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Last class
! OS structure, operation, and interaction with user progs

u Privileged mode: To enforce isolation and manage resources, 
OS must have exclusive powers not available to users

» How does the switch happen securely?

u OS is not running unless there is an event: 
» OS schedules a user process to run then goes to sleep
» It wakes up (who wakes it?) to handle events
» Many types of events

u Program view and system calls: program asks the OS when it 
needs a privileged operation
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Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal
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System Calls
! For a user program to do something “privileged” (e.g., 

I/O) it must call an OS procedure
• Known as crossing the protection boundary, or a protected 

procedure call

! Hardware provides a system call instruction that:
• Causes an exception, which invokes a kernel handler

• Passes a parameter determining the system 
routine to call

• Saves caller state (PC, regs, mode) so it can be restored
• Why save mode?

• Returning from system call restores this state
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Another view (FYI for now)
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System Call Questions
! There are hundreds of syscalls. How do we let the 

kernel know which one we intend to invoke?
• Before issuing int $0x80 or sysenter, set %eax/%rax with the 

syscall number

! System calls are like function calls, but how to pass 
parameters?
• Just like calling convention in syscalls, typically passed 

through %ebx, %ecx, %edx, %esi, %edi, %ebp
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Timer
! The key to a timesharing OS

! The fallback mechanism by which the OS reclaims control 
• Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction
» When timer expires, generates an interrupt

! Handled by the OS, forcing a switch from the user program

» Basis for OS scheduler (more later…)

! Also used for time-based functions (e.g., sleep())



OS Abstractions
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Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory
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Today, we start discussing the first abstraction that enables us to virtualize 
(i.e., share) the CPU – processes!



What is virtualization?
! What is a virtual something? 

u Somehow not real? But still functional?

! Provide illusion for each program of own copy of resources
u Lets say the CPU or memory; every program thinks it has its own
u In reality, limited physical resources (e.g., 1 CPU)

» It must be shared! (in time, or space)

! Frees up programs from worrying about sharing
u The OS implements sharing, creating illusion of exclusive resources 

àVirtualization!

! Virtual resource provided as an object with defined operations on 
it. à Abstraction 10
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Virtualizing the CPU -- Processes

! This lecture starts a class segment that covers processes, 
threads, and synchronization
u Basis for Midterm and Project 1

! Today’s topics are processes and process management
u How do we virtualize the CPU?

» Virtualization: give each program the illusion of its own CPU
» What is the magic? We only have one real CPU

u How are applications represented in the OS?
u How is work scheduled in the CPU?
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The Process
! The process is the OS abstraction for execution

u It is the unit of execution
u It is the unit of scheduling

! A process is a program in execution
u Programs are static entities with the potential for execution
u Process is the animated/active program

» Starts from the program, but also includes dynamic state
» As the representative of the program, it is the “owner” of other 

resources (memory, files, sockets, …)

! How does the OS implement this abstraction?
u How does it share the CPU?



How to support this 
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction
u Next class
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Process Components
! A process contains all the state for a program in execution

u An address space containing
» Static memory:

! The code and input data for the executing program
» Dynamic memory:

! The memory allocated by the executing program
! An execution stack encapsulating the state of procedure calls

u Control registers such as the program counter (PC) 
u A set of general-purpose registers with current values
u A set of operating system resources

» Open files, network connections, etc.

! A process is named using its process ID (PID)
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How to support this 
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction
u Next class
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Process Execution State
! A process is born, executes for a while, and then dies

! The process execution state that indicates what it is 
currently doing
u Running: Executing instructions on the CPU

» It is the process that has control of the CPU
» How many processes can be in the running state simultaneously?

u Ready: Waiting to be assigned to the CPU
» Ready to execute, but another process is executing on the CPU

u Waiting: Waiting for an event, e.g., I/O completion
» It cannot make progress until event is signaled (disk completes)



Execution state (cont’d)
! As a process executes, it moves from state to state

u Unix “ps -x”: STAT column indicates execution state
u What state do you think a process is in most of the time?
u How many processes can a system support?
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Execution State Graph
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How to support the process 
abstraction?
! First, we’ll look at what state a process encapsulates

u State of the virtual processor we are giving to each program

! Next we will talk about process behavior/CPU time sharing
u How to implement the process illusion

! Next, we discuss how the OS implements this abstraction
u What data structures it keeps, and the role of the scheduler

! Finally, we see the process interface offered to programs
u How to use this abstraction?
u What system calls are needed?
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How does the OS support this 
model?

We will discuss three issues:
1. How does the OS represent a process in the kernel?

� The OS data structure representing each process is called the 
Process Control Block (PCB)

2. How do we pause and restart processes?
� We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the 
system? 

� A lot of queues!
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PCB Data Structure
! PCB also is where OS keeps all of a process’ hardware 

execution state when the process is not running
» Process ID (PID)
» Execution state
» Hardware state: PC, SP, regs
» Memory management
» Scheduling
» Accounting
» Pointers for state queues
» Etc.

! This state is everything that is needed to restore the 
hardware to the same configuration it was in when the 
process was switched out of the hardware



Xv6 struct proc
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struct proc (Solaris)
/*
* One structure allocated per active process.  It contains all
* data needed about the process while the process may be swapped
* out.  Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/

typedef struct  proc {
/*
* Fields requiring no explicit locking
*/

struct  vnode *p_exec;          /* pointer to a.out vnode */
struct  as *p_as;               /* process address space pointer */
struct  plock *p_lockp;         /* ptr to proc struct's mutex lock */
kmutex_t p_crlock;              /* lock for p_cred */
struct  cred    *p_cred;        /* process credentials */
/*
* Fields protected by pidlock
*/

int     p_swapcnt;              /* number of swapped out lwps */
char    p_stat;                 /* status of process */
char    p_wcode;                /* current wait code */
ushort_t p_pidflag;             /* flags protected only by pidlock */
int     p_wdata;                /* current wait return value */
pid_t   p_ppid;                 /* process id of parent */
struct  proc    *p_link;        /* forward link */
struct  proc    *p_parent;      /* ptr to parent process */
struct  proc    *p_child;       /* ptr to first child process */
struct  proc    *p_sibling;     /* ptr to next sibling proc on chain */
struct  proc    *p_psibling;    /* ptr to prev sibling proc on chain */
struct  proc    *p_sibling_ns;  /* prt to siblings with new state */
struct  proc    *p_child_ns;    /* prt to children with new state */
struct  proc    *p_next;        /* active chain link next */
struct  proc    *p_prev;        /* active chain link prev */
struct  proc    *p_nextofkin;   /* gets accounting info at exit */
struct  proc    *p_orphan;
struct  proc    *p_nextorph;

*p_pglink;      /* process group hash chain link next */
struct  proc    *p_ppglink;     /* process group hash chain link prev */
struct  sess    *p_sessp;       /* session information */
struct  pid     *p_pidp;        /* process ID info */
struct  pid     *p_pgidp;       /* process group ID info */
/*
* Fields protected by p_lock
*/

kcondvar_t p_cv;                /* proc struct's condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit;           /* waiting for some lwp to exit */
kcondvar_t p_holdlwps;          /* process is waiting for its lwps */

/* to to be held.  */
ushort_t p_pad1;                /* unused */
uint_t  p_flag;                 /* protected while set. */

/* flags defined below */
clock_t p_utime;                /* user time, this process */
clock_t p_stime;                /* system time, this process */
clock_t p_cutime;               /* sum of children's user time */
clock_t p_cstime;               /* sum of children's system time */
caddr_t *p_segacct;             /* segment accounting info */
caddr_t p_brkbase;              /* base address of heap */
size_t  p_brksize;              /* heap size in bytes */
/*
* Per process signal stuff.
*/

k_sigset_t p_sig;               /* signals pending to this process */
k_sigset_t p_ignore;            /* ignore when generated */
k_sigset_t p_siginfo;           /* gets signal info with signal */
struct sigqueue *p_sigqueue;    /* queued siginfo structures */
struct sigqhdr *p_sigqhdr;      /* hdr to sigqueue structure pool */
struct sigqhdr *p_signhdr;      /* hdr to signotify structure pool */
uchar_t p_stopsig;              /* jobcontrol stop signal */
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struct proc (Solaris) (2)
/*
* Special per-process flag when set will fix misaligned memory
* references.
*/

char    p_fixalignment;

/*
* Per process lwp and kernel thread stuff
*/

id_t    p_lwpid;                /* most recently allocated lwpid */
int     p_lwpcnt;               /* number of lwps in this process */
int     p_lwprcnt;              /* number of not stopped lwps */
int     p_lwpwait;              /* number of lwps in lwp_wait() */
int     p_zombcnt;              /* number of zombie lwps */
int     p_zomb_max;             /* number of entries in p_zomb_tid */
id_t    *p_zomb_tid;            /* array of zombie lwpids */
kthread_t *p_tlist;             /* circular list of threads */
/*
* /proc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask;           /* mask of traced signals (/proc) */
k_fltset_t p_fltmask;           /* mask of traced faults (/proc) */
struct  vnode *p_trace;         /* pointer to primary /proc vnode */
struct  vnode *p_plist;         /* list of /proc vnodes for process */
kthread_t *p_agenttp;           /* thread ptr for /proc agent lwp */
struct watched_area *p_warea;   /* list of watched areas */
ulong_t p_nwarea;               /* number of watched areas */
struct watched_page *p_wpage;   /* remembered watched pages (vfork) */
int     p_nwpage;               /* number of watched pages (vfork) */
int     p_mapcnt;               /* number of active pr_mappage()s */
struct  proc  *p_rlink;         /* linked list for server */
kcondvar_t p_srwchan_cv;
size_t  p_stksize;              /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling
*/

hrtime_t p_mstart;              /* hi-res process start time */
hrtime_t p_mterm;               /* hi-res process termination time */

hrtime_t p_mlreal;              /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES];      /* microstate sum over defunct lwps */
struct lrusage p_ru;            /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
uintptr_t p_rprof_cyclic;       /* ITIMER_REALPROF cyclic */
uint_t  p_defunct;              /* number of defunct lwps */
/*
* profiling. A lock is used in the event of multiple lwp's
* using the same profiling base/size.
*/

kmutex_t p_pflock;              /* protects user profile arguments */
struct prof p_prof;             /* profile arguments */

/*
* The user structure
*/

struct user p_user;             /* (see sys/user.h) */

/*
* Doors.
*/

kthread_t               *p_server_threads;
struct door_node        *p_door_list;   /* active doors */
struct door_node        *p_unref_list;
kcondvar_t              p_server_cv;
char                    p_unref_thread; /* unref thread created */

/*
* Kernel probes
*/

uchar_t                 p_tnf_flags;
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struct proc (Solaris) (3)
/*
* C2 Security  (C2_AUDIT)
*/

caddr_t p_audit_data;           /* per process audit structure */
kthread_t       *p_aslwptp;     /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)
/*
* LDT support.
*/

kmutex_t p_ldtlock;             /* protects the following fields */
struct seg_desc *p_ldt;         /* Pointer to private LDT */
struct seg_desc p_ldt_desc;     /* segment descriptor for private LDT */
int p_ldtlimit;                 /* highest selector used */

#endif
size_t p_swrss;                 /* resident set size before last swap */
struct aio      *p_aio;         /* pointer to async I/O struct */
struct itimer   **p_itimer;     /* interval timers */
k_sigset_t      p_notifsigs;    /* signals in notification set */
kcondvar_t      p_notifcv;      /* notif cv to synchronize with aslwp */
timeout_id_t    p_alarmid;      /* alarm's timeout id */
uint_t          p_sc_unblocked; /* number of unblocked threads */
struct vnode    *p_sc_door;     /* scheduler activations door */
caddr_t         p_usrstack;     /* top of the process stack */
uint_t          p_stkprot;      /* stack memory protection */
model_t         p_model;        /* data model determined at exec time */
struct lwpchan_data     *p_lcp; /* lwpchan cache */
/*
* protects unmapping and initilization of robust locks.
*/

kmutex_t        p_lcp_mutexinitlock;
utrap_handler_t *p_utraps;      /* pointer to user trap handlers */
refstr_t        *p_corefile;    /* pattern for core file */

#if defined(__ia64)
caddr_t         p_upstack;      /* base of the upward-growing stack */
size_t          p_upstksize;    /* size of that stack, in bytes */
uchar_t         p_isa;          /* which instruction set is utilized */

#endif
void            *p_rce;         /* resource control extension data */
struct task     *p_task;        /* our containing task */
struct proc     *p_taskprev;    /* ptr to previous process in task */
struct proc     *p_tasknext;    /* ptr to next process in task */
int             p_lwpdaemon;    /* number of TP_DAEMON lwps */
int             p_lwpdwait;     /* number of daemons in lwp_wait() */
kthread_t       **p_tidhash;    /* tid (lwpid) lookup hash table */
struct sc_data  *p_schedctl;    /* available schedctl structures */

} proc_t;
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How to pause/restart processes?

! When a process is running, its dynamic state is in memory and some 
hardware registers
u Hardware registers include Program counter, stack pointer, control registers, data 

registers, …
u To be able to stop and restart a process, we need to completely restore this state

! When the OS stops running a process, it saves the current values of the 
registers (usually in PCB)

! When the OS restarts executing a process, it loads the hardware 
registers from the stored values in PCB

! Changing CPU hardware state from one process to another is called a 
context switch
u This can happen 100s or 1000s of times a second!

CSE 153 – Lecture 5– Processes (II)


