
CS/EE 217

 GPU Architecture and Parallel Programming

Midterm Review

Material on exam

•  Lectures 1 to 12 inclusive
•  Chapters 3-6, 8 and 9
•  Understand the CUDA C programming model
•  Understand the architecture limitations and how to

navigate them to improve the performance of your
code

•  Parallel programming patterns.
–  Analyze for run-time, memory performance (global

memory traffic; memory coalescing), work efficiency,
resource efficiency, …

 2

Review problems

•  Problem 3.5 from the book. If we need to use each
thread to calculate one output element of a vector
addition, what would be the expression for mapping
the thread/block indices to data index.

3

Review problems

•  Problem 3.6. We want to use each thread to calculate
two adjacent elements of a vector addition. Assume
that variable i should be the index for the first element
to be processed by a thread. What would be the
expression for mapping the thread/block indices to
data index.

4

•  Assume that the vector length is 2000, and each thread
calculates one output element, with a block size of
512. How many threads will there be in the grid?

•  How many warps will have divergence?

5

•  4.4: You need to write a kernel that operates on an
image of size 400x900. You would like to allocate
one thread to each pixel. You would like the thread
blocks to be square and to use the maximum number
of threads per block possible on the device (assume
the device has compute capability 3.0). How would
you select the grid and block dimensions?

•  Assuming next that we use blocks of size 16x16, how
many warps would experience thread divergence?

6

•  For the simple reduction kernel, if the block size is
1024, how many warps will have thread divergence
during the fifth iteration? How many for the
improved kernel?

7

Recall the more efficient reduction
kernel

for (unsigned int stride = blockDim.x;
 stride > 0; stride /= 2)

{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];

}

•  A bright engineer wanted to optimize this kernel by
unrolling the last five steps as follows.

8

for (unsigned int stride = blockDim.x;
 stride >= 32; stride >>= 1) {

 __synchthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];}

__synchthreads();

if(t < 32) {
 partialSum[t]+= partialSum[t+16];
 partialSum[t]+= partialSum[t+8];
 partialSum[t]+= partialSum[t+4];

 partialSum[t]+= partialSum[t+2];
 partialSum[t]+= partialSum[t+1];
}

What are they thinking? Will this work? Will performance be better?

9

•  8.5: Consider performing a 2D convolution on a
square matrix of size nxn with a mask of size mxm.

–  How many halo elements will there be?
–  What percentage of the multiplications involves halo

elements?
–  What is the saving in memory accesses for an internal tile

(no ghost elements) vs. an untiled implementation?
–  Assuming the implementation where every element has a

thread to load into shared memory, how many warps will
there be per block?

10

•  9.7: Consider the following array: [4 6 7 1 2 8 5 2]
–  Perform inclusive prefix sum on the array using the work

inefficient algorithm. Report the intermediate results at
every step.

–  Repeat with the work efficient kernel

11

