
1

CS/EE 217 GPU Architecture and Parallel
Programming

Lecture 9: Tiled Convolution
Analysis

© David Kirk/NVIDIA and Wen-mei W. Hwu , 2007-2012

Objective

•  To learn more about the analysis of tiled
algorithms

2

If we used a larger (8 element) tile

3

6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5

•  For Mask_Width = 5, we load 8+5-1 = 12
elements (12 memory loads)

12 13 14 15

8 9 10 11 12 13 14 15

P

Each output P element uses
5 N elements (in N_ds)

4

6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5

•  P[8] uses N[6], N[7], N[8], N[9], N[10]
•  P[9] uses N[7], N[8], N[9], N[10], N[11]
•  P[10] uses N[8], N[9], N[10], N[11], N[12]
•  …
•  P[14] uses N[12], N[13], N[14], N[15],N[16]
•  P[15] uses N[13], N[14], N[15], N[16], N[17]

12 13 14 15

8 9 10 11 12 13 14 15

P

A simple way to calculate tiling
benefit

•  (8+5-1)=12 elements loaded
•  8*5 global memory accesses replaced by shared

memory accesses
•  This gives a bandwidth reduction of 40/12=3.3

5

In General

•  Tile_Width + Mask_Width -1 elements loaded
•  Tile_Width * Mask_Width global memory accesses

replaced by shared memory access
•  This gives a reduction of bandwidth by

(Tile_Width *Mask_Width)/(Tile_Width+Mask_Width-1)

6

Another Way to Look at Reuse

7

6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5

•  N[6] is used by P[8] (1X)
•  N[7] is used by P[8], P[9] (2X)
•  N[8] is used by P[8], P[9], P[10] (3X)
•  N[9] is used by P[8], P[9], P[10], P[11] (4X)
•  N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)
•  … (5X)
•  N[14] is uses by P[12], P[13], P[14], P[15] (4X)
•  N[15] is used by P[13], P[14], P[15] (3X)

12 13 14 15

8 9 10 11 12 13 14 15

P

Another Way to Look at Reuse

•  The total number of global memory accesses (to
the (8+5-1)=12 N elements) replaced by shared
memory accesses is

 1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1
 = 10 + 20 + 10
 = 40
So the reduction is
 40/12 = 3.3

8

Ghost elements change ratios

•  For a boundary tile, we load Tile_Width +
(Mask_Width-1)/2 elements
–  10 in our example of Tile_Width =8 and

Mask_Width=5

•  Computing boundary elements do not access
global memory for ghost cells
–  Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3.7
9

In General for 1D

•  The total number of global memory accesses to
the (Tile_Width+Mask_Width-1) N elements
replaced by shared memory accesses is

1 + 2 + … + Mask_Width-1+ Mask_Width *
(Tile_Width -Mask_Width+1) + Mask_Width-1+… + 2
+ 1
= (Mask_Width-1) *Mask_Width+
Mask_Width*(Tile_Width-Mask_Width+1)

= Mask_Width*(Tile_Width)

10

Bandwidth Reduction for 1D

•  The reduction is

Mask_Width * (Tile_Width)/(Tile_Width+Mask_Size-1)

Tile_Width 16 32 64 128 256
Reduction
Mask_Width = 5

4.0 4.4 4.7 4.9 4.9

Reduction
Mask_Width = 9

6.0 7.2 8.0 8.5 8.7

11

2D Output Tiling and Indexin (P)
•  Use a thread block to calculate a tile of P

–  Each output tile is of TILE_SIZE for both x and y

12

col_o = blockIdx.x * TILE_WIDTH + tx;

 ro
w

_o
 =

 b
lo

ck
Id

x.
y*

TI
LE

_W
ID

TH
 +

 ty
;

Input tiles need to cover halo
elements.

13

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

Output Tile

Input Tile

Mask_Width = 5

A Simple Analysis for a small 8X8
output tile example

•  12X12=144 N elements need to be loaded into
shared memory

•  The calculation of each P element needs to
access 25 N elements

•  8X8X25 = 1600 global memory accesses are
converted into shared memory accesses

•  A reduction of 1600/144 = 11X

14

In General

•  (Tile_Width+Mask_Width-1) 2 elements from N need
to be loaded into shared memory for each tile

•  The calculation of each P element needs to access
Mask_Width 2 elements
–  Tile_Width 2 * Mask_Width 2 global memory accesses are

converted into shared memory accesses
•  The reduction is

 Tile_Width 2 * Mask_Width 2 / (Tile_Width
+Mask_Width-1) 2

15

Bandwidth Reduction for 2D

•  The reduction is

Mask_Width 2 * (Tile_Width) 2 /(Tile_Width
+Mask_Size-1) 2

Tile_Width 8 16 32 64
Reduction
Mask_Width = 5

11.1 16 19.7 22.1

Reduction
Mask_Width = 9

20.3 36 51.8 64

16

Ghost elements change ratios

•  Left as homewok.

17

ANY MORE QUESTIONS?
READ CHAPTER 8

© David Kirk/NVIDIA and Wen-mei W. Hwu University
of Illinois, 2007-2012

18

