Part 3: Research Directions

Decreasing cost per unit computation

2007: iPhone

2012: Google stacenter

Start by using right tool for each job...

Amdahl's Law Limits this Approach

Hard to accelerate

Easy to accelerate

Question: Can dividing line be moved?

easy to accelerate (Acc. Arch1)

Forward-Looking GPU Software

- Still Massively Parallel
- Less Structured
 - Memory access and control flow patterns are less predictable

Two Routes to "Better"

Research Direction 1: Mitigating SIMT Control Divergence

Recall: SIMT Hardware Stack

Potential for significant loss of throughput when control flow diverged!

Performance vs. Warp Size • 165 Applications

1.8 ີສ 1.6 → Warp Size 4 ට ല_0.2 0 **Application** Divergent Convergent Warp-Size Insensitive **Applications** Applications **Applications**

Dynamic Warp Formation (Fung MICRO'07)

Dynamic Warp Formation: Hardware Implementation

Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow A: BEQ R2, B

DWF Pathologies: Starvation

- Majority Scheduling
 - Best Performing
 - Prioritize largest group of threads with same PC
- Starvation
 - <u>LOWER</u> SIMD Efficiency!
- Other Warp Scheduler?
 - Tricky: Variable Memory Latency

B: if (K > 10)**C**: K = 10;else K = 0;**D**: E: B = C[tid.x] + K;1278 С 5 -- 11 12 С 1278 Ε 5 -- 11 12 Ε 1000s Evcles 34 6 D -- 10 -- --D

9634

-- 10 -- --

Ε

Ε

Time

DWF Pathologies: Extra Uncoalesced Accesses

- Coalesced Memory Access = Memory SIMD
 - 1st Order CUDA Programmer Optimization
- Not preserved by DWF

DWF Pathologies: Implicit Warp Sync.

 Some CUDA applications depend on the lockstep execution of "static warps"

Narp 0	Thread 0 31
Narp 1	Thread 32 63
Narp 2	Thread 64 95
Tracin	

• E.g. Task Queue in Ray Tracing

```
int wid = tid.x / 32;
if (tid.x % 32 == 0) {
    sharedTaskID[wid] = atomicAdd(g_TaskID, 32);
Implicit }
Warp my_TaskID = sharedTaskID[wid] + tid.x % 32;
Sync. ProcessTask(my_TaskID);
```

Observation

- Compute kernels usually contain <u>divergent</u> and <u>non-divergent</u> (coherent) code segments
- Coalesced memory access usually in coherent code segments
 - DWF no benefit there

Thread Block Compaction

- Run a thread block like a warp
 - Whole block move between coherent/divergent code
 - Block-wide stack to track exec. paths reconvg.
- Barrier @ Branch/reconverge pt.
 - All avail. threads arrive at branch
 - Insensitive to warp scheduling
- Warp compaction
 - Regrouping with all avail. threads
 - If no divergence, gives static warp arrangementation

Memory Access

Thread Block Compaction

PC RPC Active Threads											[Α	1	2	34		Α	1234			
E	-	1	2	3	4	5	6	7	8	9	10	11	12	-	Δ	5	6	78		Α	5678
D	E													ľ	Δ	9 1		1 1 2		Δ	9 10 11 12
С	E													L	Л		•			A	•
										•											
														-			•				•
			Δ.	· к		Δ	Γ÷i	Ы	v 1	•					С	1	2	78		С	1 2
$\mathbf{A} \cdot \mathbf{A} = \mathbf{A} [(\mathbf{L} \mathbf{U} \cdot \mathbf{A})]_{I}$											С	5 ·	1	1 12		С	5 7 8				
B: if (K > 10)										D	9	6	34		С	11 12					
C: K = 10;								-	D		10			D	3 4						
else								E	1	2	34		D	6							
$\mathbf{D} \cdot \mathbf{K} = 0 \cdot$								-	Е	5	6	78		D	9 10						
							-	E	9 1	LO 1	L 1 12		E	1278							
E: B = C[tia.x] + K;									E	5678											
																				E	9 10 11 12

Time

Thread Compactor

- Convert *activemask* from block-wide stack to *thread IDs* in warp buffer
- Array of Priority-Encoder

Warp Buffer

С	1278
С	5 11 12

Experimental Results

- 2 Benchmark Groups:
 - COHE = Non-Divergent CUDA applications
 - DIVG = Divergent CUDA applications

Recent work on warp divergence

- Intel [MICRO 2011]: Thread Frontiers early reconvergence for unstructured control flow.
- UT-Austin/NVIDIA [MICRO 2011]: Large Warps similar to TBC except decouple size of thread stack from thread block size.
- NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving. Enable SIMD to execute two paths at once.
- Intel [ISCA 2013]: Intra-warp compaction extends Xeon Phi uarch to enable compaction.
- NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and in more detail in CGO 2013 paper]
- NVIDIA [ISCA 2015]: Variable Warp-Size Architecture merge small warps (4 threads) into "gangs".

Thread Frontiers [Diamos et al., MICRO 2011]

Figure 1: An example of an application with unstructured control flow leading to dynamic code expansion.

Temporal SIMT

[slide courtesy of Bill Dally]

Temporal SIMT Optimizations

Control divergence — hybrid MIMD/SIMT

[slide courtesy of Bill Dally]

Scalar Instructions in SIMT Lanes

Variable Warp-Size Architecture

- Most recent work by NVIDIA [ISCA 2015]
- Split the SM datapath into narrow slices.
 - Extensively studied 4-thread slices
- Gang slice execution to gain efficiencies of wider warp.

Convergent Application Performance

Research Direction 2: Mitigating High GPGPU Memory Bandwidth Demands

Reducing Off-Chip Access / Divergence

- Re-writing software to use "shared memory" and avoid uncoalesced global accesses is bane of GPU programmer existence.
- Recent GPUs introduce caches, but large number of warps/ wavefronts lead to thrashing.

- NVIDIA: Register file cache (ISCA 2011, MICRO)
 - Register file burns significant energy
 - Many values read once soon after written
 - Small register file cache captures locality and saves energy but does not help performance
 - Recent follow on work from academia
- Prefetching (Kim, MICRO 2010)
- Interconnect (Bakhoda, MICRO 2010)
- Lee & Kim (HPCA 2012) CPU/GPU cache sharing

Thread Scheduling Analogy

- Human Multitasking
 - Humans have limited attention capacity

• GPUs have limited cache capacity

Use Memory System Feedback

Sources of Locality

Scheduler affects access pattern

Use scheduler to shape access pattern

Static Wavefront Limiting [Rogers et al., MICRO 2012]

- Profiling an application we can find an optimal number of wavefronts to execute
- Does a little better than CCWS.
- Limitations: Requires profiling, input dependent, does not exploit phase behavior.

Improve upon CCWS?

- CCWS detects bad scheduling decisions and avoids them in future.
- Would be better if we could "think ahead" / "be proactive" instead of "being reactive"

Programmability case study [MICRO 2013]

Observations [Rogers et al., MICRO 2013]

• Memory divergence in static instructions is predictable

DAWS Operation Example

Sparse MM Case Study Results

• Performance (normalized to optimized version)

Memory Request Prioritization Buffer [Jia et al., HPCA 2014]

- Reorder requests by sorting by Warp ID.
- Bypass when too many accesses to same cache set.

Priority-Based Cache Allocation in Throughput Processors [Li et al., HPCA 2015]

- CCWS leaves L2 and DRAM underutilized.
- Allow some additional warps to execute but do not allow them to allocate space in cache:

Coordinated criticality-Aware Warp Acceleration (CAWA) [Lee et al., ISCA 2015]

- Some warps execute longer than others due to lack of uniformity in underlying workload.
- Give these warps more space in cache and more scheduling slots.
- Estimate critical path by observing amount of branch divergence and memory stalls.
- Also, predict if line inserted in line will be used by a warp that is critical using modified version of SHiP cache replacement algorithm.

Other Memory System Performance Considerations

- TLB Design for GPUs.
 - Current GPUs have translation look aside buffers (makes managing multiple graphics application surfaces easier; does not support paging)
 - How does large number of threads impact TLB design?
 - E.g., Power et al., *Supporting x86-64 Address Translation for 100s of GPU Lanes*, HPCA 2014. Importance of multithreaded page table walker + page walk cache.

Research Direction 3: Coherent Memory for Accelerators

Why GPU Coding Difficult?

- Manual data movement CPU ⇔ GPU
- Lack of generic I/O , system support on GPU
- Need for performance tuning to reduce
 - off-chip accesses
 - memory divergence
 - control divergence
- For complex algorithms, synchronization
- Non-deterministic behavior for buggy code
- Lack of good performance analysis tools

Manual CPU ⇔ GPU Data Movement

- **Problem #1:** Programmer needs to identify data needed in a kernel and insert calls to move it to GPU
- **Problem #2:** Pointer on CPU does not work on GPU since different address spaces
- **Problem #3:** Bandwidth connecting CPU and GPU is order of magnitude smaller than GPU off-chip
- **Problem #4:** Latency to transfer data from CPU to GPU is order of magnitude higher than GPU off-chip
- **Problem #5:** Size of GPU DRAM memory much smaller than size of CPU main memory

Identifying data to move CPU ⇔ GPU

- CUDA/OpenCL: Job of programmer ⊗
- C++AMP passes job to compiler.
- OpenACC uses pragmas to indicate loops that should be offloaded to GPU.

Memory Model

Rapid change (making programming easier)

- Late 1990's: fixed function graphics only
- 2003: programmable graphics shaders
- 2006: + global/local/shared (GeForce 8)
- 2009: + caching of global/local
- 2011: + unified virtual addressing
- 2014: + unified memory / coherence

Caching

- Scratchpad uses explicit data movement. Extra work. Beneficial when reuse pattern statically predictable.
- NVIDIA Fermi / AMD Southern Island add caches for accesses to global memory space.

CPU memory vs. GPU global memory

- Prior to CUDA: input data is texture map.
- CUDA 1.0 introduces cudaMemcpy
 - Allows copy of data between CPU memory space to global memory on GPU
- Still has problems:
 - #1: Programmer still has to think about it!
 - #2: Communicate only at kernel grid boundaries
 - #3: Different virtual address space
 - pointer on CPU not a pointer on GPU => cannot easily share complex data structures between CPU and GPU

Fusion / Integrated GPUs

- Why integrate?
 - One chip versus two (cf. Moore's Law, VLSI)
 - Latency and bandwidth of communication: shared physical address space, even if off-chip, eliminates copy: AMD Fusion. 1st iteration 2011. Same DRAM
 - Shared virtual address space? (AMD Kavari 2014)
 - Reduce latency to spawn kernel means kernel needs to do less to justify cost of launching

CPU Pointer not a GPU Pointer

- NVIDIA Unified Virtual Memory partially solves the problem but in a bad way:
 - GPU kernel reads from CPU memory space
- NVIDIA Uniform Memory (CUDA 6) improves by enabling automatic migration of data
- Limited academic work. Gelado et al. ASPLOS 2010.

CPU ⇔ GPU Bandwidth

- Shared DRAM as found in AMD Fusion (recent Core i7) enables the elimination of copies from CPU to GPU. Painful coding as of 2013.
- One question how much benefit versus good coding. Our limit study (WDDD 2008) found only ~50% gain. Lustig & Martonosi HPCA 2013.
- Algorithm design—MummerGPU++

CPU ⇔ GPU Latency

- NVIDIA's solution: CUDA Streams. Overlap GPU kernel computation with memory transfer. Stream = ordered sequence of data movement commands and kernels. Streams scheduled independently. Very painful programming.
- Academic work: Limit Study (WDDD 2008), Lustig & Martonosi HPCA 2013, Compiler data movement (August, PLDI 2011).

GPU Memory Size

- CUDA Streams
- Academic work: Treat GPU memory as cache on CPU memory (Kim et al., ScaleGPU, IEEE CAL early access).

Solution to all these sub-issues?

- Heterogeneous System Architecture: Integrated CPU and GPU with coherence memory address space.
- Need to figure out how to provide coherence between CPU and GPU.
- Really two problems: Coherence within GPU and then between CPU and GPU.

Research Direction 4: Easier Programming with Synchronization

Synchronization

- Locks are not encouraged in current GPGPU programming manuals.
- Interaction with SIMT stack can easily cause deadlocks:

```
while( atomicCAS(&lock[a[tid]],0,1) != 0 )
; // deadLock here if a[i] = a[j] for any i,j = tid in
warp
```

// critical section goes here

```
atomicExch (&lock[a[tid]], 0);
```

Correct way to write critical section for GPGPU:

```
done = false;
while( !done ) {
    if( atomicCAS (&lock[a[tid]], 0 , 1 )==0 ) {
        // critical section goes here
        atomicExch(&lock[a[tid]], 0 ) ;
    }
}
```

Most current GPGPU programs use barriers within thread blocks and/or lock-free data structures.

This leads to the following picture...

• Lifetime of GPU Application Development

Transactional Memory

 Programmer specifies atomic code blocks called <u>transactions</u> [Herlihy'93]

Transactional Memory

Programmers' View:

Are TM and GPUs Incompatible?

GPU uarch very different from multicore CPU...

KILO TM [MICRO'11, IEEE Micro Top Picks]

- Hardware TM for GPUs
- Half performance of fine grained locking
- Chip area overhead of 0.5%
Research Direction 5: GPU Power Efficiency

GPU power

- More efficient than CPU but
 - Consumes a lot of power
 - Much less efficient than ASIC or FPGAs
 - What can be done to reduce power consumption?
- Look at the most power hungry components
 - What can be duty cycled/power gated?
 - GPUWattch to evaluate ideas

Other Research Directions....

- Non-deterministic behavior for buggy code
 - GPUDet ASPLOS 2013

- Lack of good performance analysis tools
 - NVIDIA Profiler/Parallel NSight
 - AerialVision [ISPASS 2010]
 - GPU analytical perf/power models (Hyesoon Kim)

Lack of I/O and System Support...

- Support for printf, malloc from kernel in CUDA
- File system I/O?
- GPUfs (ASPLOS 2013):
 - POSIX-like file system API
 - One file per warp to avoid control divergence
 - Weak file system consistency model (close->open)
 - Performance API: O_GWRONCE, O_GWRONCE
 - Eliminate seek pointer
- GPUnet (OSDI 2014): Posix like API for sockets programming on GPGPU.

Conclusions

- GPU Computing is growing in importance due to energy efficiency concerns
- GPU architecture has evolved quickly and likely to continue to do so
- We discussed some of the important microarchitecture bottlenecks and recent research.
- Also discussed some directions for improving programming model