
CS/EE 217 GPU Architecture and
Parallel Programming

Lecture 22:
Introduction to OpenCL

Objective

• To Understand the OpenCL programming
model
– basic concepts and data types
– OpenCL application programming interface -

basic
– Simple examples to illustrate basic concepts and

functionalities

© Wen-mei W. Hwu and John Stone,

OpenCL Programs
• An OpenCL “program”

contains one or more
“kernels” and any
supporting routines that
run on a target device

• An OpenCL kernel is the
basic unit of parallel
code that can be
executed on a target
device

Kernel A

Kernel B

Kernel C

Misc support
functions

OpenCL Program

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Execution Model
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Kernels
• Code that actually

executes on target
devices

• Kernel body is
instantiated once for
each work item
– An OpenCL work item

is equivalent to a
CUDA thread

• Each OpenCL work
item gets a unique
index

__kernel void
vadd(__global const float *a,

__global const float *b,
__global float *result)

{
int id = get_global_id(0);
result[id] = a[id] + b[id];

}

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

6

Array of Parallel Work Items

• An OpenCL kernel is executed by an array of
work items
– All work items run the same code (SPMD)
– Each work item has an index that it uses to compute

memory addresses and make control decisions

76543210

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

threads

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work items

work group 0

…
…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 1

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 7

Work Groups: Scalable Cooperation
• Divide monolithic work item array into work groups

– Work items within a work group cooperate via shared
memory, atomic operations and barrier synchronization

– Work items in different work groups cannot cooperate

76543210 15141312111098 6362616059585756

© Wen-mei W. Hwu and John Stone,

OpenCL

Multidimensional Work indexing

OpenCL Data Parallel Model
Summary

• Parallel work is submitted to devices by launching
kernels

• Kernels run over global dimension index ranges
(NDRange), broken up into “work groups”, and
“work items”

• Work items executing within the same work group
can synchronize with each other with barriers or
memory fences

• Work items in different work groups can’t sync
with each other, except by launching a new kernel

OpenCL Host Code
• Prepare and trigger device code execution

– Create and manage device context(s) and
associate work queue(s), etc…

– Memory allocations, memory copies, etc
– Kernel launch

• OpenCL programs are normally compiled
entirely at runtime, which must be managed
by host code

© Wen-mei W. Hwu and John Stone,

OpenCL Hardware Abstraction
• OpenCL exposes CPUs,

GPUs, and other
Accelerators as “devices”

• Each “device” contains one
or more “compute units”, i.e.
cores, SMs, etc...

• Each “compute unit”
contains one or more SIMD
“processing elements”

OpenCL Device
Compute Unit
PEPEPEPE

PEPEPEPE

Compute Unit
PEPEPEPE

PEPEPEPE

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

An Example of Physical Reality
Behind OpenCL Abstraction

CPU
(host)

GPU w/
local DRAM

(device)

© Wen-mei W. Hwu and John Stone,

OpenCL Context
• Contains one or more devices
• OpenCL memory objects are

associated with a context, not a
specific device

• clCreateBuffer() is the main
data object allocation function
– error if an allocation is too large

for any device in the context
• Each device needs its own

work queue(s)
• Memory transfers are

associated with a command
queue (thus a specific device)

OpenCL Device

OpenCL Device

OpenCL Context

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Context Setup Code (simple)

cl_int clerr = CL_SUCCESS;
cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL,

NULL, &clerr);

size_t parmsz;
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

© Wen-mei W. Hwu and John Stone,

OpenCL Memory Model Overview

• Global memory
– Main means of

communicating R/W Data
between host and device

– Contents visible to all
threads

– Long latency access

• We will focus on global
memory for now

NDRange

Global Memory

Work Group (0, 0)

local Memory

Thread (0, 0)

private

Thread (1, 0)

private

Work Group (1, 0)

local Memory

Thread (0, 0)

private

Thread (1, 0)

private

Host

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Device Memory Allocation
• clCreateBuffer();

– Allocates object in the device Global
Memory

– Returns a pointer to the object
– Requires five parameters

• OpenCL context pointer
• Flags for access type by device
• Size of allocated object
• Host memory pointer, if used in copy-

from-host mode
• Error code

• clReleaseMemObject()
– Frees object

• Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Device Memory Allocation (cont.)

• Code example:
– Allocate a 1024 single precision float array
– Attach the allocated storage to d_a
– “d_” is often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR_SIZE* sizeof(float);

d_a = clCreateBuffe(clctx, CL_MEM_READ_ONLY, size, NULL, NULL);
clReleaseMemObject(d_a);

OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd QueueCommand

OpenCL Device

OpenCL Context
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

© Wen-mei W. Hwu and John Stone,

OpenCL Host-to-Device Data Transfer
• clEnqueueWriteBuffer();

– memory data transfer to device
– Requires nine parameters

• OpenCL command queue pointer
• Destination OpenCL memory buffer
• Blocking flag
• Offset in bytes
• Size (in bytes) of written data
• Host memory pointer
• List of events to be completed before

execution of this command
• Event object tied to this command

• Asynchronous transfer later

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© Wen-mei W. Hwu and John Stone,

OpenCL Device-to-Host Data Transfer
• clEnqueueReadBuffer();

– memory data transfer to host
– requires nine parameters

• OpenCL command queue pointer
• Source OpenCL memory buffer
• Blocking flag
• Offset in bytes
• Size of bytes of read data
• Destination host memory pointer
• List of events to be completed before

execution of this command
• Event object tied to this command

• Asynchronous transfer later

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Host-Device Data Transfer
(cont.)

• Code example:
– Transfer a 64 * 64 single precision float array
– a is in host memory and d_a is in device memory

int mem_size = 64*64*sizeof(float);
clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0,

mem_size, (const void *)a, 0, 0, NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE, 0,
mem_size, (void *) host_result, 0, 0, NULL);

OpenCL Host-Device Data Transfer
(cont.)

• clCreateBuffer and clEnqueueWriteBuffer can be combined
into a single command using special flags.

• Eg:
d_A=clCreateBuffer(clctxt, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, mem_size, h_A, NULL);

– Combination of 2 flags here. CL_MEM_COPY_HOST_PTR
to be used only if a valid host pointer is specified.

– This creates a memory buffer on the device, and copies data
from h_A into d_A.

– Includes an implicit clEnqueueWriteBuffer operation, for all
devices/command queues tied to the context clctxt.

OpenCL Memories

• __global – large, long latency
• __private – on-chip device registers
• __local – memory accessible from multiple

PEs or work items. May be SRAM or
DRAM, must query…

• __constant – read-only constant cache
• Device memory is managed explicitly by the

programmer, as with CUDA

OpenCL Kernel Execution Launch

OpenCL Device

Cmd QueueKernelApplication

Cmd QueueKernel

OpenCL Device

OpenCL Context
© Wen-mei W. Hwu and John Stone, Urbana July 22, 2010

OpenCL Kernel Compilation Example
const char* vaddsrc =

“__kernel void vadd(__global float *d_A, __global float *d_B, __global float *d_C, int N) { \n“
[…etc and so forth…]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL, &clerr);
char clcompileflags[4096];
sprintf(clcompileflags, “-cl-mad-enable");
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr);

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and retreive a
handle to the “vadd” kernel

© Wen-mei W. Hwu and John Stone,

Summary: Host code for vadd
int main()
{ // allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …;
// allocate device (GPU) memory

cl_mem d_A, d_B, d_C;

d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);

d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);

d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY, N
*sizeof(float), NULL, NULL);

clkern=clCreateKernel(clpgm, “vadd", NULL);
clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem), (void *)&d_A);

clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem), (void *)&d_B);

clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem), (void *)&d_C);

clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);

Summary of Host Code (cont.)
cl_event event=NULL;

clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, Gsz,Bsz, 0, NULL,
&event);

clerr= clWaitForEvents(1, &event);

clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0, N*sizeof(float), h_C, 0, NULL,
NULL);

clReleaseMemObject(d_A);

clReleaseMemObject(d_B);
clReleaseMemObject(d_C);

}

ANY MORE QUESTIONS?
READ CHAPTER 14

