – Processes 14

Process Components
! A process contains all the state for a program in execution

u An address space containing
» Static memory:

! The code and input data for the executing program
» Dynamic memory:

! The memory allocated by the executing program
! An execution stack encapsulating the state of procedure calls

u Control registers such as the program counter (PC)
u A set of general-purpose registers with current values
u A set of operating system resources

» Open files, network connections, etc.

! A process is named using its process ID (PID)

CSE 153 – Lecture 4 – Processes 15

Address Space (memory
abstraction)

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic

How to support this
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction
u Next class

CSE 153 – Lecture 4 – Processes 16

CSE 153 – Lecture 4 – Processes 17

Process Execution State
! A process is born, executes for a while, and then dies

! The process execution state that indicates what it is
currently doing
u Running: Executing instructions on the CPU

» It is the process that has control of the CPU
» How many processes can be in the running state simultaneously?

u Ready: Waiting to be assigned to the CPU
» Ready to execute, but another process is executing on the CPU

u Waiting: Waiting for an event, e.g., I/O completion
» It cannot make progress until event is signaled (disk completes)

Execution state (cont’d)
! As a process executes, it moves from state to state

u Unix “ps -x”: STAT column indicates execution state
u What state do you think a process is in most of the time?
u How many processes can a system support?

CSE 153 – Lecture 4 – Processes 18

CSE 153 – Lecture 4 – Processes 19

Execution State Graph

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O, Page
Fault, etc.

I/O Done

Schedule
Process

Unschedule
Process

How to support the process
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction?
u What system calls are needed?

CSE 153 – Lecture 5– Processes (II) 20

CSE 153 – Lecture 5– Processes (II) 21

How does the OS support this
model?

We will discuss three issues:
1. How does the OS represent a process in the kernel?

� The OS data structure representing each process is called the
Process Control Block (PCB)

2. How do we pause and restart processes?
� We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the
system?

� A lot of queues!

CSE 153 – Lecture 5– Processes (II) 22

PCB Data Structure
! PCB also is where OS keeps all of a process’ hardware

execution state when the process is not running
» Process ID (PID)
» Execution state
» Hardware state: PC, SP, regs
» Memory management
» Scheduling
» Accounting
» Pointers for state queues
» Etc.

! This state is everything that is needed to restore the
hardware to the same configuration it was in when the
process was switched out of the hardware

Xv6 struct proc

CSE 153 – Lecture 5– Processes (II) 23

CSE 153 – Lecture 5– Processes (II) 24

struct proc (Solaris)
/*
* One structure allocated per active process. It contains all
* data needed about the process while the process may be swapped
* out. Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/

typedef struct proc {
/*
* Fields requiring no explicit locking
*/

struct vnode *p_exec; /* pointer to a.out vnode */
struct as *p_as; /* process address space pointer */
struct plock *p_lockp; /* ptr to proc struct's mutex lock */
kmutex_t p_crlock; /* lock for p_cred */
struct cred *p_cred; /* process credentials */
/*
* Fields protected by pidlock
*/

int p_swapcnt; /* number of swapped out lwps */
char p_stat; /* status of process */
char p_wcode; /* current wait code */
ushort_t p_pidflag; /* flags protected only by pidlock */
int p_wdata; /* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock
*/

kcondvar_t p_cv; /* proc struct's condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some lwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */

/* to to be held. */
ushort_t p_pad1; /* unused */
uint_t p_flag; /* protected while set. */

/* flags defined below */
clock_t p_utime; /* user time, this process */
clock_t p_stime; /* system time, this process */
clock_t p_cutime; /* sum of children's user time */
clock_t p_cstime; /* sum of children's system time */
caddr_t *p_segacct; /* segment accounting info */
caddr_t p_brkbase; /* base address of heap */
size_t p_brksize; /* heap size in bytes */
/*
* Per process signal stuff.
*/

k_sigset_t p_sig; /* signals pending to this process */
k_sigset_t p_ignore; /* ignore when generated */
k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */
struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */
struct sigqhdr *p_signhdr; /* hdr to signotify structure pool */
uchar_t p_stopsig; /* jobcontrol stop signal */

CSE 153 – Lecture 5– Processes (II) 25

struct proc (Solaris) (2)
/*
* Special per-process flag when set will fix misaligned memory
* references.
*/

char p_fixalignment;

/*
* Per process lwp and kernel thread stuff
*/

id_t p_lwpid; /* most recently allocated lwpid */
int p_lwpcnt; /* number of lwps in this process */
int p_lwprcnt; /* number of not stopped lwps */
int p_lwpwait; /* number of lwps in lwp_wait() */
int p_zombcnt; /* number of zombie lwps */
int p_zomb_max; /* number of entries in p_zomb_tid */
id_t *p_zomb_tid; /* array of zombie lwpids */
kthread_t *p_tlist; /* circular list of threads */
/*
* /proc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask; /* mask of traced signals (/proc) */
k_fltset_t p_fltmask; /* mask of traced faults (/proc) */
struct vnode *p_trace; /* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */
kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */
struct watched_area *p_warea; /* list of watched areas */
ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */
int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */
struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;
size_t p_stksize; /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling
*/

hrtime_t p_mstart; /* hi-res process start time */
hrtime_t p_mterm; /* hi-res process termination time */

hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */
struct lrusage p_ru; /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */
uint_t p_defunct; /* number of defunct lwps */
/*
* profiling. A lock is used in the event of multiple lwp's
* using the same profiling base/size.
*/

kmutex_t p_pflock; /* protects user profile arguments */
struct prof p_prof; /* profile arguments */

/*
* The user structure
*/

struct user p_user; /* (see sys/user.h) */

/*
* Doors.
*/

kthread_t *p_server_threads;
struct door_node *p_door_list; /* active doors */
struct door_node *p_unref_list;
kcondvar_t p_server_cv;
char p_unref_thread; /* unref thread created */

/*
* Kernel probes
*/

uchar_t p_tnf_flags;

CSE 153 – Lecture 5– Processes (II) 26

struct proc (Solaris) (3)
/*
* C2 Security (C2_AUDIT)
*/

caddr_t p_audit_data; /* per process audit structure */
kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)
/*
* LDT support.
*/

kmutex_t p_ldtlock; /* protects the following fields */
struct seg_desc *p_ldt; /* Pointer to private LDT */
struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */
int p_ldtlimit; /* highest selector used */

#endif
size_t p_swrss; /* resident set size before last swap */
struct aio *p_aio; /* pointer to async I/O struct */
struct itimer **p_itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */
kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */
uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */
caddr_t p_usrstack; /* top of the process stack */
uint_t p_stkprot; /* stack memory protection */
model_t p_model; /* data model determined at exec time */
struct lwpchan_data *p_lcp; /* lwpchan cache */
/*
* protects unmapping and initilization of robust locks.
*/

kmutex_t p_lcp_mutexinitlock;
utrap_handler_t *p_utraps; /* pointer to user trap handlers */
refstr_t *p_corefile; /* pattern for core file */

#if defined(__ia64)
caddr_t p_upstack; /* base of the upward-growing stack */
size_t p_upstksize; /* size of that stack, in bytes */
uchar_t p_isa; /* which instruction set is utilized */

#endif
void *p_rce; /* resource control extension data */
struct task *p_task; /* our containing task */
struct proc *p_taskprev; /* ptr to previous process in task */
struct proc *p_tasknext; /* ptr to next process in task */
int p_lwpdaemon; /* number of TP_DAEMON lwps */
int p_lwpdwait; /* number of daemons in lwp_wait() */
kthread_t **p_tidhash; /* tid (lwpid) lookup hash table */
struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

27

How to pause/restart processes?

! When a process is running, its dynamic state is in memory and some
hardware registers
u Hardware registers include Program counter, stack pointer, control registers, data

registers, …
u To be able to stop and restart a process, we need to completely restore this state

! When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

! When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

! Changing CPU hardware state from one process to another is called a
context switch
u This can happen 100s or 1000s of times a second!

CSE 153 – Lecture 5– Processes (II)

