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Advancing	Computer	Systems	without	Technology	Progress	

DARPA/ISAT	Workshop,	March	26-27,	2012	

Mark	Hill	&	Christos	Kozyrakis	

Decreasing	cost	per	unit	computaLon	

1971:		Intel	4004	

2012:																	Datacenter		

1981:	IBM	5150	

2007:	iPhone	
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Ease	of		
Programming	

Hardware	Efficiency	

Single	Core	OoO	Superscalar	CPU	

Brawny	(OoO)	MulLcore	

ASIC	

Be#er	

16K	thread,	SIMT	Accelerator	

Wimpy	(In-order)	MulLcore	

(how	to	get	here?)	
	



5 

Ease	of		
Programming	

Hardware	Efficiency	

Start	by	using	right	tool	for	each	job…	



Amdahl’s Law Limits this Approach
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Easy	to	accelerate	Hard	to	accelerate	

€ 

Improvementoverall =  
1

Fractionhard +  1- Fractionhard

Improvementeasy



Ques/on:  Can dividing line be moved?
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easy	to	accelerate	(Acc.	Arch1)	

easy	to	accelerate	(Acc.	Arch2)	
	



Forward-Looking GPU SoHware
•  SLll	Massively	Parallel	
•  Less	Structured	

•  Memory	access	and	control	flow	pa`erns	are	less	
predictable	
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Execute	efficiently	
on	a	GPU	today	

Graphics	
Shaders	

Matrix	
Mul:ply	

…	

Less	efficient	on	
today’s	GPU	

Raytracing	
Molecular	
Dynamics	

Object	
Classifica:on	

…	

[Tim	Rogers]	
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Ease	of		
Programming	

Energy	Efficiency	

Be#er	

Two	Routes	to	“Be`er”	



Research Direc+on 1: 
Mi/ga/ng SIMT Control Divergence
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Recall: SIMT Hardware Stack 

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
E	 D	 0110	
E	 C	 1001	TOS	

-	 E	 1111	
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-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 AcLve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Potential for significant loss of throughput when control flow diverged!	



Performance vs. Warp Size

12	Rogers	et	al.,	A	Variable	Warp-Size	Architecture,	ISCA	2015	
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Dynamic Warp Forma/on  
(Fung MICRO’07)

Tim
e	

1	2	3	4	A 

1	2	--	--	C 

--	--	3	4	D 

1	2	3	4	E 

1	2	3	4	B 

Warp	0	

5	6	7	8		A 

5	--	7	8	C 

--	6	--	--	D 

5	6	7	8	E 

5	6	7	8	B 

Warp	1	

9	10	11	12	A 

--	--	11	12	C 

9	10	--	--	D 

9	10	11	12	E 

9	10	11	12	B 

Warp	2	

Reissue/Memory	
Latency	

SIMD	Efficiency	!	88%	
1		2		7		8	C 
	5	--	11	12	C 

Pack	

How to pick threads to pack into warps? 



Wilson	Fung,	Ivan	Sham,	George	Yuan,	
Tor	Aamodt	

Dynamic	Warp	FormaLon	and	Scheduling	
for	Efficient	GPU	Control	Flow	 14	
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9		6		3		4	D 
--	10	--	--	D 
1		2		3		4	E 
5		6		7		8	E 
9	10	11	12	E 

DWF Pathologies:  Starva/on

• Majority	Scheduling	
•  Best	Performing		
•  PrioriLze	largest	group	of	threads	with	
same	PC	

•  Starva&on	
•  LOWER	SIMD	Efficiency!	

• Other	Warp	Scheduler?	
•  Tricky:	Variable	Memory	Latency	

Tim
e	

1		2		7		8	C 
	5	--	11	12	C 

9		6		3		4	D 
--	10	--	--	D 

1		2		7		8	E 
	5	--	11	12	E 

9		6		3		4	E 
--	10	--	--	E 

B: if (K > 10)  
C:    K = 10; 
   else 
D:    K = 0; 
E: B = C[tid.x] + K; 

1000s	cycles	
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DWF Pathologies:  
Extra Uncoalesced Accesses

• Coalesced	Memory	Access	=	Memory	SIMD		
•  1st	Order	CUDA	Programmer	OpLmizaLon		

• Not	preserved	by	DWF	

E: B = C[tid.x] + K; 

1		2		3		4	E 
5		6		7		8	E 
9	10	11	12	E 

Memory	

0x100 
0x140 
0x180 

1		2		7	12	E 
9		6		3		8	E 
5	10	11	4	E 

Memory	

0x100 
0x140 
0x180 

#Acc	=	3	

#Acc	=	9	

No	DWF	

With	DWF	

L1	Cache	Absorbs	
Redundant	

Memory	Traffic	

L1$	Port	Conflict	
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DWF Pathologies: Implicit Warp Sync.

•  Some	CUDA	applicaLons	depend	on	the	lockstep	execuLon	of	“staLc	
warps”	

•  E.g.	Task	Queue	in	Ray	Tracing	

Thread			0	...	31	
Thread	32	...	63	
Thread	64	...	95	

Warp	0	
Warp	1	
Warp	2	

int wid = tid.x / 32;  
if (tid.x % 32 == 0) { 
  sharedTaskID[wid] = atomicAdd(g_TaskID, 32); 
} 
my_TaskID = sharedTaskID[wid] + tid.x % 32;  
ProcessTask(my_TaskID); 

Implicit	
Warp	
Sync.	
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StaLc	
Warp	

Dynamic	
Warp	

StaLc	
Warp	

Observa/on
•  Compute	kernels	usually	contain	
divergent	and	non-divergent	
(coherent)	code	segments	

•  Coalesced	memory	access	usually	in	
coherent	code	segments	

•  DWF	no	benefit	there	

Coherent	

Divergent	

Coherent	

Reset	Warps	

Divergence	

Recvg	
Pt.	

Coales.	LD/ST	
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Thread Block Compac/on
• Run	a	thread	block	like	a	warp	

• Whole	block	move	between	coherent/divergent	code	
•  Block-wide	stack	to	track	exec.	paths	reconvg.	

• Barrier	@	Branch/reconverge	pt.	
•  All	avail.	threads	arrive	at	branch	
•  InsensiLve	to	warp	scheduling	

• Warp	compacLon		
•  Regrouping	with	all	avail.	threads	
•  If	no	divergence,	gives	staLc	warp	arrangement	

Starva:on	

Implicit		
Warp	Sync.	

Extra	Uncoalesced		
Memory	Access	
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Thread Block Compac/on
PC	 RPC	 Ac:ve	Threads	
A	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	
D	 E	 --	 --	 3	 4	 --	 6	 --	 --	 9	 10	 --	 --	
C	 E	 1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	

E	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	

Time	

1		2		7		8	C 
	5	--	11	12	C 

9		6		3		4	D 
--	10	--	--	D 

5		6		7		8	A 
	9	10	11	12	A 

1		2		3		4	A 

5		6		7		8	E 
	9	10	11	12	E 

1		2		3		4	E 

A: K = A[tid.x]; 

B: if (K > 10)  

C:    K = 10; 

   else 

D:    K = 0; 

E: B = C[tid.x] + K; 

5		6		7		8	A 
	9	10	11	12	A 

1		2		3		4	A 

5		--		7		8	C 
	--	--	11	12	C 

1		2		--	--	C 

--		6		--	--	D 
9	10	--	--	D 

--		--		3		4	D 

5		6		7		8	E 
	9	10	11	12	E 

1		2		7		8	E 

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	
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Thread Compactor
• Convert	ac#vemask	from	block-wide	stack	to	thread	
IDs	in	warp	buffer	

• Array	of	Priority-Encoder	

P-Enc	 P-Enc	 P-Enc	 P-Enc	

1	 2	 7	 8	5	 --	 11	 12	

1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	C	 E	

1	 2	 --	 --	5	 --	 7	 8	--	 --	 11	 12	

1		2		7		8	C 
	5	--	11	12	C 

Warp	Buffer	
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0.6	 0.7	 0.8	 0.9	 1	 1.1	 1.2	 1.3	

TBC	

DWF	

IPC	Rela:ve	to	Baseline	

COHE	
DIVG	

Experimental Results
•  2	Benchmark	Groups:		

•  COHE	=	Non-Divergent	CUDA	applicaLons	
•  DIVG	=	Divergent	CUDA	applicaLons	

Serious	Slowdown	from		
pathologies	
No	Penalty	for	COHE	
22%	Speedup	on	DIVG	

Per-Warp	Stack	



Recent work on warp divergence
•  Intel	[MICRO	2011]:	Thread	FronLers	–	early	reconvergence	for	unstructured	
control	flow.	

•  UT-AusLn/NVIDIA	[MICRO	2011]:	Large	Warps	–	similar	to	TBC	except	decouple	size	
of	thread	stack	from	thread	block	size.	

•  NVIDIA	[ISCA	2012]:	Simultaneous	branch	and	warp	interweaving.			Enable	SIMD	to	
execute	two	paths	at	once.	

•  Intel	[ISCA	2013]:	Intra-warp	compacLon	–	extends	Xeon	Phi	uarch	to	enable	
compacLon.	

•  NVIDIA:	Temporal	SIMT	[described	briefly	in	IEEE	Micro	arLcle	and	in	more	detail	in	
CGO	2013	paper]		

•  NVIDIA	[ISCA	2015]:	Variable	Warp-Size	Architecture	–	merge	small	warps	(4	
threads)	into	“gangs”.	

23	



Thread Fron/ers  
[Diamos et al., MICRO 2011]
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Temporal SIMT

32-wide datapath 
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[slide	courtesy	of	Bill	Dally]	



Temporal SIMT Op/miza/ons
Control	divergence	—	hybrid	MIMD/SIMT	

	
ScalarizaLon	

Factor	common	instrucLons	from	mulLple	threads	
Execute	once	–	place	results	in	common	registers	
[See:	SIMT	Affine	Value	Structure	(ISCA	2013)]	

	

32-wide 
(41%) 

4-wide 
(65%) 

1-wide 
(100%) 

[slide	courtesy	of	Bill	Dally]	



Scalar Instruc/ons in SIMT Lanes
Scalar 

instruction 
spanning warp 

Scalar register 
visible to all 

threads 

Temporal 
execution of 

Warp 
Multiple 

lanes/warps 
Y. Lee, CGO 2013 [slide	courtesy	of	Bill	Dally]	



Variable Warp-Size Architecture

28	

•  Most	recent	work	by	NVIDIA	[ISCA	2015]	
•  Split	the	SM	datapath	into	narrow	slices.	

•  Extensively	studied	4-thread	slices	
•  Gang	slice	execuLon	to	gain	efficiencies	of	wider	warp.	

Tim	Rogers	 A	Variable	Warp-Size	Architecture	

Frontend

Warp	Datapath

L1	I-Cache

Memory	Unit

Warp
Control	Logic 32-wide

Slice

Frontend

Slice	Datapath

L1	I-Cache

Memory	Unit

Slice
Front	
End 4-wide

...
Slice
Slice	DatapathSlice

Front	
End 4-wide

Slices	can	
execute	

independently	

Slices	share	an	L1	
I-Cache	and	Memory	Unit	

Ganging
Unit
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29	Tim	Rogers	 A	Variable	Warp-Size	Architecture	

Warp	Size	4	I-VWS:	Break	on	
CF	Only	

E-VWS:	Break	+	
Reform	
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Warp	Size	4	
I-VWS:	Break	on	

CF	Only	

Warp-Size	Insensi:ve	
Applica:ons	Unaffected	

E-VWS:	Break	+	
Reform	



Research Direc+on 2: 
Mi/ga/ng High GPGPU Memory 
Bandwidth Demands

31	



Reducing Off-Chip Access / Divergence

• Re-wriLng	so|ware	to	use	“shared	memory”	and	avoid	uncoalesced	
global	accesses	is	bane	of	GPU	programmer	existence.	

• Recent	GPUs	introduce	caches,	but	large	number	of	warps/
wavefronts	lead	to	thrashing.			
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• NVIDIA:	Register	file	cache	(ISCA	2011,	MICRO)	
•  Register	file	burns	significant	energy	
•  Many	values	read	once	soon	a|er	wri`en	
•  Small	register	file	cache	captures	locality	and	saves	energy	
but	does	not	help	performance	

•  Recent	follow	on	work	from	academia	

• Prefetching	(Kim,	MICRO	2010)	
•  Interconnect	(Bakhoda,	MICRO	2010)	
•  Lee	&	Kim	(HPCA	2012)	CPU/GPU	cache	sharing	
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Thread Scheduling Analogy 
[MICRO 2012]

• Human	MulLtasking	
•  Humans	have	limited	a#en:on	capacity	

	
•  GPUs	have	limited	cache	capacity	
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Use Memory System Feedback 
[MICRO 2012]
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Data Cache Data Cache 

Sources	of	Locality	

Intra-wavefront	locality	 Inter-wavefront	locality	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

Wave0	

Hit 

Wave0	 Wave1	

Hit 
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Scheduler	affects	access	pa`ern	

Memory 
System 

Wavefront 
Scheduler 

Wavefront 
Scheduler 

Round	Robin	Scheduler	

Memory 
System 

Greedy	then	Oldest	Scheduler		

ld	A	,B,C,D…	

D
C	
B	
A	

ld	Z,Y,X,W	ld	A,B,C,D	

W
X	
Y	
Z	

...	
	 ...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	

...	
	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	
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	Use	scheduler	to	shape	access	pa`ern		
	
	

Memory 
System 

Wavefront 
Scheduler 

Wavefront 
Scheduler 

Greedy	then	Oldest	Scheduler		
	

Memory 
System 

Cache-Conscious	Wavefront	Scheduling	
[MICRO	2012	best	paper	runner	up,		

Top	Picks	2013,	CACM	Research	Highlight]	

ld	A,B,C,D	

D
C	
B	
A	

ld	A,B,C,D	

W
X	
Y	
Z	

...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	

...	
	

ld	Z,Y,X,W…	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	
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Memory Unit 

Cache 

Victim Tags 

Locality Scoring 
System 

Wave 
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X 0 

W0,X	 X 

W0	
detected	
lost	locality	

W2:	ld	Y	W0:	ld	X	

Probe
W0,X	

Y 2 
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Sta/c Wavefront Limi/ng 
[Rogers et al., MICRO 2012]

• Profiling	an	applicaLon	we	can	find	an	opLmal	number	of	wavefronts	
to	execute	

• Does	a	li`le	be`er	than	CCWS.	
•  LimitaLons:	Requires	profiling,	input	dependent,	does	not	exploit	
phase	behavior.	
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Improve upon CCWS?

• CCWS	detects	bad	scheduling	decisions	and	avoids	them	in	future.	

• Would	be	be`er	if	we	could	“think	ahead”	/	“be	proacLve”	instead	of	
“being	reacLve”	
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Programmability case study [MICRO 2013]
Sparse	Vector-Matrix	Mul:ply	

Simple	Version	
GPU-OpLmized	Version	
SHOC	Benchmark	Suite	
(Oakridge	NaLonal	Labs)	

44	

Added	Complica:on	Dependent	on	Warp	
Size	

Parallel	Reduc:on	

Explicit	Scratchpad	Use	 Divergence	

Each	thread	has	
locality	

Using	DAWS	scheduling	
within	4%	of	op:mized	with	no	

programmer	input	



Observa/ons 
[Rogers et al., MICRO 2013]

•  Memory divergence in static instructions is predictable 

 
 
 
 
•  Data touched by divergent loads dependent on active mask 

 

Warp	0	Warp	1	
…	
load	
…	

Divergence	

Divergence	Warp	

Main	Memory	

Main	Memory	Main	Memory	

Divergence	

Both	Used	To	
Create	Cache	
Footprint	
Predic:on	

4	accesses	
2	accesses	

1 0 10
Warp	

1 1 11
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Footprint Predic/on
1.   Detect loops with locality 

2.   Classify loads in the loop 

3.   Compute footprint from active mask 

Some	loops	have	locality	 Some	don’t	

Limit	mul:threading	
here	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Diverged	

Not	Diverged	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Warp	0	 1	1	1	1	1	1	

Loop	with	locality	

Loop	with	locality	

Diverged	

Not	Diverged	

4	accesses	

1	access	
+ Warp	0’s	

Footprint	
=	5	cache	lines	
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int	C[]={0,64,96,128,160,160,192,224,256};	
void	sum_row_csr(float*	A,	…)		{	
				float	sum	=	0;	
				int	i	=C[Ld];	
	
	
	
				while(i	<	C[:d+1])	{	
	
								sum		+=	A[	i	];		
	
	
								++i;	
	
						}	
…	

Example	Compressed	Sparse	Row	Kernel	

Time1	Time0	 Time2	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[32]	

A[160]	

A[192]	

A[224]	

Warp0	 1	 1	 1	 1	
2nd	Iter.	

Warp0	 1	 0	 0	 0	
33rd	Iter.	

Warp1	 0	 1	 1	 1	

1st	Iter.	

Memory	Divergence	

Divergent	Branch	

Go	 Go	

Warp1	

Warp0	
Warp1	

Warp0	

No	
Footprint	

DAWS	Opera:on	Example	

Cache	Footprint	

4	 4	 4	 Want	to	capture	
spa:al	locality	

Hit	

Hit	
Hit	

Hit	

Go	

Hit	x30	

Hit	x30	

Hit	x30	

Hit	x30	

Loop	
Stop	
Go	

No	locality	
detected	=	no	
footprint	

Locality	Detected	
1	Diverged	Load	

Detected	

Footprint	=	4X1	

Footprint	=	3X1	
Early	warps	profile	

loop	for	later	
warps	

Warp	0	has	branch	divergence	

Both	warps	capture	
spa:al	locality	together	4	Ac:ve	threads	

Stop	

Footprint	decreased	 47	



Sparse MM Case Study Results 

Within	4%	of	op:mized	
with	no	programmer	input	

0

0.5

1

1.5

2

Di
ve
rg
en

t	C
od

e	
Ex
ec
u:

on
	:
m
e	

4.9

Other	Schedulers CCWS DAWS

•  Performance	(normalized	to	opLmized	version)	
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Memory Request Priori/za/on Buffer 
[Jia et al., HPCA 2014]

• Reorder	requests	by	sorLng	by	Warp	ID.	
• Bypass	when	too	many	accesses	to	same	cache	set.	
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W3	 W2	 W1	 W3	 W2	 W1	

W3	 W3	

W2	 W2	 W1	 W1	

Bypass	accesses	to	hot	set	

Reorder	requests	by	warp	ID		



Priority-Based Cache Alloca/on in Throughput 
Processors [Li et al., HPCA 2015]

•  CCWS	leaves	L2	and	DRAM	underuLlized.	
•  Allow	some	addiLonal	warps	to	execute	but	do	not	allow	them	
to	allocate	space	in	cache:	
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Warp	0	
Warp	1	Normal	Warps	

Warp	2	
Warp	3	Non-PolluLng	

Warps	
Warp	4	

Schedule	and	allocate	in	L1	

Schedule	and	bypass	L1	

Warp	5	
Thro`led	Warps	

Warp	n-1	
Not	scheduled	



  Coordinated cri/cality-Aware Warp Accelera/on 
(CAWA) [Lee et al., ISCA 2015]

•  Some	warps	execute	longer	than	others	due	to	lack	of	
uniformity	in	underlying	workload.	

• Give	these	warps	more	space	in	cache	and	more	
scheduling	slots.	

•  EsLmate	criLcal	path	by	observing	amount	of	branch	
divergence	and	memory	stalls.	

• Also,	predict	if	line	inserted	in	line	will	be	used	by	a	
warp	that	is	criLcal	using	modified	version	of	SHiP	
cache	replacement	algorithm.		
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Other Memory System Performance  Considera/ons

•  TLB	Design	for	GPUs.	
•  Current	GPUs	have	translaLon	look	aside	buffers	(makes	managing	mulLple	
graphics	applicaLon	surfaces	easier;	does	not	support	paging)	

•  How	does	large	number	of	threads	impact	TLB	design?		
•  E.g.,	Power	et	al.,	Suppor#ng	x86-64	Address	Transla#on	for	100s	of	GPU	
Lanes,	HPCA	2014.		Importance	of	mulLthreaded	page	table	walker	+	page	
walk	cache.	
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Research Direc+on 3: 
Coherent Memory for Accelerators
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Why GPU Coding Difficult?

• Manual	data	movement	CPU	ó	GPU	
•  Lack	of	generic	I/O	,	system	support	on	GPU	
• Need	for	performance	tuning	to	reduce	

•  off-chip	accesses		
•  memory	divergence	
•  control	divergence	

•  For	complex	algorithms,	synchronizaLon	
• Non-determinisLc	behavior	for	buggy	code		
•  Lack	of	good	performance	analysis	tools	
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Manual CPU ó GPU Data Movement
• Problem	#1:	Programmer	needs	to	idenLfy	data	
needed	in	a	kernel	and	insert	calls	to	move	it	to	GPU	

• Problem	#2:	Pointer	on	CPU	does	not	work	on	GPU	
since	different	address	spaces	

• Problem	#3:	Bandwidth	connecLng	CPU	and	GPU	is	
order	of	magnitude	smaller	than	GPU	off-chip	

• Problem	#4:	Latency	to	transfer	data	from	CPU	to	
GPU	is	order	of	magnitude	higher	than	GPU	off-chip	

• Problem	#5:	Size	of	GPU	DRAM	memory	much	
smaller	than	size	of	CPU	main	memory	
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Iden/fying data to move CPU ó GPU

• CUDA/OpenCL:		Job	of	programmer	L	

• C++AMP	passes	job	to	compiler.			

• OpenACC	uses	pragmas	to	indicate	loops	that	should	be	offloaded	to	
GPU.	

56	



Memory Model

Rapid	change	(making	programming	easier)	
•  Late	1990’s:	fixed	funcLon	graphics	only	
•  2003:	programmable	graphics	shaders	
•  2006:	+	global/local/shared		(GeForce	8)	
•  2009:	+	caching	of	global/local		
•  2011:	+	unified	virtual	addressing	
•  2014:	+	unified	memory	/	coherence	

57	



Caching

•  Scratchpad	uses	explicit	data	movement.	Extra	work.	Beneficial	when	
reuse	pa`ern	staLcally	predictable.	

• NVIDIA	Fermi	/	AMD	Southern	Island	add	caches	for	accesses	to	
global	memory	space.				
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CPU memory vs. GPU global memory

• Prior	to	CUDA:	input	data	is	texture	map.	
• CUDA	1.0	introduces	cudaMemcpy	

•  Allows	copy	of	data	between	CPU	memory	space	to	global	memory	on	GPU	

•  SLll	has	problems:	
•  #1:	Programmer	sLll	has	to	think	about	it!	
•  #2:	Communicate	only	at	kernel	grid	boundaries	
•  #3:	Different	virtual	address	space		

•  pointer	on	CPU	not	a	pointer	on	GPU	=>	cannot	easily	share	complex	data	structures	
between	CPU	and	GPU	
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Fusion / Integrated GPUs

• Why	integrate?	
•  One	chip	versus	two	(cf.	Moore’s	Law,	VLSI)	
•  Latency	and	bandwidth	of	communicaLon:	shared	physical	address	space,	
even	if	off-chip,	eliminates	copy:	AMD	Fusion.	1st	iteraLon	2011.		Same	DRAM	

•  Shared	virtual	address	space?	(AMD	Kavari	2014)	
•  Reduce	latency	to	spawn	kernel	means	kernel	needs	to	do	less	to	jusLfy	cost	
of	launching	

60	



CPU Pointer not a GPU Pointer

• NVIDIA	Unified	Virtual	Memory	parLally	solves	the	problem	but	in	a	
bad	way:			

•  GPU	kernel	reads	from	CPU	memory	space	

• NVIDIA	Uniform	Memory	(CUDA	6)	improves	by	enabling	automaLc	
migraLon	of	data	

•  Limited	academic	work.	Gelado	et	al.	ASPLOS	2010.	
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CPU ó GPU Bandwidth

•  Shared	DRAM	as	found	in	AMD	Fusion	(recent	Core	
i7)	enables	the	eliminaLon	of	copies	from	CPU	to	
GPU.		Painful	coding	as	of	2013.	

• One	quesLon	how	much	benefit	versus	good	coding.		
Our	limit	study	(WDDD	2008)	found	only	~50%	gain.		
LusLg	&	Martonosi	HPCA	2013.	

• Algorithm	design—MummerGPU++	
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CPU ó GPU Latency

• NVIDIA’s	soluLon:	CUDA	Streams.		Overlap	GPU	
kernel	computaLon	with	memory	transfer.	Stream	=	
ordered	sequence	of	data	movement	commands	and	
kernels.		Streams	scheduled	independently.		Very	
painful	programming.	

• Academic	work:		Limit	Study	(WDDD	2008),	LusLg	&	
Martonosi	HPCA	2013,	Compiler	data	movement	
(August,	PLDI	2011).	
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GPU Memory Size

• CUDA	Streams	

• Academic	work:	Treat	GPU	memory	as	cache	on	CPU	memory	(Kim	et	
al.,	ScaleGPU,	IEEE	CAL	early	access).	
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Solu/on to all these sub-issues?

• Heterogeneous	System	Architecture:	Integrated	CPU	and	GPU	with	
coherence	memory	address	space.	

• Need	to	figure	out	how	to	provide	coherence	between	CPU	and	GPU.			
• Really	two	problems:	Coherence	within	GPU	and	then	between	CPU	
and	GPU.	
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Research Direc+on 4: 
Easier Programming with 
Synchroniza/on
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Synchroniza/on 
•  Locks	are	not	encouraged	in	current	GPGPU	programming	
manuals.			

•  InteracLon	with	SIMT	stack	can	easily	cause	deadlocks:	

		while(	atomicCAS(&lock[a[tid]],0,1)	!=	0	)	
				;		//	deadlock	here	if	a[i]	=	a[j]	for	any	i,j	=	tid	in	
warp	
			
		//	critical	section	goes	here	
	
		atomicExch	(&lock[a[tid]],	0)	;	
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Correct	way	to	write	criLcal	secLon	for	GPGPU:	

	done	=	false;	
	while(	!done	)	{	
			if(	atomicCAS	(&lock[a[tid]],	0	,	1	)==0	)	{	
	
					//	critical	section	goes	here	
	
					atomicExch(&lock[a[tid]],	0	)	;	
			}	
	}	

			
Most	current	GPGPU	programs	use	barriers	within	thread	
blocks	and/or	lock-free	data	structures.	
	
This	leads	to	the	following	picture…	
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•  LifeLme	of	GPU	ApplicaLon	Development	

Time	

Func:onality		
Performance		

Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	

?	

Time	

Fine-Grained	Locking/Lock-Free	

Time	

TransacLonal	Memory	

E.g.	N-Body	with	5M	bodies		
CUDA	SDK:	O(n2)	–	1640	s	(barrier)	
Barnes	Hut:	O(nLogn)	–	5.2	s	(locks)	
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Transac/onal Memory
• Programmer	specifies	atomic	code	blocks	called	
transacLons	[Herlihy’93]	

TM Version: 
atomic { 
  X[c] = X[a]+X[b]; 
} 

Lock Version: 
Lock(X[a]); 
Lock(X[b]); 
Lock(X[c]); 
  X[c] = X[a]+X[b]; 
Unlock(X[c]); 
Unlock(X[b]); 
Unlock(X[a]); 

PotenLal	Deadlock!	
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Transac/onal Memory

Commit	 Commit	

TX1	

Non-conflicLng	transacLons	
may	run	in	parallel	

TX2	
A	
B	
C	
D	

Memory	

ConflicLng	transacLons	
automaLcally	serialized	

TX1	
A	
B	
C	
D	

Memory	

TX2	

Commit	 Abort	

Commit	

TX2	

Programmers’	View:		

TX1	

TX2	 TX1	

TX2	
OR	

Tim
e	

Tim
e	



72 Hardware	TM	for	GPU	Architectures	 72	

Are TM and GPUs Incompa/ble?
GPU	uarch	very	different	from	mulLcore	CPU…	

KILO	TM	[MICRO’11,	IEEE	Micro	Top	Picks]	

•  Hardware	TM	for	GPUs	
•  Half	performance	of	fine	grained	locking	
n  Chip	area	overhead	of	0.5%	



Research Direc+on 5: 
GPU Power Efficiency
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GPU power

• More	efficient	than	CPU	but	
•  Consumes	a	lot	of	power	
•  Much	less	efficient	than	ASIC	or	FPGAs	
• What	can	be	done	to	reduce	power	consumpLon?	

•  Look	at	the	most	power	hungry	components	
• What	can	be	duty	cycled/power	gated?	
•  GPUWa`ch	to	evaluate	ideas	

74	



Other Research Direc/ons….
• Non-determinisLc	behavior	for	buggy	code		

•  GPUDet	ASPLOS	2013	
	
	
	
	

•  Lack	of	good	performance	analysis	tools	
•  NVIDIA	Profiler/Parallel	NSight	
•  AerialVision	[ISPASS	2010]	
•  GPU	analyLcal	perf/power	models	(Hyesoon	Kim)	
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Lack of I/O and System Support…
•  Support	for	prin�,	malloc	from	kernel	in	CUDA	
•  File	system	I/O?	
• GPUfs	(ASPLOS	2013):	

•  POSIX-like	file	system	API	
•  One	file	per	warp	to	avoid	control	divergence	
• Weak	file	system	consistency	model	(close->open)	
•  Performance	API:	O_GWRONCE,	O_GWRONCE	
•  Eliminate	seek	pointer	

• GPUnet	(OSDI	2014):	Posix	like	API	for	sockets	
programming	on	GPGPU.	
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Conclusions

• GPU	CompuLng	is	growing	in	importance	due	to	
energy	efficiency	concerns		

• GPU	architecture	has	evolved	quickly	and	likely	to	
conLnue	to	do	so	

• We	discussed	some	of	the	important	
microarchitecture	bo`lenecks	and	recent	research.	

• Also	discussed	some	direcLons	for	improving	
programming	model	
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