
1	

Slide	credits:	most	slides	from	tutorial	by	
Tor	Aamodt	(UBC,	GPGPUSim).		Addi?onal	
material	from	NViDia	whitepaper,	and	

others	

GPU	Compu?ng	Architecture	

NVIDIA	Tegra	X1	die	photo	

/	



The GPU is Ubiquitous 

2 [APU13	keynote]	

+	



“Early”	GPU	History	

– 1981:		IBM	PC	Monochrome	Display	Adapter	(2D)	
– 1996:		3D	graphics	(e.g.,	3dfx	Voodoo)	
– 1999:		register	combiner	(NVIDIA	GeForce	256)	
– 2001:		programmable	shaders	(NVIDIA	GeForce	3)	
– 2002:		floa?ng-point	(ATI	Radeon	9700)	
– 2005:		unified	shaders	(ATI	R520	in	Xbox	360)	
– 2006:		compute	(NVIDIA	GeForce	8800)	

3	



4 

GPU: The Life of a Triangle 

Texture 

Host  /   Front End  /  Vertex Fetch 

F r
 a m

 e   B
 u f

 f e 
r   C

 o n
 t r o

 l l e
 r 

Vertex Processing 

Primitive Assembly ,  Setup  

Rasterize  &  Zcull 

Pixel Shader 

Pixel Engines  ( ROP ) 

process commands 

transform vertices  
to screen - space 

generate per - 
triangle equations 

generate pixels ,  delete pixels  
that cannot be seen 

determine the colors ,  transparencies  
and depth of the pixel 

do final hidden surface test, blend  
and write out color and new depth 

[David	Kirk	/	Wen-mei	Hwu]	

+	



5 

pixel color result of running “shader” program +	



Why	use	a	GPU	for	compu?ng?	
•  GPU	uses	larger	frac?on	of	silicon	for	computa?on	than	CPU.			
•  At	peak	performance	GPU	uses	order	of	magnitude	less	

energy	per	opera?on	than	CPU.	

6	

CPU	
2nJ/op	

GPU	
200pJ/op	

Rewrite	Applica?on	

Order	of	Magnitude	More	
Energy	Efficient	

However….	
Applica6on	must	perform	well	

e.g.,	paper	in	ISCA	2010	shows	average	
speedup	for	throughput	bound	applica?ons	
over	core	i7	is	2.5	x	



Growing	Interest	in	GPGPU	

•  Supercompu?ng	–	Green500.org	Nov	2014		
“the	top	three	slots	of	the	Green500	were	powered	by	three	
different	accelerators	with	number	one,	L-CSC,	being	powered	by	
AMD	FirePro™	S9150	GPUs;	number	two,	Suiren,	powered	by	
PEZY-SC	many-core	accelerators;	and	number	three,	TSUBAME-
KFC,	powered	by	NVIDIA	K20x	GPUs.	Beyond	these	top	three,	the	
next	20	supercomputers	were	also	accelerator-based.”	

•  Deep	Belief	Networks	map	very	well	to	GPUs	
(e.g.,	Google	keynote	at	2015	GPU	Tech	Conf.) 		

							hpp://blogs.nvidia.com/blog/2015/03/18/google-gpu/	
	hpp://www.ustream.tv/recorded/60071572	

7	



Part	1:	Preliminaries	and	Instruc?on	
Set	Architecture	

8	



GPGPUs	vs.	Vector	Processors	

•  Similari?es	at	hardware	level	between	GPU	
and	vector	processors.	

•  (I	like	to	argue)	SIMT	programming	model	
moves	hardest	parallelism	detec?on	problem	
from	compiler	to	programmer.			

9	



GPU	Instruc?on	Set	Architecture	(ISA)	

•  NVIDIA	defines	a	virtual	ISA,	called	“PTX”	(Parallel	
Thread	eXecu?on)	

•  More	recently,	Heterogeneous	System	Architecture	
(HSA)	Founda?on	(AMD,	ARM,	Imagina?on,	Mediatek,	
Samsung,	Qualcomm,	TI)	defined	the	HSAIL	virtual	ISA.	

•  PTX	is	Reduced	Instruc?on	Set	Architecture	(e.g.,	load/
store	architecture)	

•  Virtual:	infinite	set	of	registers	(much	like	a	compiler	
intermediate	representa?on)	

•  PTX	translated	to	hardware	ISA	by	backend	compiler	
(“ptxas”).		Either	at	compile	?me	(nvcc)	or	at	run?me	
(GPU	driver).	

10	



Some	Example	PTX	Syntax	
•  Registers	declared	with	a	type:	
			.reg	.pred		p,	q,	r;	
			.reg	.u16			r1,	r2;	
			.reg	.f64			f1,	f2;	
•  ALU	opera?ons		
			add.u32	x,	y,	z;							//	x	=	y	+	z	
			mad.lo.s32	d,	a,	b,	c;	//	d	=	a*b	+	c	
•  Memory	opera?ons:	
			ld.global.f32	f,	[a];		
			ld.shared.u32	g,	[b];	
			st.local.f64		[c],	h	
•  Compare	and	branch	opera?ons:	
						setp.eq.f32	p,	y,	0;		//	is	y	equal	to	zero?		
			@p	bra	L1		//	branch	to	L1	if	y	equal	to	zero	
	
	
	

11	



Part	2:	Generic	GPGPU	Architecture	

12	



Extra	resources	

GPGPU-Sim	3.x	Manual	
hpp://gpgpu-sim.org/manual/index.php/
GPGPU-Sim_3.x_Manual		

13	



GPU	Microarchitecture	Overview	
Single-Instruc?on,	Mul?ple-Threads	

GPU	

Interconnec6on	Network	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	 Off-chip	DRAM	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	



15	



GPU	Microarchitecture	
•  Companies	?ght	lipped	about	details	of	GPU	
microarchitecture.	

•  Several	reasons:	
–  Compe??ve	advantage	
–  Fear	of	being	sued	by	“non-prac?cing	en??es”	
–  The	people	that	know	the	details	too	busy	building	
the	next	chip	

•  Model	described	next,	embodied	in	GPGPU-Sim,	
developed	from:	white	papers,	programming	
manuals,	IEEE	Micro	ar?cles,	patents.	

16	



GPU	Microarchitecture	Overview	

GPU	

Interconnec6on	Network	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	 Off-chip	DRAM	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

17	



Inside	a	SIMT	Core	

•  SIMT	front	end	/	SIMD	backend	
•  Fine-grained	mul?threading	

–  Interleave	warp	execu?on	to	hide	latency	
– Register	values	of	all	threads	stays	in	core	

SIMT	
Front	End	 SIMD	Datapath	

Fetch	
Decode	
Schedule	
Branch	

Memory	Subsystem	 Icnt.	
Network	SMem	 L1	D$	 Tex	$	 Const$	

Reg	
File	

18	



SIMT	Front	End	

Inside	an	“NVIDIA-style”	SIMT	Core	
SIMD	Datapath	

ALU	ALU	ALU	

I-Cache	 Decode	
I-Buffer	

Score	
Board	

Issue	 Operand	
Collector	

MEM	

ALU	
Fetch	 SIMT-Stack	

Done	(WID)	

Valid[1:N]	

Branch	Target	PC	

Pred.	Ac?ve	
Mask	

•  Three	decoupled	warp	schedulers	
•  Scoreboard	
•  Large	register	file	
•  Mul?ple	SIMD	func?onal	units	

Scheduler	1	

Scheduler	2	

Scheduler	3	

19	



Fetch	+	Decode	
•  Arbitrate	the	I-cache	
among	warps	
–  Cache	miss	handled	by	
fetching	again	later	

•  Fetched	instruc?on	is	
decoded	and	then	stored	
in	the	I-Buffer	
–  1	or	more	entries	/	warp	
–  Only	warp	with	vacant	
entries	are	considered	in	
fetch	

Inst.	W1	 r	
Inst.	W2	
Inst.	W3	

v	
r	v	
r	v	

To	
Fetch	

Issue	

Decode	
Score-	
Board	

Issue	
ARB	

PC	1	
PC	2	
PC	3	

A	
R	
B	

Selec?on	T	o
			I	-
	C	 a
	c	 h
	e	

Valid[1:N]	

I-Cache	 Decode	
I-Buffer	

Fetch	
Valid[1:N]	

20	



Instruc?on	Issue	
•  Select	a	warp	and	issue	an	instruc?on	from	its		
I-Buffer	for	execu?on	
–  Scheduling:	Greedy-Then-Oldest	(GTO)	
–  GT200/later	Fermi/Kepler:		
Allow	dual	issue	(superscalar)	

–  Fermi:	Odd/Even	scheduler	
–  To	avoid	stalling	pipeline	might	
				keep	instruc?on	in	I-buffer	un?l	
				know	it	can	complete	(replay)	

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

21	



Review: In-order Scoreboard 
 

•  Scoreboard: a bit-array, 1-bit for each register 
–  If the bit is not set: the register has valid data 
–  If the bit is set: the register has stale data 

i.e., some outstanding instruction is going to change it 

•  Issue in-order: RD ß Fn (RS, RT) 
–  If SB[RS] or SB[RT] is set à RAW, stall 
–  If SB[RD] is set à WAW, stall 
–  Else, dispatch to FU (Fn) and set SB[RD] 

•  Complete out-of-order 
–  Update GPR[RD], clear SB[RD] 

22

Regs[R1]	
Regs[R2]	
Regs[R3]	

Regs[R31]	

1	
0	

0	

0	

Register	File	Scoreboard	

[Gabriel	Loh]	

+	



In-Order	Scoreboard	for	GPUs?	
•  Problem 1:  32 warps, each with up to 128 (vector) 

registers per warp means scoreboard is 4096 bits.  
•  Problem 2: Warps waiting in I-buffer needs to have 

dependency updated every cycle. 
•  Solu?on?	

–  Flag	instruc?ons	with	hazards	as	not	ready	in	I-Buffer	
so	not	considered	by	scheduler	

–  Track	up	to	6	registers	per	warp	(out	of	128)	
–  I-buffer	6-entry	bitvector:	1b	per	register	dependency	
–  Lookup	source	operands,	set	bitvector	in	I-buffer.	As	
results	wripen	per	warp,	clear	corresponding	bit	

23	

+	



Example 

-	 -	 -	 -	

-	 -	 -	 -	
Warp 0
Warp 1

ld		r7,	[r0]	
mul	r6,	r2,	r5	
add	r8,	r6,	r7	

Index	0	 Index	1	

Scoreboard	
Index	2	

Warp 0

Warp 1

Instruc?on	Buffer	
i0		i1		i2		i3	Index	3	

r7	 -	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

r7	 r6	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

r7	 r6	 r8	 -	

-	 -	 -	 -	

r7	 r6	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	

add	r8,	r6,	r7	 0 0 0 0

-	 -	 r8	 -	

-	 -	 -	 -	

Code	

+	



25	

-	 G	 1111	TOS	

B	

C	 D	

E	

F	

A	

G	

SIMT Using a Hardware Stack 

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
E	 D	 0110	
E	 C	 1001	TOS	

-	 E	 1111	
E	 D	 0110	TOS	
-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 Ac?ve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Stack	approach	invented	at	Lucafilm,	Ltd	in	early	1980’s	

SIMT = SIMD Execution of Scalar Threads	

Version	here	from	[Fung	et	al.,	MICRO	2007]	



SIMT	Notes	

•  Execu?on	mask	stack	implemented	with	
special	instruc?ons	to	push/pop.		Descrip?ons	
can	be	found	in	AMD	ISA	manual	and	NVIDIA	
patents.	

•  In	prac?ce	augment	stack	with	predica?on	
(lower	overhead).	

26	



How	is	this	done?	

•  Consider	the	following	code:	
	if(X[i]	!=	0)	

X[i]	=	X[i]	–	Y[i];	
else	X[i]	=	Z[i];	

•  What	does	this	compile	to?	

27	

Example	from	Paperson	and	Hennesy’s	Computer	Architecture:	A	Quan?ta?ve		
approach,	fiyh	edi?on	page	302	



Implementa?on	through	predica?on	
ld.global.f64					RD0,	[X+R8]						;	RD0	=	X[i]	
setp.neq.s32				P1,	RD0,	#0							;	P1	is	predicate	register	1	
@!P1,	bra	ELSE1,	*Push												;	Push	old	mask,	set	new	mask	bits	
																																																							;	if	P1	false,	go	to	ELSE1	
ld.global.f64					RD2,	[Y+R8]							;	RD2	=	Y[i]	
sub.f64						RD0,	RD0,	RD2										;	RD0	=	X[i]	–	Y[i]	
st.global.f64				[X+R8],	RD0								;	X[i]	=	RD0	
@P1,	bra	ENDIF1,	*Comp										;	complement	mask	bits	
																																																							;	if	P1	true,	go	to	ENDIF1	
ELSE1:		
ld.global.f64		RD0,	[Z+R8]										;	RD0	=	Z[i]	
st.global.f64		[X+R8],	RD0										;	X[i]	=	RD0	
ENDIF1:		
<next	instruc?on>,	*Pop											;	pop	to	restore	old	mask	

28	



SIMT	outside	of	GPUs?	

•  ARM	Research	looking	at	SIMT-ized	ARM	ISA.		
	
•  Intel	MIC	implements	SIMT	on	top	of	vector	
hardware	via	compiler	(ISPC)	

•  Possibly	other	industry	players	in	future	

29	



Register File 

30

•  32 warps, 32 threads per 
warp, 16 x 32-bit registers 
per thread = 64KB register 
file. 

•  Need “4 ports” (e.g., FMA) 
greatly increase area. 

•  Alternative: banked single 
ported register file.  How to 
avoid bank conflicts?   



Banked Register File 
Strawman microarchitecture: 

31

Register	layout:	



Register Bank Conflicts 

•  warp 0, instruction 2 has two source operands in bank 
1: takes two cycles to read. 

•  Also, warp 1 instruction 2 is same and is also stalled. 
•  Can use warp ID as part of register layout to help.  

32



Operand	Collector	

•  Term	“Operand	Collector”	appears	in	figure	in	NVIDIA	Fermi	Whitepaper	
•  Operand	Collector	Architecture	(US	Patent:	7834881)	

–  Interleave	operand	fetch	from	different	threads	to	achieve	full	u?liza?on	

Bank	0	 Bank	1	 Bank	2	 Bank	3	

R0	 R1	 R2	 R3	
R4	 R5	 R6	 R7	
R8	 R9	 R10	 R11	
…	 …	 …	 …	

add.s32		R3,	R1,	R2;	 No	Conflict	

mul.s32		R3,	R0,	R4;	 Conflict	at	bank	0	

4a.33	



Operand Collector (1) 

•  Issue instruction to collector unit.   
•  Collector unit similar to reservation station in tomasulo’s algorithm. 
•  Stores source register identifiers.   
•  Arbiter selects operand accesses that do not conflict on a given cycle. 
•  Arbiter needs to also consider writeback (or need read+write port) 

34



Operand Collector (2) 
•  Combining swizzling and 

access scheduling can give 
up to ~ 2x improvement in 
throughput 

35



AMD	Southern	Islands	

•  SIMT	processing	oyen	includes	redundant	
computa?on	across	threads.		

	thread	0…31:	
	for(	i=0;	i	<	run?me_constant_N;	i++	{	
		 	/*	do	something	with	“i”	*/	
	}	

36	



AMD	Southern	Islands	SIMT-Core	
	ISA	visible	scalar	unit	executes	computa?on	
iden?cal	across	SIMT	threads	in		a	wavefront	

37	



Example	

[Southern	Islands	Series	Instruc?on	Set	Architecture,	Aug.	2012]	

float fn0(float a,float b) 
{ 
   if(a>b)   
      return (a * a – b); 
   else 
      return (b * b – a); 
} 

// Registers r0 contains “a”, r1 contains “b” 
// Value is returned in r2 
    v_cmp_gt_f32 r0, r1 // a>b 
    s_mov_b64 s0, exec  // Save current exec mask 
    s_and_b64 exec, vcc, exec // Do “if” 
    s_cbranch_vccz label0 // Branch if all lanes fail 
    v_mul_f32 r2, r0, r0 // result = a * a 
    v_sub_f32 r2, r2, r1 // result = result - b 
label0: 
    s_not_b64 exec, exec // Do “else” 
    s_and_b64 exec, s0, exec // Do “else” 
    s_cbranch_execz label1 // Branch if all lanes fail 
    v_mul_f32 r2, r1, r1 // result = b * b 
    v_sub_f32 r2, r2, r0 // result = result - a 
label1: 
    s_mov_b64 exec, s0   // Restore exec mask 

38	



Southern	Islands	SIMT	Stack?		

•  Instruc?ons:	S_CBRANCH_*_FORK;	S_CBRANCH_JOIN	
•  Use	for	arbitrary	(e.g.,	irreducible)	control	flow	
•  3-bit	control	stack	pointer	
•  Six	128-bit	stack	entries;	stored	in	scalar	general	
purpose	registers	holding	{exec[63:0],	PC[47:2]}	

•  S_CBRANCH_*_FORK	executes	path	with	fewer	ac?ve	
threads	first	

39	

+	



Part	3:	Research	Direc?ons	

40	



41 

Advancing	Computer	Systems	without	Technology	Progress	
DARPA/ISAT	Workshop,	March	26-27,	2012	
Mark	Hill	&	Christos	Kozyrakis	

Decreasing	cost	per	unit	computa?on	

1971:		Intel	4004	

2012:																	Datacenter		

1981:	IBM	5150	

2007:	iPhone	



42 

Ease	of		
Programming	

Hardware	Efficiency	

Single	Core	OoO	Superscalar	CPU	

Brawny	(OoO)	Mul?core	

ASIC	

BeWer	

16K	thread,	SIMT	Accelerator	

Wimpy	(In-order)	Mul?core	

(how	to	get	here?)	
	



43 

Ease	of		
Programming	

Hardware	Efficiency	

Start	by	using	right	tool	for	each	job…	



Amdahl’s	Law	Limits	this	Approach	

44 

Easy	to	accelerate	Hard	to	accelerate	

€ 

Improvementoverall =  
1

Fractionhard +  1- Fractionhard

Improvementeasy



Ques?on:		Can	dividing	line	be	moved?	

45 

easy	to	accelerate	(Acc.	Arch1)	

easy	to	accelerate	(Acc.	Arch2)	
	



Forward-Looking	GPU	Soyware	
•  S?ll	Massively	Parallel	
•  Less	Structured	

– Memory	access	and	control	flow	paperns	are	less	
predictable	

46	

Execute	efficiently	
on	a	GPU	today	

Graphics	
Shaders	

Matrix	
Mul6ply	

…	

Less	efficient	on	
today’s	GPU	

Raytracing	
Molecular	
Dynamics	

Object	
Classifica6on	

…	

[Tim	Rogers]	



47 

Ease	of		
Programming	

Energy	Efficiency	

BeWer	

Two	Routes	to	“Beper”	



Research	Direc1on	1:	
Mi?ga?ng	SIMT	Control	Divergence	

48	



Research	Direc1on	2:	
Mi?ga?ng	High	GPGPU	Memory	

Bandwidth	Demands	

49	



Reducing	Off-Chip	Access	/	Divergence	

•  Re-wri?ng	soyware	to	use	“shared	memory”	
and	avoid	uncoalesced	global	accesses	is	bane	
of	GPU	programmer	existence.	

•  Recent	GPUs	introduce	caches,	but	large	
number	of	warps/wavefronts	lead	to	
thrashing.			

50	



•  NVIDIA:	Register	file	cache	(ISCA	2011,	MICRO)	
–  Register	file	burns	significant	energy	
– Many	values	read	once	soon	ayer	wripen	
–  Small	register	file	cache	captures	locality	and	saves	
energy	but	does	not	help	performance	

–  Recent	follow	on	work	from	academia	

•  Prefetching	(Kim,	MICRO	2010)	
•  Interconnect	(Bakhoda,	MICRO	2010)	
•  Lee	&	Kim	(HPCA	2012)	CPU/GPU	cache	sharing	

51	



Thread	Scheduling	Analogy	
[MICRO	2012]	

•  Human	Mul?tasking	
–  Humans	have	limited	aWen6on	capacity	

	
–  GPUs	have	limited	cache	capacity	

52	

Pr
od

uc
tiv

ity
 

Tasks at Once 

GPU	Core	

Processor	 Cache	

Pe
rf
or
m
an

ce
	

Threads	Ac6vely	Scheduled	



Use	Memory	System	Feedback	
[MICRO	2012]	

53	

0	

0.5	

1	

1.5	

2	

0 

10 

20 

30 

40 

Threads Actively Scheduled 

Performance	

Cache	Misses	

GPU	Core	

Processor	 Cache	Thread	
Scheduler	

Feedback	



Research	Direc1on	3:	
Coherent	Memory	for	Accelerators	

54	



Why	GPU	Coding	Difficult?	

•  Manual	data	movement	CPU	ó	GPU	
•  Lack	of	generic	I/O	,	system	support	on	GPU	
•  Need	for	performance	tuning	to	reduce	

–  off-chip	accesses		
– memory	divergence	
–  control	divergence	

•  For	complex	algorithms,	synchroniza?on	
•  Non-determinis?c	behavior	for	buggy	code		
•  Lack	of	good	performance	analysis	tools	

	
55	



Manual	CPU	ó	GPU	Data	Movement	
•  Problem	#1:	Programmer	needs	to	iden?fy	data	
needed	in	a	kernel	and	insert	calls	to	move	it	to	GPU	

•  Problem	#2:	Pointer	on	CPU	does	not	work	on	GPU	
since	different	address	spaces	

•  Problem	#3:	Bandwidth	connec?ng	CPU	and	GPU	is	
order	of	magnitude	smaller	than	GPU	off-chip	

•  Problem	#4:	Latency	to	transfer	data	from	CPU	to	
GPU	is	order	of	magnitude	higher	than	GPU	off-chip	

•  Problem	#5:	Size	of	GPU	DRAM	memory	much	
smaller	than	size	of	CPU	main	memory	

56	



Iden?fying	data	to	move	CPU	ó	GPU	

•  CUDA/OpenCL:		Job	of	programmer	L	

•  C++AMP	passes	job	to	compiler.			

•  OpenACC	uses	pragmas	to	indicate	loops	that	
should	be	offloaded	to	GPU.	

57	



Memory	Model	

Rapid	change	(making	programming	easier)	
•  Late	1990’s:	fixed	func?on	graphics	only	
•  2003:	programmable	graphics	shaders	
•  2006:	+	global/local/shared		(GeForce	8)	
•  2009:	+	caching	of	global/local		
•  2011:	+	unified	virtual	addressing	
•  2014:	+	unified	memory	/	coherence	

58	



Caching	

•  Scratchpad	uses	explicit	data	movement.	Extra	
work.	Beneficial	when	reuse	papern	sta?cally	
predictable.	

•  NVIDIA	Fermi	/	AMD	Southern	Island	add	
caches	for	accesses	to	global	memory	space.				

59	



CPU	memory	vs.	GPU	global	memory	

•  Prior	to	CUDA:	input	data	is	texture	map.	
•  CUDA	1.0	introduces	cudaMemcpy	

– Allows	copy	of	data	between	CPU	memory	space	to	
global	memory	on	GPU	

•  S?ll	has	problems:	
–  #1:	Programmer	s?ll	has	to	think	about	it!	
–  #2:	Communicate	only	at	kernel	grid	boundaries	
–  #3:	Different	virtual	address	space		

•  pointer	on	CPU	not	a	pointer	on	GPU	=>	cannot	easily	share	
complex	data	structures	between	CPU	and	GPU	

60	



Fusion	/	Integrated	GPUs	

•  Why	integrate?	
– One	chip	versus	two	(cf.	Moore’s	Law,	VLSI)	
– Latency	and	bandwidth	of	communica?on:	shared	
physical	address	space,	even	if	off-chip,	eliminates	
copy:	AMD	Fusion.	1st	itera?on	2011.		Same	
DRAM	

– Shared	virtual	address	space?	(AMD	Kavari	2014)	
– Reduce	latency	to	spawn	kernel	means	kernel	
needs	to	do	less	to	jus?fy	cost	of	launching	

61	



CPU	Pointer	not	a	GPU	Pointer	

•  NVIDIA	Unified	Virtual	Memory	par?ally	
solves	the	problem	but	in	a	bad	way:			
– GPU	kernel	reads	from	CPU	memory	space	

•  NVIDIA	Uniform	Memory	(CUDA	6)	improves	
by	enabling	automa?c	migra?on	of	data	

•  Limited	academic	work.	Gelado	et	al.	ASPLOS	
2010.	

	

62	



CPU	ó	GPU	Bandwidth	

•  Shared	DRAM	as	found	in	AMD	Fusion	(recent	
Core	i7)	enables	the	elimina?on	of	copies	from	
CPU	to	GPU.		Painful	coding	as	of	2013.	

•  One	ques?on	how	much	benefit	versus	good	
coding.		Our	limit	study	(WDDD	2008)	found	only	
~50%	gain.		Lus?g	&	Martonosi	HPCA	2013.	

•  Algorithm	design—MummerGPU++	

63	



CPU	ó	GPU	Latency	

•  NVIDIA’s	solu?on:	CUDA	Streams.		Overlap	
GPU	kernel	computa?on	with	memory	
transfer.	Stream	=	ordered	sequence	of	data	
movement	commands	and	kernels.		Streams	
scheduled	independently.		Very	painful	
programming.	

•  Academic	work:		Limit	Study	(WDDD	2008),	
Lus?g	&	Martonosi	HPCA	2013,	Compiler	data	
movement	(August,	PLDI	2011).	

64	



GPU	Memory	Size	

•  CUDA	Streams	

•  Academic	work:	Treat	GPU	memory	as	cache	
on	CPU	memory	(Kim	et	al.,	ScaleGPU,	IEEE	
CAL	early	access).	

65	



Solu?on	to	all	these	sub-issues?	

•  Heterogeneous	System	Architecture:	
Integrated	CPU	and	GPU	with	coherence	
memory	address	space.	

•  Need	to	figure	out	how	to	provide	coherence	
between	CPU	and	GPU.			

•  Really	two	problems:	Coherence	within	GPU	
and	then	between	CPU	and	GPU.	

66	



Research	Direc1on	4:	
Easier	Programming	with	

Synchroniza?on	

67	



Synchroniza?on		
•  Locks	are	not	encouraged	in	current	GPGPU	
programming	manuals.			

•  Interac?on	with	SIMT	stack	can	easily	cause	deadlocks:	

		while(	atomicCAS(&lock[a[tid]],0,1)	!=	0	)	
				;		//	deadlock	here	if	a[i]	=	a[j]	for	any	i,j	=	tid	in	warp	
			
		//	critical	section	goes	here	
	
		atomicExch	(&lock[a[tid]],	0)	;	

		
			

68	



Correct	way	to	write	cri?cal	sec?on	for	GPGPU:	

	done	=	false;	
	while(	!done	)	{	
			if(	atomicCAS	(&lock[a[tid]],	0	,	1	)==0	)	{	
	
					//	critical	section	goes	here	
	
					atomicExch(&lock[a[tid]],	0	)	;	
			}	
	}	

			
Most	current	GPGPU	programs	use	barriers	within	
thread	blocks	and/or	lock-free	data	structures.	
	
This	leads	to	the	following	picture…	

69	



70 

•  Life?me	of	GPU	Applica?on	Development	

Time	

Func6onality		
Performance		

Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	

?	

Time	

Fine-Grained	Locking/Lock-Free	

Time	

Transac?onal	Memory	

E.g.	N-Body	with	5M	bodies		
CUDA	SDK:	O(n2)	–	1640	s	(barrier)	
Barnes	Hut:	O(nLogn)	–	5.2	s	(locks)	



71 

Transac?onal	Memory	
•  Programmer	specifies	atomic	code	blocks	
called	transac?ons	[Herlihy’93]	

TM Version: 
atomic { 
  X[c] = X[a]+X[b]; 
} 

Lock Version: 
Lock(X[a]); 
Lock(X[b]); 
Lock(X[c]); 
  X[c] = X[a]+X[b]; 
Unlock(X[c]); 
Unlock(X[b]); 
Unlock(X[a]); 

Poten?al	Deadlock!	



72 

Transac?onal	Memory	

Commit	 Commit	

TX1	

Non-conflic?ng	transac?ons	
may	run	in	parallel	

TX2	
A	
B	
C	
D	

Memory	

Conflic?ng	transac?ons	
automa?cally	serialized	

TX1	
A	
B	
C	
D	

Memory	

TX2	

Commit	 Abort	

Commit	

TX2	

Programmers’	View:		

TX1	

TX2	 TX1	

TX2	
OR	

Tim
e	

Tim
e	



73 Hardware	TM	for	GPU	Architectures	 73	

Are	TM	and	GPUs	Incompa?ble?	
GPU	uarch	very	different	from	mul?core	CPU…	

KILO	TM	[MICRO’11,	IEEE	Micro	Top	Picks]	

•  Hardware	TM	for	GPUs	
•  Half	performance	of	fine	grained	locking	

n  Chip	area	overhead	of	0.5%	



Research	Direc1on	5:	
GPU	Power	Efficiency	

74	



GPU	power	

•  More	efficient	than	CPU	but	
– Consumes	a	lot	of	power	
– Much	less	efficient	than	ASIC	or	FPGAs	
– What	can	be	done	to	reduce	power	consump?on?	

•  Look	at	the	most	power	hungry	components	
– What	can	be	duty	cycled/power	gated?	
– GPUWapch	to	evaluate	ideas	

75	



Other	Research	Direc?ons….	
•  Non-determinis?c	behavior	for	buggy	code		

– GPUDet	ASPLOS	2013	
	
	
	
	

•  Lack	of	good	performance	analysis	tools	
– NVIDIA	Profiler/Parallel	NSight	
– AerialVision	[ISPASS	2010]	
– GPU	analy?cal	perf/power	models	(Hyesoon	Kim)	 76	

0%	

20%	

40%	

60%	

80%	

100%	

20000	 25000	 30000	 35000	 40000	 45000	 50000	

di
ffe

re
nt
	re

su
lts
	o
ve
r	

m
ul
6p

le
	e
xe
cu
6o

ns
	

#	edges	

Result	Varia6on	(Kepler)		



Lack	of	I/O	and	System	Support…	
•  Support	for	prin�,	malloc	from	kernel	in	CUDA	
•  File	system	I/O?	
•  GPUfs	(ASPLOS	2013):	

– POSIX-like	file	system	API	
– One	file	per	warp	to	avoid	control	divergence	
– Weak	file	system	consistency	model	(close->open)	
– Performance	API:	O_GWRONCE,	O_GWRONCE	
– Eliminate	seek	pointer	

•  GPUnet	(OSDI	2014):	Posix	like	API	for	sockets	
programming	on	GPGPU.	

77	



Conclusions	

•  GPU	Compu?ng	is	growing	in	importance	due	
to	energy	efficiency	concerns		

•  GPU	architecture	has	evolved	quickly	and	
likely	to	con?nue	to	do	so	

•  We	discussed	some	of	the	important	
microarchitecture	boplenecks	and	recent	
research.	

•  Also	discussed	some	direc?ons	for	improving	
programming	model	

78	


