
CS/EE 217

GPU Architecture and Parallel
Programming

Lecture 23:
Introduction to OpenACC

Objective

• To Understand the OpenACC programming
model
– basic concepts and pragmatypes
– Simple examples to illustrate basic concepts and

functionalities

© Wen-mei W. Hwu and John Stone,

OpenMP and OpenACC Pragmas

• In C and C++, the #pragma directive is the
method to provide, to the compiler,
information that is not specified in the
standard language.

• A sequential compiler can just ignore the
pragmas to produce sequential code
– If you are careful

OpenACC extends OpenMP

• OpenMP is a shared memory parallel programming API
• It uses pragmas (or compiler directives) to specify parallel

regions within a program
• OpenACC extends openMP to allow some of the code to run

on GPUs/acclerators
– Also using pragmas

Example of OpenMP

• To compile: gcc -fopenmp hello.c -o hello
• What will the output be?

#include <stdio.h>

int main(void) {

#pragma omp parallel
printf("Hello, world.\n");
return 0;

}

More interesting example
int main(int argc, char **argv)

{

int a[100000];

#pragma omp parallel for

int i;

for (i = 0; i < 100000; i++)

a[i] = 2 * i;

return 0;

}

Summary of OpenACC directives

OpenACC

• The OpenACC Application Programming
Interface provides a set of
– compiler directives (pragmas)
– library routines and
– environment variables
that can be used to write data parallel FORTRAN, C
and C++ programs that run on accelerator devices
including GPUs and CPUs

Simple Matrix-Matrix Multiplication in OpenACC
1 void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2 {
3
4 #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
5 for (int i=0; i<Mh; i++) {
6 #pragma acc loop
7 for (int j=0; j<Nw; j++) {
8 float sum = 0;
9 for (int k=0; k<Mw; k++) {
10 float a = M[i*Mw+k];
11 float b = N[k*Nw+j];
12 sum += a*b;
13 }
14 P[i*Nw+j] = sum;
15 }
16 }
17 }

Some Observations
• The code is almost identical to the sequential

version, except for the two lines with #pragma
at line 4 and line 6.

• OpenACC uses the compiler directive
mechanism to extend the base language.
– #pragma at line 4 tells the compiler to generate code for the ‘i’ loop

at line 5 through 16 so that the loop iterations are executed in parallel
on the accelerator.

– The copyin clause and the copyout clause specify how the matrix data
should be transferred between the host and the accelerator. The
#pragma at line 6 instructs the compiler to map the inner ‘j’ loop to
the second level of parallelism on the accelerator.

Motivation

• OpenACC programmers can often start with
writing a sequential version and then annotate
their sequential program with OpenACC
directives.
– leave most of the details in generating a kernel

and data transfers to the OpenACC compiler.

• OpenACC code can be compiled by non-
OpenACC compilers by ignoring the
pragmas.

Frequently Encountered Issues

• Some OpenACC pragmas are hints to the
OpenACC compiler, which may or may not
be able to act accordingly
– The performance of an OpenACC depends

heavily on the quality of the compiler.
– Much less so in CUDA or OpenCL

• Some OpenACC programs may behave
differently or even incorrectly if pragmas are
ignored

OpenACC Device Model

Currently OpenACC does not allow synchronization across threads.

OpenACC Execution Model

Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])

for (int i=0; i<Mh; i++) {

…
}

is equivalent to:
#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])

{
#pragma acc loop

for (int i=0; i<Mh; i++) {

…
}

}

(a parallel region that consists of just a loop)

Parallel Construct

• A parallel construct is executed on an
accelerator

• One can specify the number of gangs and
number of works in each gang

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{

a = 23;
}

1024*32 workers will be created. a=23 will be executed
redundantly by all 1024 gang leads

What does each “Gang Loop” do?
#pragma acc parallel num_gangs(1024)
{

for (int i=0; i<2048; i++) {
…

}
}

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (int i=0; i<2048; i++) {
…

}
}

Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{

#pragma acc loop gang
for (int i=0; i<2048; i++) {

#pragma acc loop worker
for (int j=0; j<512; j++) {

foo(i,j);
}

}
}
1024*32=32K workers will be created, each executing 1M/32K = 32 instance

of foo()

#pragma acc parallel num_gangs(32)

{

Statement 1; Statement 2;

#pragma acc loop gang

for (int i=0; i<n; i++) {

Statement 3; Statement 4;

}

Statement 5; Statement 6;

#pragma acc loop gang

for (int i=0; i<m; i++) {

Statement 7; Statement 8;

}

Statement 9;

if (condition)

Statement 10;

}

• Statements 1 and 2 are
redundantly executed by 32
gangs

• The n for-loop iterations are
distributed to 32 gangs

Kernel Regions
#pragma acc kernels

{

#pragma acc loop num_gangs(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}

#pragma acc loop num_gangs(512)

for (int j=0; j<2048; j++) {
c[j] = a[j]*2;

}
for (int k=0; k<2048; k++) {

d[k] = c[k];

}
}

• Kernel constructs are
descriptive of
programmer
intentions

ANY MORE QUESTIONS?
READ CHAPTER 15

