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Objective 

•  To understand the organization and scheduling 
of threads 
–  Resource assignment at the block level 
–  Scheduling at the warp level 
–  SIMD implementation of SIMT execution 
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A Multi-Dimensional Grid Example 



16×16 blocks

Processing a Picture with a 2D Grid 



Multidimensional (Nested) Arrays 
•  Declaration 

T   A[R][C]; 
–  2D array of data type T 
–  R rows, C columns 
–  Type T element requires K bytes 

•  Array Size 
–  R * C * K bytes 

•  Arrangement 
–  Row-Major Ordering 
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•	  	  •	  	  •	  

Nested Array Row Access 
•  Row Vectors 

–   A[i] is array of C elements 
–  Each element of type T requires K 

bytes 
–  Starting address A +  i * (C * K) 
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Strange Referencing Examples 

• Reference Address  Value Guaranteed? 
 
ec[3][3]  76+20*3+4*3 = 148  2   
ec[2][5]  76+20*2+4*5 = 136  1   
ec[2][-1]  76+20*2+4*-1 = 112  3   
ec[4][-1]  76+20*4+4*-1 = 152  1   
ec[0][19]  76+20*0+4*19 = 152  1   

ec[0][-1]  76+20*0+4*-1 = 72  ??   

76 96 116 136 156 

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1 

Will	  disappear	  



Source Code of the PictureKernel 

8 

 
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int n,int m) { 
 
  // Calculate the row # of the d_Pin and d_Pout element to process 
  int Row = blockIdx.y*blockDim.y + threadIdx.y; 
   
  // Calculate the column # of the d_Pin and d_Pout element to process 
  int Col = blockIdx.x*blockDim.x + threadIdx.x; 
 
  // each thread computes one element of d_Pout if in range 
  if ((Row < m) && (Col < n)) { 
    d_Pout[Row*n+Col] = 2*d_Pin[Row*n+Col]; 
  } 
   
} 



Figure 4.5 Covering a 76×62 picture with 16×blocks.



A Simple Running Example 
Matrix Multiplication 

•  A simple illustration of the basic features of 
memory and thread management in CUDA 
programs 
–  Thread index usage 
–  Memory layout 
–  Register usage 
–  Assume square matrix for simplicity 
–  Leave shared memory usage until later 



Square Matrix-Matrix Multiplication 
•  P = M * N of size WIDTH x WIDTH 

–  Each thread calculates one 
element of P 

–  Each row of M is loaded WIDTH 
times from global memory 

–  Each column of N is loaded 
WIDTH times from global memory 
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Matrix Multiplication 
A Simple Host Version in C 
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// Matrix multiplication on the (CPU) host 
void MatrixMulOnHost(double* M, double* N,  
                     double* P, int Width)     }  
    for (int i = 0; i < Width; ++i)  
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * Width + k]; 
                double b = N[k * Width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
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Kernel Function - A Small Example 
•  Main strategy: have each 2D thread block to compute a 

(TILE_WIDTH)2 sub-matrix (tile) of the result matrix 
–  Each has (TILE_WIDTH)2 threads 

•  Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks 
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WIDTH = 4;   TILE_WIDTH = 2
Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks

•  What if matrix is not square?
•  What if width is not a multiple of 

TILE_WIDTH?



A Slightly Bigger Example 
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A Slightly Bigger Example (cont.) 

WIDTH = 8;   TILE_WIDTH = 4
Each block has 4*4 =16 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks
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    // Setup the execution configuration 
    // TILE_WIDTH is a #define constant 
          dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1); 
       dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1); 
 
 
    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Kernel Invocation (Host-side Code)  



Kernel Function 

// Matrix multiplication kernel – per thread code 
 
__global__ void MatrixMulKernel(double* d_M, double* d_N, double* d_P, int 
Width)  
{ 
     
    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
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Work for Block (0,1) 
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A Simple Matrix Multiplication Kernel 
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
// Calculate the row index of the d_P element and d_M 

 int Row = blockIdx.y*blockDim.y+threadIdx.y; 
// Calculate the column idenx of d_P and d_N 

 int Col = blockIdx.x*blockDim.x+threadIdx.x; 
 
 if ((Row < Width) && (Col < Width)) { 
 float Pvalue = 0; 

// each thread computes one element of the block sub-matrix 

 for (int k = 0; k < Width; ++k) 
    Pvalue += d_M[Row*Width+k] *        

          d_N[k*Width+Col]; 
   d_P[Row*Width+Col] = Pvalue; 
  } 
} 



CUDA Thread Block 
•  All threads in a block execute the same 

kernel program (SPMD) 
•  Programmer declares block: 

–  Block size 1 to 1024 concurrent threads 
–  Block shape 1D, 2D, or 3D 
–  Block dimensions in threads 

•  Threads have thread index numbers within 
block 
–  Kernel code uses thread index and block 

index to select work and address shared 
data 

•  Threads in the same block share data and 
synchronize while doing their share of the 
work 

•  Threads in different blocks cannot cooperate 
–  Each block can execute in any order relative 

to other blocks! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 
NVIDIA



History of parallelism 

•  1st gen - Instructions are executed sequentially in 
program order, one at a time. 

•  Example: 
 

Cycle 1 2 3 4 5 6 
Instruction1 Fetch Decode Execute Memory     
Instruction2         Fetch Decode 



History - Cont’d 

•  2nd gen - Instructions are executed sequentially, 
in program order, in an assembly line fashion. 
(pipeline) 

•  Example: 

Cycle 1 2 3 4 5 6 
Instruction1 Fetch Decode Execute Memory 
Instruction2 Fetch Decode Execute Memory   
Instruction3     Fetch  Decode Execute Memory 



•  3rd gen - Instructions are executed in parallel 
•  Example code 1: 

 c = b + a;   
 d = c + e; 

•  Example code 2: 
 a = b + c; 
 d = e + f; 

History –  
Instruction Level Parallelism 

Non-parallelizable

Parallelizable



Instruction Level Parallelism (Cont.) 
•  Two forms of ILP: 

–  Superscalar: At runtime, fetch, decode, and execute 
multiple instructions at a time. Execution may be out of 
order 

–  VLIW: At compile time, pack multiple, independent 
instructions in one large instruction and process the 
large instructions as the atomic units. 

Cycle 1 2 3 4 5 
Instruction1 Fetch Decode Execute Memory   
Instruction2 Fetch Decode Execute Memory 
Instruction3 Fetch Decode Execute Memory 
Instruction4 Fetch Decode Execute Memory 



History – Cont’d 

•  4th gen – Multi-threading: multiple threads are 
executed in an alternating or simultaneous 
manner on the same processor/core. (will 
revisit) 

 
•  5th gen - Multi-Core: Multiple threads are 

executed simultaneously on multiple 
processors 



Transparent Scalability 
•  Hardware is free to assign blocks to any 

processor at any time 
–  A kernel scales across any number of 

parallel processors 
Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 
to other blocks. 

time



Example: Executing Thread Blocks 

•  Threads are assigned to Streaming 
Multiprocessors in block granularity 
–  Up to 8 blocks to each SM as 

resource allows 
–  Fermi SM can take up to 1536 threads 

•  Could be 256 (threads/block) * 6 
blocks  

•  Or 512 (threads/block) * 3 blocks, etc. 

•  Threads run concurrently 
–  SM maintains thread/block id #s 
–  SM manages/schedules thread 

execution 

t0 t1 t2 … tm 

Blocks 

SP 
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Memory 

MT IU 

SP 
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Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 



Configuration of Fermi and Kepler 



The Von-Neumann Model 
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The Von-Neumann Model 
with SIMD units 
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Example: Thread Scheduling 

 
•  Each Block is executed as 32-

thread Warps 
–  An implementation decision, 

not part of the CUDA 
programming model 

–  Warps are scheduling units 
in SM 

•  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
–  Each Block is divided into 

256/32 = 8 Warps 
–  There are 8 * 3 = 24 Warps  

…
t0 t1 t2 … t31 

…
…

t0 t1 t2 … t31 
…Block 1 Warps Block 2 Warps 

…
t0 t1 t2 … t31 

…Block 1 Warps 

Register File 
(128 KB) 

L1 
(16 KB) 

Shared Memory 
(48 KB) 



Going back to the program 

•  Every instruction needs to be fetched from 
memory, decoded, then executed. 

•  Instructions come in three flavors: Operate, Data 
transfer, and Program Control Flow. 

•  An example instruction cycle is the following: 
 

Fetch | Decode | Execute | Memory 



Operate Instructions 

•  Example of an operate instruction: 
  ADD R1, R2, R3 

 
•  Instruction cycle for an operate instruction: 

Fetch | Decode | Execute | Memory 



Data Transfer Instructions 

•  Examples of data transfer instruction: 
  LDR R1, R2, #2 
  STR  R1, R2, #2 

 
•  Instruction cycle for an data transfer instruction: 

Fetch | Decode | Execute | Memory 



Control Flow Operations 

•  Example of control flow instruction: 
  BRp #-4 
 if the condition is positive, jump back four 
instructions 

•  Instruction cycle for an arithmetic instruction: 
Fetch | Decode | Execute | Memory 



How thread blocks are partitioned 
•  Thread blocks are partitioned into warps 

–  Thread IDs within a warp are consecutive and increasing 
–  Warp 0 starts with Thread ID 0 

•  Partitioning is always the same 
–  Thus you can use this knowledge in control flow  
–  However, the exact size of warps may change from generation 

to generation 
–  (Covered next) 

•  However, DO NOT rely on any ordering between 
warps 
–  If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later). 



•  Main performance concern with branching is divergence 
–  Threads within a single warp take different paths 
–  Different execution paths are serialized in current GPUs 

•  The control paths taken by the threads in a warp are traversed 
one at a time until there is no more. 

•  A common case: avoid divergence when branch 
condition is a function of thread ID 
–  Example with divergence:  

•  If (threadIdx.x > 2) { } 
•  This creates two different control paths for threads in a block 
•  Branch granularity < warp size; threads 0, 1 and 2 follow different 

path than the rest of the threads in the first warp 
–  Example without divergence: 

•  If (threadIdx.x / WARP_SIZE > 2) { } 
•  Also creates two different control paths for threads in a block 
•  Branch granularity is a whole multiple of warp size; all threads in 

any given warp follow the same path 

Control Flow Instructions 



Example: Thread Scheduling (Cont.) 

•  SM implements zero-overhead warp scheduling 
–  At any time, 1 or 2 of the warps is executed by SM 
–  Warps whose next instruction has its operands ready for 

consumption are eligible for execution 
–  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
–  All threads in a warp execute the same instruction when selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4



Block Granularity Considerations 
•  For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks? 

–  For 8X8, we have 64 threads per Block. Since each SM can take 
up to 1536 threads, there are 24 Blocks. However, each SM can 
only take up to 8 Blocks, only 512 threads will go into each SM! 

–  For 16X16, we have 256 threads per Block. Since each SM can 
take up to 1536 threads, it can take up to 6 Blocks and achieve 
full capacity unless other resource considerations overrule. 

–  For 32X32, we would have 1024 threads per Block. Only one 
block can fit into an SM for Fermi. Using only 2/3 of the thread 
capacity of an SM. Also, this works for CUDA 3.0 and beyond but 
too large for some early CUDA versions. 



ANY MORE QUESTIONS? 
READ CHAPTER 4! 

© David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013



Some Additional API Features 



Application Programming Interface 

•  The API is an extension to the C programming 
language 

•  It consists of: 
–  Language extensions 

•  To target portions of the code for execution on the device 
–  A runtime library split into: 

•  A common component providing built-in vector types and a 
subset of the C runtime library in both host and device 
codes 

•  A host component to control and access one or more 
devices from the host 

•  A device component providing device-specific functions 



Common Runtime Component: 
Mathematical Functions 

•  pow, sqrt, cbrt, hypot 
•  exp, exp2, expm1 
•  log, log2, log10, log1p 
•  sin, cos, tan, asin, acos, atan, atan2 
•  sinh, cosh, tanh, asinh, acosh, atanh 
•  ceil, floor, trunc, round 
•  Etc. 

–  When executed on the host, a given function uses 
the C runtime implementation if available 

–  These functions are only supported for scalar types, 
not vector types 



Device Runtime Component: 
Mathematical Functions 

•  Some mathematical functions (e.g. sin(x)) 
have a less accurate, but faster device-only 
version (e.g. __sin(x)) 
–  __pow 
–  __log, __log2, __log10 
–  __exp 
–  __sin, __cos, __tan 


