
1

CS/EE 217: GPU Architecture and
Parallel Programming

Convolution, (with a side of

Constant Memory and Caching)

© David Kirk/NVIDIA and Wen-mei W. Hwu/University of
Illinois, 2007-2012

Objective

•  To learn convolution, an important parallel
computation pattern
–  Widely used in signal, image and video processing
–  Foundational to stencil computation used in many

science and engineering

•  Taking advantage of cache memories

2

Convolution Applications

•  A popular array operation used in signal
processing, digital recording, image processing,
video processing, and computer vision.

•  Convolution is often performed as a filter that
transforms signals and pixels into more desirable
values.
–  Some filters smooth out the signal values so that one

can see the big-picture trend
–  Others like Gaussian filters can be used to sharpen

boundaries and edges of objects in images..

3

Convolution Computation

•  An array operation where each output data
element is a weighted sum of a collection of
neighboring input elements

•  The weights used in the weighted sum
calculation are defined by an input mask array,
commonly referred to as the convolution kernel
–  We will refer to these mask arrays as convolution

masks to avoid confusion.
–  The same convolution mask is typically used for all

elements of the array.

4

Convolution definition

5

Convolution is to compute the response of linear time invariant system f(t)
for the given input signal g(t).

F(s) G(s) G(s)*F(s)

In frequency domain

Convolution operation

6

•  From the
Wikipedia page on
convolution

1D Convolution Example

•  Commonly used for audio processing
–  Mask size is usually an odd number of elements for

symmetry (5 in this example)
•  Calculation of P[2]

3 4 5 4 3 3 8 15 16 15

N[0] P
3 8 57 16 15 1 2 3 4 5 6 7 3 3

N[3] N[1] N[2] N[5] N[4] N[6]

M[0] M[3] M[1] M[2] M[4]

P[0] P[3] P[1] P[2] P[5] P[4] P[6] N

M

3 4 5 4 3 6 12 20 20 18

N[0] P
3 8 57 76 15 1 2 3 4 5 6 7 3 3

N[3] N[1] N[2] N[5] N[4] N[6]

M[0] M[3] M[1] M[2] M[4]

P[0] P[3] P[1] P[2] P[5] P[4] P[6] N

M

1D Convolution Example
- more on inside elements

•  Calculation of P[3]

3 4 5 4 3 0 4 10 12 12

M

N P

3 38 57 16 15 1 2 3 4 5 6 7 3 3 0

N[0] N[3] N[1] N[2] N[5] N[4] N[6]

Filled in

M[0] M[3] M[1] M[2] M[4]

P[0] P[3] P[1] P[2] P[5] P[4] P[6]

1D Convolution Boundary Condition

•  Calculation of output elements near the
boundaries (beginning and end) of the input array
need to deal with “ghost” elements
–  Different policies (0, replicates of boundary values, etc.)

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
 int Mask_Width, int Width) {

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0;
 int N_start_point = i - (Mask_Width/2);
 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }
 P[i] = Pvalue;

}

A 1D Convolution Kernel with
Boundary Condition Handling

•  This kernel forces all elements outside the image
to 0

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

8 15 24 21 16

5 12 21 16 5

M

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

2 3 4 5 6

3 4 321 6 7

4 5 6 7 8

5 6 7 8 5

2D Convolution

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 0 0 0

0 0 4 6 6

0 0 10 12 12

0 0 12 12 10

0 0 12 10 6

M

N P
1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

112 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 5

4

2D Convolution Boundary Condition

2D Convolution – Ghost Cells

13

0 0 0 0 0
0 3 4 5 6
0 2 3 4 5
0 3 5 6 7
0 1 1 3 1

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 0 0 0

0 9 16 15 12

0 8 15 16 15

0 9 20 18 14

0 2 3 6 1

179

0 ghost cells

(apron cells, halo cells)
M

N P

Access Pattern for M

•  M is referred to as mask (a.k.a. kernel, filter, etc.)
–  Elements of M are called mask (kernel, filter)

coefficients
•  Calculation of all output P elements need M
•  M is not changed during kernel

•  Bonus - M elements are accessed in the same
order when calculating all P elements

•  M is a good candidate for Constant Memory
14

15

Programmer View of CUDA Memories
(Review)

•  Each thread can:
–  Read/write per-thread

registers (~1 cycle)
–  Read/write per-block

shared memory (~5
cycles)

–  Read/write per-grid
global memory (~500
cycles)

–  Read/only per-grid
constant memory (~5
cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

16

Memory Hierarchies

•  If every time we needed a piece of data, we had
to go to main memory to get it, computers would
take a lot longer to do anything

•  On today’s processors, main memory accesses
take hundreds of cycles

•  One solution: Caches

17

Cache - Cont’d

•  In order to keep cache fast, it needs to be small,
so we cannot fit the entire data set in it

Processor

L1 Cache

L2 Cache

Main Memory

regs

The chip

18

Cache - Cont’d

•  Cache is unit of volatile memory storage

•  A cache is an “array” of cache lines

•  Cache line can usually hold data from several
consecutive memory addresses

•  When data is requested from memory, an entire
cache line is loaded into the cache, in an attempt
to reduce main memory requests

19

Caches - Cont’d

Some definitions:
–  Spatial locality: is when the data elements stored in

consecutive memory locations are access
consecutively

–  Temporal locality: is when the same data element is
access multiple times in short period of time

•  Both spatial locality and temporal locality improve
the performance of caches

20

Scratchpad vs. Cache
•  Scratchpad (shared memory in CUDA) is

another type of temporary storage used to
relieve main memory contention.

•  In terms of distance from the processor,
scratchpad is similar to L1 cache.

•  Unlike cache, scratchpad does not
necessarily hold a copy of data that is also
in main memory

•  It requires explicit data transfer instructions,
whereas cache doesn’t

21

Cache Coherence Protocol

•  A mechanism for caches to propagate updates by
their local processor to other caches (processors)

Processor

L1 Cache

Main Memory

regs

The chip
Processor

L1 Cache
regs

Processor

L1 Cache
regs…

CPU and GPU have different
caching philosophy

•  CPU L1 caches are usually coherent
–  L1 is also replicated for each core
–  Even data that will be changed can be cached in L1
–  Updates to local cache copy invalidates (or less

commonly updates) copies in other caches
–  Expensive in terms of hardware and disruption of

services (cleaning bathrooms at airports..)

•  GPU L1 caches are usually incoherent
–  Avoid caching data that will be modified

22

How to Use Constant Memory
•  Host code allocates, initializes variables the

same way as any other variables that need o be
copied to the device

•  Use cudaMemcpyToSymbol(dest, src, size) to
copy the variable into the device memory

•  This copy function tells the device that the
variable will not be modified by the kernel and
can be safely cached.

23

24

More on Constant Caching

•  Each SM has its own L1
cache
–  Low latency, high bandwidth

access by all threads

•  However, there is no
way for threads in one
SM to update the L1
cache in other SMs
–  No L1 cache coherence

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/
CS483/ECE498al University of Illinois, 2007-2012

This is not a problem if a variable is NOT modified
by a kernel.

Using Constant memory

•  When declaring variables, use __const__ <type>
restrict

•  For example:
 __global__ void convolution_2D_kernel(float
*P, float *N, int height, int width, int channels,
__const__ float restrict *M)

•  In this case, we are telling the compiler that M is

constant and eligible for caching

25

ANY MORE QUESTIONS?
READ CHAPTER 8

© David Kirk/NVIDIA and Wen-mei W. Hwu/University of
Illinois, 2007-2012

26

Some Header File Stuff for M

#define KERNEL_SIZE 5

// Matrix Structure declaration
typedef struct {
 unsigned int width;
 unsigned int height;
 unsigned int pitch;
 float* elements;
} Matrix;

27

AllocateMatrix
// Allocate a device matrix of dimensions height*width
// If init == 0, initialize to all zeroes.
// If init == 1, perform random initialization.
// If init == 2, initialize matrix parameters, but do not
allocate memory
Matrix AllocateMatrix(int height, int width, int init)
{
 Matrix M;
 M.width = M.pitch = width;
 M.height = height;
 int size = M.width * M.height;
 M.elements = NULL;
 28

AllocateMatrix() (Cont.)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/
CS483/ECE498al University of Illinois, 2007-2012

29

// don't allocate memory on option 2
 if(init == 2) return M;
 M.elements = (float*) malloc(size*sizeof(float));
 for(unsigned int i = 0; i < M.height * M.width; i++)
 {
 M.elements[i] = (init == 0) ? (0.0f) :

 (rand() / (float)RAND_MAX);
 if(rand() % 2) M.elements[i] = - M.elements[i]
 }
return M;
}

Host Code
 // global variable, outside any function
 __constant__ float Mc[KERNEL_SIZE][KERNEL_SIZE];
…
 // allocate N, P, initialize N elements, copy N to Nd
 Matrix M;
 M = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE, 1);
 // initialize M elements
….
 cudaMemcpyToSymbol(Mc, M.elements,

 KERNEL_SIZE*KERNEL_SIZE*sizeof(float));
 ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);

30

