
CS/EE 217
GPU Architecture and Parallel Programming

Lecture 3: Kernel-Based
Data Parallel Execution Model

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013

Objective

•  To understand the organization and scheduling
of threads
–  Resource assignment at the block level
–  Scheduling at the warp level
–  SIMD implementation of SIMT execution

host device

Kernel 1

Grid 1
Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Kernel 2

Grid 2
Block (1,1)

Threa
d

(0,0,0)
Threa

d
(0,1,3)

Threa
d

(0,1,0)

Threa
d

(0,1,1)

Threa
d

(0,1,2)

Threa
d

(0,0,0)

Threa
d

(0,0,1)

Threa
d

(0,0,2)

Threa
d

(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A Multi-Dimensional Grid Example

16×16 blocks

Processing a Picture with a 2D Grid

Multidimensional (Nested) Arrays
•  Declaration

T A[R][C];
–  2D array of data type T
–  R rows, C columns
–  Type T element requires K bytes

•  Array Size
–  R * C * K bytes

•  Arrangement
–  Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A

[0]
[0]

A
[0]
[C-1]

• • •
A

[1]
[0]

A
[1]
[C-1]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C	 	 Bytes	

•	 	 •	 	 •	

Nested Array Row Access
•  Row Vectors

–  A[i] is array of C elements
–  Each element of type T requires K

bytes
–  Starting address A + i * (C * K)

•	 •	 •	
A

[i]
[0]

A
[i]
[C-1]

A[i]	

•	 •	 •	
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]	

•	 	 •	 	 •	

A

•	 •	 •	
A

[0]
[0]

A
[0]
[C-1]

A[0]	

A+i*C*4 A+(R-1)*C*4

int A[R][C];

Strange Referencing Examples

• Reference Address Value Guaranteed?

ec[3][3] 76+20*3+4*3 = 148 2
ec[2][5] 76+20*2+4*5 = 136 1
ec[2][-1] 76+20*2+4*-1 = 112 3
ec[4][-1] 76+20*4+4*-1 = 152 1
ec[0][19] 76+20*0+4*19 = 152 1

ec[0][-1] 76+20*0+4*-1 = 72 ??

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Will	 disappear	

Source Code of the PictureKernel

8

__global__ void PictureKernel(float* d_Pin, float* d_Pout, int n,int m) {

 // Calculate the row # of the d_Pin and d_Pout element to process
 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 // Calculate the column # of the d_Pin and d_Pout element to process
 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread computes one element of d_Pout if in range
 if ((Row < m) && (Col < n)) {
 d_Pout[Row*n+Col] = 2*d_Pin[Row*n+Col];
 }

}

Figure 4.5 Covering a 76×62 picture with 16×blocks.

A Simple Running Example
Matrix Multiplication

•  A simple illustration of the basic features of
memory and thread management in CUDA
programs
–  Thread index usage
–  Memory layout
–  Register usage
–  Assume square matrix for simplicity
–  Leave shared memory usage until later

Square Matrix-Matrix Multiplication
•  P = M * N of size WIDTH x WIDTH

–  Each thread calculates one
element of P

–  Each row of M is loaded WIDTH
times from global memory

–  Each column of N is loaded
WIDTH times from global memory

M

N

P

W
ID
TH

W
ID
TH

WIDTH WIDTH

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID
TH

W
ID
TH

WIDTH WIDTH

// Matrix multiplication on the (CPU) host
void MatrixMulOnHost(double* M, double* N,
 double* P, int Width) }
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * Width + k];
 double b = N[k * Width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i

k

k

j

Kernel Function - A Small Example
•  Main strategy: have each 2D thread block to compute a

(TILE_WIDTH)2 sub-matrix (tile) of the result matrix
–  Each has (TILE_WIDTH)2 threads

•  Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P2,3 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

WIDTH = 4; TILE_WIDTH = 2
Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks

•  What if matrix is not square?
•  What if width is not a multiple of

TILE_WIDTH?

A Slightly Bigger Example

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,5P0,4

P1,4

P0,6 P0,7

P1,5

P2,4 P2,6 P2,7P2,5

P1,7P1,6

P3,4 P3,6 P3,7P3,5

P4,1P4,0

P5,0

P4,2 P4,3

P5,1

P6,0 P6,2 P6,3P6,1

P5,3P5,2

P7,0 P7,2 P7,3P7,1

P4,5P4,4

P5,4

P4,6 P4,7

P5,5

P6,4 P6,6 P6,7P6,5

P5,7P5,6

P7,4 P7,6 P7,7P7,5

WIDTH = 8; TILE_WIDTH = 2
Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 4
Use 4* 4 = 16 blocks

A Slightly Bigger Example (cont.)

WIDTH = 8; TILE_WIDTH = 4
Each block has 4*4 =16 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,5P0,4

P1,4

P0,6 P0,7

P1,5

P2,4 P2,6 P2,7P2,5

P1,7P1,6

P3,4 P3,6 P3,7P3,5

P4,1P4,0

P5,0

P4,2 P4,3

P5,1

P6,0 P6,2 P6,3P6,1

P5,3P5,2

P7,0 P7,2 P7,3P7,1

P4,5P4,4

P5,4

P4,6 P4,7

P5,5

P6,4 P6,6 P6,7P6,5

P5,7P5,6

P7,4 P7,6 P7,7P7,5

 // Setup the execution configuration
 // TILE_WIDTH is a #define constant
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Kernel Invocation (Host-side Code)

Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(double* d_M, double* d_N, double* d_P, int
Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

Col = 0 * 2 + threadIdx.x
Row = 0 * 2 + threadIdx.y

C
ol = 0

C
ol = 1

Work for Block (0,0)
in a TILE_WIDTH = 2 Configuration

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

Row = 0
Row = 1

blockIdx.x blockIdx.y

blockDim.x blockDim.y

Work for Block (0,1)

P0,1P0,0

P0,1

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Row = 0
Row = 1

C
ol = 2

C
ol = 3

Col = 1 * 2 + threadIdx.x
Row = 0 * 2 + threadIdx.y

blockIdx.x blockIdx.y

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N2,3 N3,3N3,1

A Simple Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
// Calculate the row index of the d_P element and d_M

 int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column idenx of d_P and d_N

 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < Width) && (Col < Width)) {
 float Pvalue = 0;

// each thread computes one element of the block sub-matrix

 for (int k = 0; k < Width; ++k)
 Pvalue += d_M[Row*Width+k] *

 d_N[k*Width+Col];
 d_P[Row*Width+Col] = Pvalue;
 }
}

CUDA Thread Block
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 1024 concurrent threads
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread index numbers within
block
–  Kernel code uses thread index and block

index to select work and address shared
data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot cooperate
–  Each block can execute in any order relative

to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

History of parallelism

•  1st gen - Instructions are executed sequentially in
program order, one at a time.

•  Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode

History - Cont’d

•  2nd gen - Instructions are executed sequentially,
in program order, in an assembly line fashion.
(pipeline)

•  Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode Execute Memory
Instruction3 Fetch Decode Execute Memory

•  3rd gen - Instructions are executed in parallel
•  Example code 1:

 c = b + a;
 d = c + e;

•  Example code 2:
 a = b + c;
 d = e + f;

History –
Instruction Level Parallelism

Non-parallelizable

Parallelizable

Instruction Level Parallelism (Cont.)
•  Two forms of ILP:

–  Superscalar: At runtime, fetch, decode, and execute
multiple instructions at a time. Execution may be out of
order

–  VLIW: At compile time, pack multiple, independent
instructions in one large instruction and process the
large instructions as the atomic units.

Cycle 1 2 3 4 5
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode Execute Memory
Instruction3 Fetch Decode Execute Memory
Instruction4 Fetch Decode Execute Memory

History – Cont’d

•  4th gen – Multi-threading: multiple threads are
executed in an alternating or simultaneous
manner on the same processor/core. (will
revisit)

•  5th gen - Multi-Core: Multiple threads are

executed simultaneously on multiple
processors

Transparent Scalability
•  Hardware is free to assign blocks to any

processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks.

time

Example: Executing Thread Blocks

•  Threads are assigned to Streaming
Multiprocessors in block granularity
–  Up to 8 blocks to each SM as

resource allows
–  Fermi SM can take up to 1536 threads

•  Could be 256 (threads/block) * 6
blocks

•  Or 512 (threads/block) * 3 blocks, etc.

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Configuration of Fermi and Kepler

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

The Von-Neumann Model
with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Example: Thread Scheduling

•  Each Block is executed as 32-

thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

Going back to the program

•  Every instruction needs to be fetched from
memory, decoded, then executed.

•  Instructions come in three flavors: Operate, Data
transfer, and Program Control Flow.

•  An example instruction cycle is the following:

Fetch | Decode | Execute | Memory

Operate Instructions

•  Example of an operate instruction:
 ADD R1, R2, R3

•  Instruction cycle for an operate instruction:

Fetch | Decode | Execute | Memory

Data Transfer Instructions

•  Examples of data transfer instruction:
 LDR R1, R2, #2
 STR R1, R2, #2

•  Instruction cycle for an data transfer instruction:

Fetch | Decode | Execute | Memory

Control Flow Operations

•  Example of control flow instruction:
 BRp #-4
 if the condition is positive, jump back four
instructions

•  Instruction cycle for an arithmetic instruction:
Fetch | Decode | Execute | Memory

How thread blocks are partitioned
•  Thread blocks are partitioned into warps

–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from generation

to generation
–  (Covered next)

•  However, DO NOT rely on any ordering between
warps
–  If there are any dependencies between threads, you must

__syncthreads() to get correct results (more later).

•  Main performance concern with branching is divergence
–  Threads within a single warp take different paths
–  Different execution paths are serialized in current GPUs

•  The control paths taken by the threads in a warp are traversed
one at a time until there is no more.

•  A common case: avoid divergence when branch
condition is a function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a block
•  Branch granularity < warp size; threads 0, 1 and 2 follow different

path than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a block
•  Branch granularity is a whole multiple of warp size; all threads in

any given warp follow the same path

Control Flow Instructions

Example: Thread Scheduling (Cont.)

•  SM implements zero-overhead warp scheduling
–  At any time, 1 or 2 of the warps is executed by SM
–  Warps whose next instruction has its operands ready for

consumption are eligible for execution
–  Eligible Warps are selected for execution on a prioritized

scheduling policy
–  All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Block Granularity Considerations
•  For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

–  For 8X8, we have 64 threads per Block. Since each SM can take
up to 1536 threads, there are 24 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

–  For 16X16, we have 256 threads per Block. Since each SM can
take up to 1536 threads, it can take up to 6 Blocks and achieve
full capacity unless other resource considerations overrule.

–  For 32X32, we would have 1024 threads per Block. Only one
block can fit into an SM for Fermi. Using only 2/3 of the thread
capacity of an SM. Also, this works for CUDA 3.0 and beyond but
too large for some early CUDA versions.

ANY MORE QUESTIONS?
READ CHAPTER 4!

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013

Some Additional API Features

Application Programming Interface

•  The API is an extension to the C programming
language

•  It consists of:
–  Language extensions

•  To target portions of the code for execution on the device
–  A runtime library split into:

•  A common component providing built-in vector types and a
subset of the C runtime library in both host and device
codes

•  A host component to control and access one or more
devices from the host

•  A device component providing device-specific functions

Common Runtime Component:
Mathematical Functions

•  pow, sqrt, cbrt, hypot
•  exp, exp2, expm1
•  log, log2, log10, log1p
•  sin, cos, tan, asin, acos, atan, atan2
•  sinh, cosh, tanh, asinh, acosh, atanh
•  ceil, floor, trunc, round
•  Etc.

–  When executed on the host, a given function uses
the C runtime implementation if available

–  These functions are only supported for scalar types,
not vector types

Device Runtime Component:
Mathematical Functions

•  Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))
–  __pow
–  __log, __log2, __log10
–  __exp
–  __sin, __cos, __tan

