
CS 153
Design of Operating

Systems

Winter 2023

Lecture 2: Historical perspective

Questions we started
considering last time

! Why do we need operating systems course?

! Why do we need operating systems?

! What does an operating system need to do?

! Looking back, looking forward.

2

Roles an OS plays
! Beautician that hides all the ugly low level details so

that anyone can use a machine (e.g., smartphone!)
! Wizard that makes it appear to each program that it

owns the machine and shares resources while making
them seem better than they are

! Referee that arbitrates the available resources
between the running programs efficiently, safely, fairly,
and securely
� Managing a million crazy things happening at the same time is

part of that –
! Elephant that remembers all your data and makes it

accessible to you -- persistence
3

More technically…
! Abstraction: defines a set of logical resources (objects)

and well-defined operations on them (interfaces)

! Virtualization: Isolates and multiplexes physical
resources via spatial and temporal sharing

! Access Control: who, when, how
u Scheduling (when): efficiency and fairness
u Permissions (how): security and privacy

! Persistence: how to keep and share data
4

Some Questions to Ponder
! What is part of an OS? What is not?

u Is the windowing system part of an OS? Java? Apache

server? Compiler? Firmware?

! Popular OS’s today include Windows, Linux, and OS X

u How different/similar do you think these OSes are?

! Somewhat surprisingly, OSes change all of the time

u Consider the series of releases of Windows, Linux, OS X…

u What are the drivers of OS change?

u What are the most compelling issues facing OSes today?

5

Pondering Cont’d
! How many lines of code in an OS?

u Windows 10: 50M
» Vista (2006): 50M (XP + 10M)
» What is largest kernel component?

u OS X (2006): 86M
u Linux: 25 million (grew 250K in 2018!)

! What does this mean (for you)?
u OSes are useful for learning about software complexity

» The mythical man month
» KDE (X11): 4M
» Browser : 2M+, …

u If you become a developer, you will face complexity
» Including lots of legacy code 6

Questions for today

7
3https://copleycomputing.weebly.com/a-history-of-computing.html

A brief history—Phase 0
! In the beginning, OS is just runtime libraries

u A piece of code used/sharable by many programs
u Abstraction: reuse magic to talk to physical devices
u Avoid bugs

! User scheduled an exclusive time where they would
use the machine

! User interface was switches and lights, eventually
punched cards and tape
u An interesting side effect: less bugs

8

Phase 1: Batch systems
(1955-1970)

! Computers expensive; people cheap
u Use computers efficiently – move people away from

machine
! OS in this period became a program loader

» Loads a job, runs it, then moves on to next
» More efficient use of hardware but increasingly difficult to debug

" Still less bugs J
9

Advances in OS in this period
! SPOOLING/Multiprogramming

u Simultaneous Peripheral Operation On-Line (SPOOL)
» Non-blocking tasks

» Copy document to printer buffer so printer can work while CPU
moves on to something else

u Hardware provided memory support (protection and relocation)

u Scheduling: let short jobs run first

u OS must manage interactions between concurrent things

! OS/360 from IBM first OS designed to run on a
family of machines from small to large

10

Phase 1, problems
! Utilization is low (one job at a time)
! No protection between jobs

u But one job at a time, so?
! Short jobs wait behind long jobs
! Coordinating concurrent activities
! People time is still being wasted
! Operating Systems didn’t really work

u Birth of software engineering

11

Phase 2: 1970s – Time
sharing, Unix, Persistence

! Computers and people are expensive
u Help people be more productive

! Interactive time sharing: let many people use the same
machine at the same time
u CTSS/Multics projects at MIT
u Corbato got Turing award for this idea

! Emergence of minicomputers
u Terminals are cheap

! Persistence: Keep data online on fancy file systems
12

Unix appears
! Ken Thompson, who worked on MULTICS, wanted to

use an old PDP-7 laying around in Bell labs

u He and Dennis Richie built a system designed by

programmers for programmers

! Originally in assembly. Rewritten in C

u In their paper describing unix, they defend this decision!

u However, this is a new and important advance: portable

operating systems!

! Shared code with everyone (particularly universities)

u Start of open source?

13

Unix (cont’d)
! Berkeley added support for virtual memory for the VAX

u Unix BSD

! DARPA selected Unix as its networking platform in
arpanet

! Unix became commercial
u …which eventually lead Linus Torvald to develop Linux

14

Age of the Microprocesor

15Intel 8086, 1978

Phase 3: 1980s -- PCs
! Computers are cheap, people expensive

u Put a computer in each terminal

u CP/M from DEC first personal computer OS (for 8080/85) processors

u IBM needed software for their PCs, but CP/M was behind schedule
u Approached Bill Gates to see if he can build one

u Gates approached Seattle computer products, bought 86-DOS and
created MS-DOS

u Goal: finish quickly and run existing CP/M software

u OS becomes subroutine library and command executive

16

Phase 4: Networked/distributed
systems--1990s to now?

! Its all about connectivity
! Enables parallelism but performance is not goal
! Goal is communication/sharing

u Requires high speed communication
u We want to share data not hardware

! Networked applications drive everything
u Web, email, messaging, social networks, …

17

New problems

! Large scale
u Google file system, mapreduce, …

! Parallelism on the desktop (multicores)
! Heterogeneous systems, IoT

u Real-time; energy efficiency
! Security and Privacy

18

Phase 5
! Computing evolving beyond networked systems

u Cloud computing, IoT, Drones, Cyber-physical systems,
computing everywhere

! Hardware accelerators, heterogeneous systems, end
of Moore’s Law, Hardware democratization/Open
source HW

! New workloads: AI, Blockchain, …

! New generation?
u But what is it?

» …and what problems will it bring?

19

Where are we headed next?

! How is the OS structured? Is it a special program? Or
something else?
u How do other programs interact with it?

! How does it protect the system?
u What does the architecture/hardware need to do to support it?

20

