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Convolution, (with a side of 
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Objective 

•  To learn convolution, an important parallel 
computation pattern  
–  Widely used in signal, image and video processing 
–  Foundational to stencil computation used in many 

science and engineering  

•  Taking advantage of cache memories 
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Convolution Applications 

•  A popular array operation used in signal 
processing, digital recording, image processing, 
video processing, and computer vision.  

•  Convolution is often performed as a filter that 
transforms signals and pixels into more desirable 
values.  
–  Some filters smooth out the signal values so that one 

can see the big-picture trend  
–  Others like Gaussian filters can be used to sharpen 

boundaries and edges of objects in images..  
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Convolution Computation 

•  An array operation where each output data 
element is a weighted sum of a collection of 
neighboring input elements 

•  The weights used in the weighted sum 
calculation are defined by an input mask array, 
commonly referred to as the convolution kernel 
–   We will refer to these mask arrays as convolution 

masks to avoid confusion.  
–  The same convolution mask is typically used for all 

elements of the array. 
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Convolution definition 

5 

Convolution is to compute the response of linear time invariant system f(t) 
for the given input signal g(t).  

F(s) G(s) G(s)*F(s)

In frequency domain



Convolution operation 
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•  From the 
Wikipedia page on 
convolution



1D Convolution Example 

•  Commonly used for audio processing 
–  Mask size is usually an odd number of elements for 

symmetry (5 in this example) 
•  Calculation of P[2] 
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1D Convolution Example 
- more on inside elements 

•  Calculation of P[3] 
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1D Convolution Boundary Condition 

•  Calculation of output elements near the 
boundaries (beginning and end) of the input array 
need to deal with “ghost” elements 
–  Different policies (0, replicates of boundary values, etc.) 



__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P, 
  int Mask_Width, int Width) { 
 
  int i = blockIdx.x*blockDim.x + threadIdx.x; 
 
  float Pvalue = 0; 
  int N_start_point = i - (Mask_Width/2); 
  for (int j = 0; j < Mask_Width; j++) { 
    if (N_start_point + j >= 0 && N_start_point + j < Width) { 
      Pvalue += N[N_start_point + j]*M[j]; 
    } 
  } 
  P[i] = Pvalue; 
 
} 

A 1D Convolution Kernel with 
Boundary Condition Handling 

•  This kernel forces all elements outside the image 
to 0 
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2D Convolution 
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2D Convolution Boundary Condition 



2D Convolution – Ghost Cells 
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Access Pattern for M 

•  M is referred to as mask (a.k.a. kernel, filter, etc.) 
–  Elements of M are called mask (kernel, filter) 

coefficients 
•  Calculation of all output P elements need M 
•  M is not changed during kernel 

•  Bonus - M elements are accessed in the same 
order when calculating all P  elements 

•  M is a good candidate for Constant Memory 
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Programmer View of  CUDA Memories 
(Review) 

•  Each thread can: 
–  Read/write per-thread 

registers (~1 cycle) 
–  Read/write per-block 

shared memory (~5 
cycles) 

–  Read/write per-grid 
global memory (~500 
cycles) 

–  Read/only per-grid 
constant memory (~5 
cycles with caching) 
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Memory Hierarchies 

•  If every time we needed a piece of data, we had 
to go to main memory to get it, computers would 
take a lot longer to do anything 

•  On today’s processors, main memory accesses 
take hundreds of cycles 

•  One solution: Caches 
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Cache - Cont’d 

•  In order to keep cache fast, it needs to be small, 
so we cannot fit the entire data set in it 

Processor

L1 Cache

L2 Cache

Main Memory

regs

The chip
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Cache - Cont’d 

•  Cache is unit of volatile memory storage 

•  A cache is an “array” of cache lines 

•  Cache line can usually hold data from several 
consecutive memory addresses 

•  When data is requested from memory, an entire 
cache line is loaded into the cache, in an attempt 
to reduce main memory requests 
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Caches - Cont’d 

Some definitions: 
–  Spatial locality: is when the data elements stored in 

consecutive memory locations are access 
consecutively 

–  Temporal locality: is when the same data element is 
access multiple times in short period of time 

•  Both spatial locality and temporal locality improve 
the performance of caches 
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Scratchpad vs. Cache 
•  Scratchpad (shared memory in CUDA) is 

another type of temporary storage used to 
relieve main memory contention. 

•  In terms of distance from the processor, 
scratchpad is similar to L1 cache. 

•  Unlike cache, scratchpad does not 
necessarily hold a copy of data that is also 
in main memory 

•  It requires explicit data transfer instructions, 
whereas cache doesn’t 
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Cache Coherence Protocol 

•  A mechanism for caches to propagate updates by 
their local processor to other caches (processors) 
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CPU and GPU have different 
caching philosophy 

•  CPU L1 caches are usually coherent 
–  L1 is also replicated for each core 
–  Even data that will be changed can be cached in L1 
–  Updates to local cache copy invalidates (or less 

commonly updates) copies in other caches 
–  Expensive in terms of hardware and disruption of 

services (cleaning bathrooms at airports..) 

•  GPU L1 caches are usually incoherent 
–  Avoid caching data that will be modified 
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How to Use Constant Memory 
•  Host code allocates, initializes variables the 

same way as any other variables that need o be 
copied to the device 

•  Use  cudaMemcpyToSymbol(dest, src, size) to 
copy the variable into the device memory 

•  This copy function tells the device that the 
variable will not be modified by the kernel and 
can be safely cached. 
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More on Constant Caching 

•  Each SM has its own L1 
cache 
–  Low latency, high bandwidth 

access by all threads 

•  However, there is no 
way for threads in one 
SM to update the L1 
cache in other SMs 
–  No L1 cache coherence 
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Constant Memory 
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This is not a problem if a variable is NOT modified 
by a kernel. 



Using Constant memory 

•  When declaring variables, use __const__ <type> 
restrict 

•  For example: 
        __global__ void convolution_2D_kernel(float 
*P, float *N, int height, int width, int channels, 
__const__ float restrict *M) 
 
•  In this case, we are telling the compiler that M is 

constant and eligible for caching 
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ANY MORE QUESTIONS? 
READ CHAPTER 8 

© David Kirk/NVIDIA and Wen-mei W. Hwu/University of 
Illinois, 2007-2012

26 



Some Header File Stuff for M 

#define KERNEL_SIZE 5 
 
// Matrix Structure declaration 
typedef struct { 
   unsigned int width; 
   unsigned int height; 
   unsigned int pitch; 
   float* elements; 
} Matrix; 
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AllocateMatrix  
// Allocate a device matrix of dimensions height*width 
//  If init == 0, initialize to all zeroes.   
//  If init == 1, perform random initialization. 
//  If init == 2, initialize matrix parameters, but do not 
allocate memory  
Matrix AllocateMatrix(int height, int width, int init) 
{ 
    Matrix M; 
    M.width = M.pitch = width; 
    M.height = height; 
    int size = M.width * M.height; 
    M.elements = NULL; 
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AllocateMatrix() (Cont.) 
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// don't allocate memory on option 2 
  if(init == 2) return M; 
  M.elements = (float*) malloc(size*sizeof(float)); 
  for(unsigned int i = 0; i < M.height * M.width; i++) 
  { 
    M.elements[i] = (init == 0) ? (0.0f) :  

  (rand() / (float)RAND_MAX); 
   if(rand() % 2)  M.elements[i] = - M.elements[i] 
  } 
return M; 
}   



Host Code 
   // global variable, outside any function 
   __constant__ float Mc[KERNEL_SIZE][KERNEL_SIZE]; 
… 
   // allocate N, P, initialize N elements, copy N to Nd 
   Matrix  M; 
   M  = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE, 1); 
   // initialize M elements 
…. 
   cudaMemcpyToSymbol(Mc, M.elements,  

 KERNEL_SIZE*KERNEL_SIZE*sizeof(float)); 
   ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd); 
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