

Part 3: Research Direc/ons

2	

3

Advancing	Computer	Systems	without	Technology	Progress	

DARPA/ISAT	Workshop,	March	26-27,	2012	

Mark	Hill	&	Christos	Kozyrakis	

Decreasing	cost	per	unit	computaLon	

1971:		Intel	4004	

2012:																	Datacenter		

1981:	IBM	5150	

2007:	iPhone	

4

Ease	of		
Programming	

Hardware	Efficiency	

Single	Core	OoO	Superscalar	CPU	

Brawny	(OoO)	MulLcore	

ASIC	

Be#er	

16K	thread,	SIMT	Accelerator	

Wimpy	(In-order)	MulLcore	

(how	to	get	here?)	
	

5

Ease	of		
Programming	

Hardware	Efficiency	

Start	by	using	right	tool	for	each	job…	

Amdahl’s Law Limits this Approach

6

Easy	to	accelerate	Hard	to	accelerate	

€

Improvementoverall =
1

Fractionhard + 1- Fractionhard

Improvementeasy

Ques/on: Can dividing line be moved?

7

easy	to	accelerate	(Acc.	Arch1)	

easy	to	accelerate	(Acc.	Arch2)	
	

Forward-Looking GPU SoHware
•  SLll	Massively	Parallel	
•  Less	Structured	

•  Memory	access	and	control	flow	pa`erns	are	less	
predictable	

8	

Execute	efficiently	
on	a	GPU	today	

Graphics	
Shaders	

Matrix	
Mul:ply	

…	

Less	efficient	on	
today’s	GPU	

Raytracing	
Molecular	
Dynamics	

Object	
Classifica:on	

…	

[Tim	Rogers]	

9

Ease	of		
Programming	

Energy	Efficiency	

Be#er	

Two	Routes	to	“Be`er”	

Research Direc+on 1:
Mi/ga/ng SIMT Control Divergence

10	

11	

-	 G	 1111	TOS	

B	

C	 D	

E	

F	

A	

G	

Recall: SIMT Hardware Stack

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
E	 D	 0110	
E	 C	 1001	TOS	

-	 E	 1111	
E	 D	 0110	TOS	
-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 AcLve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Potential for significant loss of throughput when control flow diverged!	

Performance vs. Warp Size

12	Rogers	et	al.,	A	Variable	Warp-Size	Architecture,	ISCA	2015	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

IP
C

 n
or

m
al

iz
ed

 to
 w

ar
p

si
ze

 3
2 Warp Size 4

Application

Convergent	
Applica:ons	

Warp-Size	Insensi:ve	
Applica:ons	

Divergent	
Applica:ons	

•  165	ApplicaLons	

13

Dynamic Warp Forma/on
(Fung MICRO’07)

Tim
e	

1	2	3	4	A

1	2	--	--	C

--	--	3	4	D

1	2	3	4	E

1	2	3	4	B

Warp	0	

5	6	7	8		A

5	--	7	8	C

--	6	--	--	D

5	6	7	8	E

5	6	7	8	B

Warp	1	

9	10	11	12	A

--	--	11	12	C

9	10	--	--	D

9	10	11	12	E

9	10	11	12	B

Warp	2	

Reissue/Memory	
Latency	

SIMD	Efficiency	!	88%	
1		2		7		8	C
	5	--	11	12	C

Pack	

How to pick threads to pack into warps?

Wilson	Fung,	Ivan	Sham,	George	Yuan,	
Tor	Aamodt	

Dynamic	Warp	FormaLon	and	Scheduling	
for	Efficient	GPU	Control	Flow	 14	

I-C
ache

D
ecode

C
om

m
it/

W
riteback

RF 2

RF 1

ALU 2

ALU 1 (TID, Reg#)

(TID, Reg#)

RF 3ALU 3 (TID, Reg#)

RF 4ALU 4 (TID, Reg#)

Thread	Scheduler	
PC-Warp	LUT	 Warp	Pool	 I	s	s	u	e			L	o	 g	i	 c	

Warp	Allocator	

TID	x	N	 PC	A	

TID	x	N	 PC	B	

H	

H	

TID	x	N	PC	 Prio	
TID	x	N	PC	 Prio	

OCC	PC	 IDX	
OCC	PC	 IDX	

Warp	Update	Register	T	

Warp	Update	Register	NT	
REQ	

REQ	
TID	x	N	PC	 Prio	

A	 5	 6	 7	 8	
A	 1	 2	 3	 4	

Dynamic Warp Forma/on:
Hardware Implementa/on

5	 7	 8	

6	

B	

C	

1011	

0100	

B	 2	 3	0110	B	 0	 B	 5	 2	 3	 8	

B	

0010	B	 2	

7	
1	

3	

4	

2	 B	

C	

0110	

1001	

C	 1	1001	C	 1	 4	C	 6	1101	C	 1	

No	Lane	Conflict	

A: BEQ R2, B
C: …

X	

1	
2	
3	
4	

Y	

5	
6	
7	
8	

X	

1	
2	
3	
4	

X	

1	
2	
3	
4	

X	

1	
2	
3	
4	

X	

1	
2	
3	
4	

Y	

5	
6	
7	
8	

Y	

5	
6	
7	
8	

Y	

5	
6	
7	
8	

Y	

5	
6	
7	
8	

Z	

5	
2	
3	
8	

Z	

5	
2	
3	
8	

Z	

5	
2	
3	
8	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 15	

9		6		3		4	D
--	10	--	--	D
1		2		3		4	E
5		6		7		8	E
9	10	11	12	E

DWF Pathologies: Starva/on

• Majority	Scheduling	
•  Best	Performing		
•  PrioriLze	largest	group	of	threads	with	
same	PC	

•  Starva&on	
•  LOWER	SIMD	Efficiency!	

• Other	Warp	Scheduler?	
•  Tricky:	Variable	Memory	Latency	

Tim
e	

1		2		7		8	C
	5	--	11	12	C

9		6		3		4	D
--	10	--	--	D

1		2		7		8	E
	5	--	11	12	E

9		6		3		4	E
--	10	--	--	E

B: if (K > 10)
C: K = 10;
 else
D: K = 0;
E: B = C[tid.x] + K;

1000s	cycles	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 16	

DWF Pathologies:
Extra Uncoalesced Accesses

• Coalesced	Memory	Access	=	Memory	SIMD		
•  1st	Order	CUDA	Programmer	OpLmizaLon		

• Not	preserved	by	DWF	

E: B = C[tid.x] + K;

1		2		3		4	E
5		6		7		8	E
9	10	11	12	E

Memory	

0x100
0x140
0x180

1		2		7	12	E
9		6		3		8	E
5	10	11	4	E

Memory	

0x100
0x140
0x180

#Acc	=	3	

#Acc	=	9	

No	DWF	

With	DWF	

L1	Cache	Absorbs	
Redundant	

Memory	Traffic	

L1$	Port	Conflict	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 17	

DWF Pathologies: Implicit Warp Sync.

•  Some	CUDA	applicaLons	depend	on	the	lockstep	execuLon	of	“staLc	
warps”	

•  E.g.	Task	Queue	in	Ray	Tracing	

Thread			0	...	31	
Thread	32	...	63	
Thread	64	...	95	

Warp	0	
Warp	1	
Warp	2	

int wid = tid.x / 32;
if (tid.x % 32 == 0) {
 sharedTaskID[wid] = atomicAdd(g_TaskID, 32);
}
my_TaskID = sharedTaskID[wid] + tid.x % 32;
ProcessTask(my_TaskID);

Implicit	
Warp	
Sync.	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 18	

StaLc	
Warp	

Dynamic	
Warp	

StaLc	
Warp	

Observa/on
•  Compute	kernels	usually	contain	
divergent	and	non-divergent	
(coherent)	code	segments	

•  Coalesced	memory	access	usually	in	
coherent	code	segments	

•  DWF	no	benefit	there	

Coherent	

Divergent	

Coherent	

Reset	Warps	

Divergence	

Recvg	
Pt.	

Coales.	LD/ST	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 19	

Thread Block Compac/on
• Run	a	thread	block	like	a	warp	

• Whole	block	move	between	coherent/divergent	code	
•  Block-wide	stack	to	track	exec.	paths	reconvg.	

• Barrier	@	Branch/reconverge	pt.	
•  All	avail.	threads	arrive	at	branch	
•  InsensiLve	to	warp	scheduling	

• Warp	compacLon		
•  Regrouping	with	all	avail.	threads	
•  If	no	divergence,	gives	staLc	warp	arrangement	

Starva:on	

Implicit		
Warp	Sync.	

Extra	Uncoalesced		
Memory	Access	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 20	

Thread Block Compac/on
PC	 RPC	 Ac:ve	Threads	
A	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	
D	 E	 --	 --	 3	 4	 --	 6	 --	 --	 9	 10	 --	 --	
C	 E	 1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	

E	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	

Time	

1		2		7		8	C
	5	--	11	12	C

9		6		3		4	D
--	10	--	--	D

5		6		7		8	A
	9	10	11	12	A

1		2		3		4	A

5		6		7		8	E
	9	10	11	12	E

1		2		3		4	E

A: K = A[tid.x];

B: if (K > 10)

C: K = 10;

 else

D: K = 0;

E: B = C[tid.x] + K;

5		6		7		8	A
	9	10	11	12	A

1		2		3		4	A

5		--		7		8	C
	--	--	11	12	C

1		2		--	--	C

--		6		--	--	D
9	10	--	--	D

--		--		3		4	D

5		6		7		8	E
	9	10	11	12	E

1		2		7		8	E

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 21	

Thread Compactor
• Convert	ac#vemask	from	block-wide	stack	to	thread	
IDs	in	warp	buffer	

• Array	of	Priority-Encoder	

P-Enc	 P-Enc	 P-Enc	 P-Enc	

1	 2	 7	 8	5	 --	 11	 12	

1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	C	 E	

1	 2	 --	 --	5	 --	 7	 8	--	 --	 11	 12	

1		2		7		8	C
	5	--	11	12	C

Warp	Buffer	

Wilson	Fung,	Tor	Aamodt	 Thread	Block	CompacLon	 22	

0.6	 0.7	 0.8	 0.9	 1	 1.1	 1.2	 1.3	

TBC	

DWF	

IPC	Rela:ve	to	Baseline	

COHE	
DIVG	

Experimental Results
•  2	Benchmark	Groups:		

•  COHE	=	Non-Divergent	CUDA	applicaLons	
•  DIVG	=	Divergent	CUDA	applicaLons	

Serious	Slowdown	from		
pathologies	
No	Penalty	for	COHE	
22%	Speedup	on	DIVG	

Per-Warp	Stack	

Recent work on warp divergence
•  Intel	[MICRO	2011]:	Thread	FronLers	–	early	reconvergence	for	unstructured	
control	flow.	

•  UT-AusLn/NVIDIA	[MICRO	2011]:	Large	Warps	–	similar	to	TBC	except	decouple	size	
of	thread	stack	from	thread	block	size.	

•  NVIDIA	[ISCA	2012]:	Simultaneous	branch	and	warp	interweaving.			Enable	SIMD	to	
execute	two	paths	at	once.	

•  Intel	[ISCA	2013]:	Intra-warp	compacLon	–	extends	Xeon	Phi	uarch	to	enable	
compacLon.	

•  NVIDIA:	Temporal	SIMT	[described	briefly	in	IEEE	Micro	arLcle	and	in	more	detail	in	
CGO	2013	paper]		

•  NVIDIA	[ISCA	2015]:	Variable	Warp-Size	Architecture	–	merge	small	warps	(4	
threads)	into	“gangs”.	

23	

Thread Fron/ers
[Diamos et al., MICRO 2011]

24	

+	

Temporal SIMT

32-wide datapath

time

1
cy

c

1 warp instruction = 32 threads

thread
0

 thread
31

ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		

ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		ld		

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

ml	ml	ml	ml	

ad	ad	ad	ad	

st	 st	 st	 st	

Spatial SIMT (current GPUs)

1-wide

time

1
cy

c

ld		
ld		
ld		
ld		
ld		
ld		
ld		

 0
(threads)

 1
 2
 3
 4
 5
 6
 7 ld		

ld		
ld		

 8
 9

ld		 10

Pure Temporal SIMT

[slide	courtesy	of	Bill	Dally]	

Temporal SIMT Op/miza/ons
Control	divergence	—	hybrid	MIMD/SIMT	

	
ScalarizaLon	

Factor	common	instrucLons	from	mulLple	threads	
Execute	once	–	place	results	in	common	registers	
[See:	SIMT	Affine	Value	Structure	(ISCA	2013)]	

	

32-wide
(41%)

4-wide
(65%)

1-wide
(100%)

[slide	courtesy	of	Bill	Dally]	

Scalar Instruc/ons in SIMT Lanes
Scalar

instruction
spanning warp

Scalar register
visible to all

threads

Temporal
execution of

Warp
Multiple

lanes/warps
Y. Lee, CGO 2013 [slide	courtesy	of	Bill	Dally]	

Variable Warp-Size Architecture

28	

•  Most	recent	work	by	NVIDIA	[ISCA	2015]	
•  Split	the	SM	datapath	into	narrow	slices.	

•  Extensively	studied	4-thread	slices	
•  Gang	slice	execuLon	to	gain	efficiencies	of	wider	warp.	

Tim	Rogers	 A	Variable	Warp-Size	Architecture	

Frontend

Warp	Datapath

L1	I-Cache

Memory	Unit

Warp
Control	Logic 32-wide

Slice

Frontend

Slice	Datapath

L1	I-Cache

Memory	Unit

Slice
Front	
End 4-wide

...
Slice
Slice	DatapathSlice

Front	
End 4-wide

Slices	can	
execute	

independently	

Slices	share	an	L1	
I-Cache	and	Memory	Unit	

Ganging
Unit

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

CoMD Lighting GamePhysics ObjClassifier Raytracing HMEAN-DIV

Divergent Applications IP
C

 n
or

m
al

iz
ed

 to
 w

ar
p

si
ze

 3
2 WS 32 WS 4 I-VWS E-VWS

Divergent Applica/on Performance

29	Tim	Rogers	 A	Variable	Warp-Size	Architecture	

Warp	Size	4	I-VWS:	Break	on	
CF	Only	

E-VWS:	Break	+	
Reform	

0

0.2

0.4

0.6

0.8

1

1.2

Game 1 MatrixMultiply Game 2 FeatureDetect Radix Sort HMEAN-CON

Convergent Applications IP
C

 n
or

m
al

iz
ed

 to
 w

ar
p

si
ze

 3
2 WS 32 WS 4 I-VWS E-VWS

Convergent Applica/on Performance

Tim	Rogers	 A	Variable	Warp-Size	Architecture	 30	

Warp	Size	4	
I-VWS:	Break	on	

CF	Only	

Warp-Size	Insensi:ve	
Applica:ons	Unaffected	

E-VWS:	Break	+	
Reform	

Research Direc+on 2:
Mi/ga/ng High GPGPU Memory
Bandwidth Demands

31	

Reducing Off-Chip Access / Divergence

• Re-wriLng	so|ware	to	use	“shared	memory”	and	avoid	uncoalesced	
global	accesses	is	bane	of	GPU	programmer	existence.	

• Recent	GPUs	introduce	caches,	but	large	number	of	warps/
wavefronts	lead	to	thrashing.			

32	

• NVIDIA:	Register	file	cache	(ISCA	2011,	MICRO)	
•  Register	file	burns	significant	energy	
•  Many	values	read	once	soon	a|er	wri`en	
•  Small	register	file	cache	captures	locality	and	saves	energy	
but	does	not	help	performance	

•  Recent	follow	on	work	from	academia	

• Prefetching	(Kim,	MICRO	2010)	
•  Interconnect	(Bakhoda,	MICRO	2010)	
•  Lee	&	Kim	(HPCA	2012)	CPU/GPU	cache	sharing	

33	

Thread Scheduling Analogy
[MICRO 2012]

• Human	MulLtasking	
•  Humans	have	limited	a#en:on	capacity	

	
•  GPUs	have	limited	cache	capacity	

34	

Pr
od

uc
tiv

ity

Tasks at Once

GPU	Core	

Processor	 Cache	

Pe
rf
or
m
an

ce
	

Threads	Ac:vely	Scheduled	

Use Memory System Feedback
[MICRO 2012]

35	

0	

0.5	

1	

1.5	

2	

0

10

20

30

40

Threads Actively Scheduled

Performance	

Cache	Misses	

GPU	Core	

Processor	 Cache	Thread	
Scheduler	

Feedback	

Data Cache Data Cache

Sources	of	Locality	

Intra-wavefront	locality	 Inter-wavefront	locality	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

Wave0	

Hit

Wave0	 Wave1	

Hit

36	

0	

20	

40	

60	

80	

100	

120	

AVG-Highly	Cache	Sensi:ve	

(H
its
/M

is
s)
	P
KI
	

Misses	PKI	

Inter-Wavefront	Hits	PKI	

Intra-Wavefront	Hits	PKI	

37	

Scheduler	affects	access	pa`ern	

Memory
System

Wavefront
Scheduler

Wavefront
Scheduler

Round	Robin	Scheduler	

Memory
System

Greedy	then	Oldest	Scheduler		

ld	A	,B,C,D…	

D
C	
B	
A	

ld	Z,Y,X,W	ld	A,B,C,D	

W
X	
Y	
Z	

...	
	 ...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	

...	
	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	

38	

	Use	scheduler	to	shape	access	pa`ern		
	
	

Memory
System

Wavefront
Scheduler

Wavefront
Scheduler

Greedy	then	Oldest	Scheduler		
	

Memory
System

Cache-Conscious	Wavefront	Scheduling	
[MICRO	2012	best	paper	runner	up,		

Top	Picks	2013,	CACM	Research	Highlight]	

ld	A,B,C,D	

D
C	
B	
A	

ld	A,B,C,D	

W
X	
Y	
Z	

...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	

...	
	

ld	Z,Y,X,W…	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	

39	

Memory Unit

Cache

Victim Tags

Locality Scoring
System

Wave
Scheduler

W0

W1

W2

Tag WID Data

Tag

Tag

Tag

Tag

Tag

Tag

W0	

W1	

W2	

Time	

Score	

Tag WID Data

…
	

W0

W1

The
image
part
with
relatio
nship
ID
rId2

W2
No	W2	
loads	

W0

W1

W2

…	
W0:	ld	X	

X 0

W0,X	 X

W0	
detected	
lost	locality	

W2:	ld	Y	W0:	ld	X	

Probe
W0,X	

Y 2

40	

0	

0.5	

1	

1.5	

2	

HMEAN-Highly	Cache-Sensi:ve	

Sp
ee
du

p	

LRR	 GTO	 CCWS	

41	

Sta/c Wavefront Limi/ng
[Rogers et al., MICRO 2012]

• Profiling	an	applicaLon	we	can	find	an	opLmal	number	of	wavefronts	
to	execute	

• Does	a	li`le	be`er	than	CCWS.	
•  LimitaLons:	Requires	profiling,	input	dependent,	does	not	exploit	
phase	behavior.	

42	

Improve upon CCWS?

• CCWS	detects	bad	scheduling	decisions	and	avoids	them	in	future.	

• Would	be	be`er	if	we	could	“think	ahead”	/	“be	proacLve”	instead	of	
“being	reacLve”	

43	

Programmability case study [MICRO 2013]
Sparse	Vector-Matrix	Mul:ply	

Simple	Version	
GPU-OpLmized	Version	
SHOC	Benchmark	Suite	
(Oakridge	NaLonal	Labs)	

44	

Added	Complica:on	Dependent	on	Warp	
Size	

Parallel	Reduc:on	

Explicit	Scratchpad	Use	 Divergence	

Each	thread	has	
locality	

Using	DAWS	scheduling	
within	4%	of	op:mized	with	no	

programmer	input	

Observa/ons
[Rogers et al., MICRO 2013]

•  Memory divergence in static instructions is predictable

•  Data touched by divergent loads dependent on active mask

Warp	0	Warp	1	
…	
load	
…	

Divergence	

Divergence	Warp	

Main	Memory	

Main	Memory	Main	Memory	

Divergence	

Both	Used	To	
Create	Cache	
Footprint	
Predic:on	

4	accesses	
2	accesses	

1 0 10
Warp	

1 1 11

45	

Footprint Predic/on
1.   Detect loops with locality

2.   Classify loads in the loop

3.   Compute footprint from active mask

Some	loops	have	locality	 Some	don’t	

Limit	mul:threading	
here	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Diverged	

Not	Diverged	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Warp	0	 1	1	1	1	1	1	

Loop	with	locality	

Loop	with	locality	

Diverged	

Not	Diverged	

4	accesses	

1	access	
+ Warp	0’s	

Footprint	
=	5	cache	lines	

46	

int	C[]={0,64,96,128,160,160,192,224,256};	
void	sum_row_csr(float*	A,	…)		{	
				float	sum	=	0;	
				int	i	=C[Ld];	
	
	
	
				while(i	<	C[:d+1])	{	
	
								sum		+=	A[i];		
	
	
								++i;	
	
						}	
…	

Example	Compressed	Sparse	Row	Kernel	

Time1	Time0	 Time2	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[32]	

A[160]	

A[192]	

A[224]	

Warp0	 1	 1	 1	 1	
2nd	Iter.	

Warp0	 1	 0	 0	 0	
33rd	Iter.	

Warp1	 0	 1	 1	 1	

1st	Iter.	

Memory	Divergence	

Divergent	Branch	

Go	 Go	

Warp1	

Warp0	
Warp1	

Warp0	

No	
Footprint	

DAWS	Opera:on	Example	

Cache	Footprint	

4	 4	 4	 Want	to	capture	
spa:al	locality	

Hit	

Hit	
Hit	

Hit	

Go	

Hit	x30	

Hit	x30	

Hit	x30	

Hit	x30	

Loop	
Stop	
Go	

No	locality	
detected	=	no	
footprint	

Locality	Detected	
1	Diverged	Load	

Detected	

Footprint	=	4X1	

Footprint	=	3X1	
Early	warps	profile	

loop	for	later	
warps	

Warp	0	has	branch	divergence	

Both	warps	capture	
spa:al	locality	together	4	Ac:ve	threads	

Stop	

Footprint	decreased	 47	

Sparse MM Case Study Results

Within	4%	of	op:mized	
with	no	programmer	input	

0

0.5

1

1.5

2

Di
ve
rg
en

t	C
od

e	
Ex
ec
u:

on
	:
m
e	

4.9

Other	Schedulers CCWS DAWS

•  Performance	(normalized	to	opLmized	version)	

48	

Memory Request Priori/za/on Buffer
[Jia et al., HPCA 2014]

• Reorder	requests	by	sorLng	by	Warp	ID.	
• Bypass	when	too	many	accesses	to	same	cache	set.	

49	

W3	 W2	 W1	 W3	 W2	 W1	

W3	 W3	

W2	 W2	 W1	 W1	

Bypass	accesses	to	hot	set	

Reorder	requests	by	warp	ID		

Priority-Based Cache Alloca/on in Throughput
Processors [Li et al., HPCA 2015]

•  CCWS	leaves	L2	and	DRAM	underuLlized.	
•  Allow	some	addiLonal	warps	to	execute	but	do	not	allow	them	
to	allocate	space	in	cache:	

50	

Warp	0	
Warp	1	Normal	Warps	

Warp	2	
Warp	3	Non-PolluLng	

Warps	
Warp	4	

Schedule	and	allocate	in	L1	

Schedule	and	bypass	L1	

Warp	5	
Thro`led	Warps	

Warp	n-1	
Not	scheduled	

 Coordinated cri/cality-Aware Warp Accelera/on
(CAWA) [Lee et al., ISCA 2015]

•  Some	warps	execute	longer	than	others	due	to	lack	of	
uniformity	in	underlying	workload.	

• Give	these	warps	more	space	in	cache	and	more	
scheduling	slots.	

•  EsLmate	criLcal	path	by	observing	amount	of	branch	
divergence	and	memory	stalls.	

• Also,	predict	if	line	inserted	in	line	will	be	used	by	a	
warp	that	is	criLcal	using	modified	version	of	SHiP	
cache	replacement	algorithm.		

51	

Other Memory System Performance Considera/ons

•  TLB	Design	for	GPUs.	
•  Current	GPUs	have	translaLon	look	aside	buffers	(makes	managing	mulLple	
graphics	applicaLon	surfaces	easier;	does	not	support	paging)	

•  How	does	large	number	of	threads	impact	TLB	design?		
•  E.g.,	Power	et	al.,	Suppor#ng	x86-64	Address	Transla#on	for	100s	of	GPU	
Lanes,	HPCA	2014.		Importance	of	mulLthreaded	page	table	walker	+	page	
walk	cache.	

52	

Research Direc+on 3:
Coherent Memory for Accelerators

53	

Why GPU Coding Difficult?

• Manual	data	movement	CPU	ó	GPU	
•  Lack	of	generic	I/O	,	system	support	on	GPU	
• Need	for	performance	tuning	to	reduce	

•  off-chip	accesses		
•  memory	divergence	
•  control	divergence	

•  For	complex	algorithms,	synchronizaLon	
• Non-determinisLc	behavior	for	buggy	code		
•  Lack	of	good	performance	analysis	tools	

	

54	

Manual CPU ó GPU Data Movement
• Problem	#1:	Programmer	needs	to	idenLfy	data	
needed	in	a	kernel	and	insert	calls	to	move	it	to	GPU	

• Problem	#2:	Pointer	on	CPU	does	not	work	on	GPU	
since	different	address	spaces	

• Problem	#3:	Bandwidth	connecLng	CPU	and	GPU	is	
order	of	magnitude	smaller	than	GPU	off-chip	

• Problem	#4:	Latency	to	transfer	data	from	CPU	to	
GPU	is	order	of	magnitude	higher	than	GPU	off-chip	

• Problem	#5:	Size	of	GPU	DRAM	memory	much	
smaller	than	size	of	CPU	main	memory	

55	

Iden/fying data to move CPU ó GPU

• CUDA/OpenCL:		Job	of	programmer	L	

• C++AMP	passes	job	to	compiler.			

• OpenACC	uses	pragmas	to	indicate	loops	that	should	be	offloaded	to	
GPU.	

56	

Memory Model

Rapid	change	(making	programming	easier)	
•  Late	1990’s:	fixed	funcLon	graphics	only	
•  2003:	programmable	graphics	shaders	
•  2006:	+	global/local/shared		(GeForce	8)	
•  2009:	+	caching	of	global/local		
•  2011:	+	unified	virtual	addressing	
•  2014:	+	unified	memory	/	coherence	

57	

Caching

•  Scratchpad	uses	explicit	data	movement.	Extra	work.	Beneficial	when	
reuse	pa`ern	staLcally	predictable.	

• NVIDIA	Fermi	/	AMD	Southern	Island	add	caches	for	accesses	to	
global	memory	space.				

58	

CPU memory vs. GPU global memory

• Prior	to	CUDA:	input	data	is	texture	map.	
• CUDA	1.0	introduces	cudaMemcpy	

•  Allows	copy	of	data	between	CPU	memory	space	to	global	memory	on	GPU	

•  SLll	has	problems:	
•  #1:	Programmer	sLll	has	to	think	about	it!	
•  #2:	Communicate	only	at	kernel	grid	boundaries	
•  #3:	Different	virtual	address	space		

•  pointer	on	CPU	not	a	pointer	on	GPU	=>	cannot	easily	share	complex	data	structures	
between	CPU	and	GPU	

59	

Fusion / Integrated GPUs

• Why	integrate?	
•  One	chip	versus	two	(cf.	Moore’s	Law,	VLSI)	
•  Latency	and	bandwidth	of	communicaLon:	shared	physical	address	space,	
even	if	off-chip,	eliminates	copy:	AMD	Fusion.	1st	iteraLon	2011.		Same	DRAM	

•  Shared	virtual	address	space?	(AMD	Kavari	2014)	
•  Reduce	latency	to	spawn	kernel	means	kernel	needs	to	do	less	to	jusLfy	cost	
of	launching	

60	

CPU Pointer not a GPU Pointer

• NVIDIA	Unified	Virtual	Memory	parLally	solves	the	problem	but	in	a	
bad	way:			

•  GPU	kernel	reads	from	CPU	memory	space	

• NVIDIA	Uniform	Memory	(CUDA	6)	improves	by	enabling	automaLc	
migraLon	of	data	

•  Limited	academic	work.	Gelado	et	al.	ASPLOS	2010.	
	

61	

CPU ó GPU Bandwidth

•  Shared	DRAM	as	found	in	AMD	Fusion	(recent	Core	
i7)	enables	the	eliminaLon	of	copies	from	CPU	to	
GPU.		Painful	coding	as	of	2013.	

• One	quesLon	how	much	benefit	versus	good	coding.		
Our	limit	study	(WDDD	2008)	found	only	~50%	gain.		
LusLg	&	Martonosi	HPCA	2013.	

• Algorithm	design—MummerGPU++	

62	

CPU ó GPU Latency

• NVIDIA’s	soluLon:	CUDA	Streams.		Overlap	GPU	
kernel	computaLon	with	memory	transfer.	Stream	=	
ordered	sequence	of	data	movement	commands	and	
kernels.		Streams	scheduled	independently.		Very	
painful	programming.	

• Academic	work:		Limit	Study	(WDDD	2008),	LusLg	&	
Martonosi	HPCA	2013,	Compiler	data	movement	
(August,	PLDI	2011).	

63	

GPU Memory Size

• CUDA	Streams	

• Academic	work:	Treat	GPU	memory	as	cache	on	CPU	memory	(Kim	et	
al.,	ScaleGPU,	IEEE	CAL	early	access).	

64	

Solu/on to all these sub-issues?

• Heterogeneous	System	Architecture:	Integrated	CPU	and	GPU	with	
coherence	memory	address	space.	

• Need	to	figure	out	how	to	provide	coherence	between	CPU	and	GPU.			
• Really	two	problems:	Coherence	within	GPU	and	then	between	CPU	
and	GPU.	

65	

Research Direc+on 4:
Easier Programming with
Synchroniza/on

66	

Synchroniza/on
•  Locks	are	not	encouraged	in	current	GPGPU	programming	
manuals.			

•  InteracLon	with	SIMT	stack	can	easily	cause	deadlocks:	

		while(atomicCAS(&lock[a[tid]],0,1)	!=	0)	
				;		//	deadlock	here	if	a[i]	=	a[j]	for	any	i,j	=	tid	in	
warp	
			
		//	critical	section	goes	here	
	
		atomicExch	(&lock[a[tid]],	0)	;	

		
			

67	

Correct	way	to	write	criLcal	secLon	for	GPGPU:	

	done	=	false;	
	while(!done)	{	
			if(atomicCAS	(&lock[a[tid]],	0	,	1)==0)	{	
	
					//	critical	section	goes	here	
	
					atomicExch(&lock[a[tid]],	0)	;	
			}	
	}	

			
Most	current	GPGPU	programs	use	barriers	within	thread	
blocks	and/or	lock-free	data	structures.	
	
This	leads	to	the	following	picture…	

68	

69

•  LifeLme	of	GPU	ApplicaLon	Development	

Time	

Func:onality		
Performance		

Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	

?	

Time	

Fine-Grained	Locking/Lock-Free	

Time	

TransacLonal	Memory	

E.g.	N-Body	with	5M	bodies		
CUDA	SDK:	O(n2)	–	1640	s	(barrier)	
Barnes	Hut:	O(nLogn)	–	5.2	s	(locks)	

70

Transac/onal Memory
• Programmer	specifies	atomic	code	blocks	called	
transacLons	[Herlihy’93]	

TM Version:
atomic {
 X[c] = X[a]+X[b];
}

Lock Version:
Lock(X[a]);
Lock(X[b]);
Lock(X[c]);
 X[c] = X[a]+X[b];
Unlock(X[c]);
Unlock(X[b]);
Unlock(X[a]);

PotenLal	Deadlock!	

71

Transac/onal Memory

Commit	 Commit	

TX1	

Non-conflicLng	transacLons	
may	run	in	parallel	

TX2	
A	
B	
C	
D	

Memory	

ConflicLng	transacLons	
automaLcally	serialized	

TX1	
A	
B	
C	
D	

Memory	

TX2	

Commit	 Abort	

Commit	

TX2	

Programmers’	View:		

TX1	

TX2	 TX1	

TX2	
OR	

Tim
e	

Tim
e	

72 Hardware	TM	for	GPU	Architectures	 72	

Are TM and GPUs Incompa/ble?
GPU	uarch	very	different	from	mulLcore	CPU…	

KILO	TM	[MICRO’11,	IEEE	Micro	Top	Picks]	

•  Hardware	TM	for	GPUs	
•  Half	performance	of	fine	grained	locking	
n  Chip	area	overhead	of	0.5%	

Research Direc+on 5:
GPU Power Efficiency

73	

GPU power

• More	efficient	than	CPU	but	
•  Consumes	a	lot	of	power	
•  Much	less	efficient	than	ASIC	or	FPGAs	
• What	can	be	done	to	reduce	power	consumpLon?	

•  Look	at	the	most	power	hungry	components	
• What	can	be	duty	cycled/power	gated?	
•  GPUWa`ch	to	evaluate	ideas	

74	

Other Research Direc/ons….
• Non-determinisLc	behavior	for	buggy	code		

•  GPUDet	ASPLOS	2013	
	
	
	
	

•  Lack	of	good	performance	analysis	tools	
•  NVIDIA	Profiler/Parallel	NSight	
•  AerialVision	[ISPASS	2010]	
•  GPU	analyLcal	perf/power	models	(Hyesoon	Kim)	

75	

0%	

20%	

40%	

60%	

80%	

100%	

20000	 30000	 40000	 50000	

di
ffe

re
nt
	re

su
lts
	o
ve
r	

m
ul
:p

le
	e
xe
cu
:o

ns
	

#	edges	

Result	Varia:on	(Kepler)		

Lack of I/O and System Support…
•  Support	for	prin�,	malloc	from	kernel	in	CUDA	
•  File	system	I/O?	
• GPUfs	(ASPLOS	2013):	

•  POSIX-like	file	system	API	
•  One	file	per	warp	to	avoid	control	divergence	
• Weak	file	system	consistency	model	(close->open)	
•  Performance	API:	O_GWRONCE,	O_GWRONCE	
•  Eliminate	seek	pointer	

• GPUnet	(OSDI	2014):	Posix	like	API	for	sockets	
programming	on	GPGPU.	

76	

Conclusions

• GPU	CompuLng	is	growing	in	importance	due	to	
energy	efficiency	concerns		

• GPU	architecture	has	evolved	quickly	and	likely	to	
conLnue	to	do	so	

• We	discussed	some	of	the	important	
microarchitecture	bo`lenecks	and	recent	research.	

• Also	discussed	some	direcLons	for	improving	
programming	model	

77	

