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The GPU is Ubiquitous 

2 [APU13	keynote]	
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“Early”	GPU	History	

– 1981:		IBM	PC	Monochrome	Display	Adapter	(2D)	
– 1996:		3D	graphics	(e.g.,	3dfx	Voodoo)	
– 1999:		register	combiner	(NVIDIA	GeForce	256)	
– 2001:		programmable	shaders	(NVIDIA	GeForce	3)	
– 2002:		floa?ng-point	(ATI	Radeon	9700)	
– 2005:		unified	shaders	(ATI	R520	in	Xbox	360)	
– 2006:		compute	(NVIDIA	GeForce	8800)	
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GPU: The Life of a Triangle 

Texture 

Host  /   Front End  /  Vertex Fetch 
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Vertex Processing 

Primitive Assembly ,  Setup  

Rasterize  &  Zcull 

Pixel Shader 

Pixel Engines  ( ROP ) 

process commands 

transform vertices  
to screen - space 

generate per - 
triangle equations 

generate pixels ,  delete pixels  
that cannot be seen 

determine the colors ,  transparencies  
and depth of the pixel 

do final hidden surface test, blend  
and write out color and new depth 

[David	Kirk	/	Wen-mei	Hwu]	
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pixel color result of running “shader” program +	



Why	use	a	GPU	for	compu?ng?	
•  GPU	uses	larger	frac?on	of	silicon	for	computa?on	than	CPU.			
•  At	peak	performance	GPU	uses	order	of	magnitude	less	

energy	per	opera?on	than	CPU.	

6	

CPU	
2nJ/op	

GPU	
200pJ/op	

Rewrite	Applica?on	

Order	of	Magnitude	More	
Energy	Efficient	

However….	
Applica6on	must	perform	well	

e.g.,	paper	in	ISCA	2010	shows	average	
speedup	for	throughput	bound	applica?ons	
over	core	i7	is	2.5	x	



Growing	Interest	in	GPGPU	

•  Supercompu?ng	–	Green500.org	Nov	2014		
“the	top	three	slots	of	the	Green500	were	powered	by	three	
different	accelerators	with	number	one,	L-CSC,	being	powered	by	
AMD	FirePro™	S9150	GPUs;	number	two,	Suiren,	powered	by	
PEZY-SC	many-core	accelerators;	and	number	three,	TSUBAME-
KFC,	powered	by	NVIDIA	K20x	GPUs.	Beyond	these	top	three,	the	
next	20	supercomputers	were	also	accelerator-based.”	

•  Deep	Belief	Networks	map	very	well	to	GPUs	
(e.g.,	Google	keynote	at	2015	GPU	Tech	Conf.) 		

							hpp://blogs.nvidia.com/blog/2015/03/18/google-gpu/	
	hpp://www.ustream.tv/recorded/60071572	
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Part	1:	Preliminaries	and	Instruc?on	
Set	Architecture	
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GPGPUs	vs.	Vector	Processors	

•  Similari?es	at	hardware	level	between	GPU	
and	vector	processors.	

•  (I	like	to	argue)	SIMT	programming	model	
moves	hardest	parallelism	detec?on	problem	
from	compiler	to	programmer.			
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GPU	Instruc?on	Set	Architecture	(ISA)	

•  NVIDIA	defines	a	virtual	ISA,	called	“PTX”	(Parallel	
Thread	eXecu?on)	

•  More	recently,	Heterogeneous	System	Architecture	
(HSA)	Founda?on	(AMD,	ARM,	Imagina?on,	Mediatek,	
Samsung,	Qualcomm,	TI)	defined	the	HSAIL	virtual	ISA.	

•  PTX	is	Reduced	Instruc?on	Set	Architecture	(e.g.,	load/
store	architecture)	

•  Virtual:	infinite	set	of	registers	(much	like	a	compiler	
intermediate	representa?on)	

•  PTX	translated	to	hardware	ISA	by	backend	compiler	
(“ptxas”).		Either	at	compile	?me	(nvcc)	or	at	run?me	
(GPU	driver).	
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Some	Example	PTX	Syntax	
•  Registers	declared	with	a	type:	
			.reg	.pred		p,	q,	r;	
			.reg	.u16			r1,	r2;	
			.reg	.f64			f1,	f2;	
•  ALU	opera?ons		
			add.u32	x,	y,	z;							//	x	=	y	+	z	
			mad.lo.s32	d,	a,	b,	c;	//	d	=	a*b	+	c	
•  Memory	opera?ons:	
			ld.global.f32	f,	[a];		
			ld.shared.u32	g,	[b];	
			st.local.f64		[c],	h	
•  Compare	and	branch	opera?ons:	
						setp.eq.f32	p,	y,	0;		//	is	y	equal	to	zero?		
			@p	bra	L1		//	branch	to	L1	if	y	equal	to	zero	
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Part	2:	Generic	GPGPU	Architecture	
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Extra	resources	

GPGPU-Sim	3.x	Manual	
hpp://gpgpu-sim.org/manual/index.php/
GPGPU-Sim_3.x_Manual		

13	



GPU	Microarchitecture	Overview	
Single-Instruc?on,	Mul?ple-Threads	

GPU	

Interconnec6on	Network	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	 Off-chip	DRAM	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	
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GPU	Microarchitecture	
•  Companies	?ght	lipped	about	details	of	GPU	
microarchitecture.	

•  Several	reasons:	
–  Compe??ve	advantage	
–  Fear	of	being	sued	by	“non-prac?cing	en??es”	
–  The	people	that	know	the	details	too	busy	building	
the	next	chip	

•  Model	described	next,	embodied	in	GPGPU-Sim,	
developed	from:	white	papers,	programming	
manuals,	IEEE	Micro	ar?cles,	patents.	
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GPU	Microarchitecture	Overview	

GPU	

Interconnec6on	Network	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	 Off-chip	DRAM	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	
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Inside	a	SIMT	Core	

•  SIMT	front	end	/	SIMD	backend	
•  Fine-grained	mul?threading	

–  Interleave	warp	execu?on	to	hide	latency	
– Register	values	of	all	threads	stays	in	core	

SIMT	
Front	End	 SIMD	Datapath	

Fetch	
Decode	
Schedule	
Branch	

Memory	Subsystem	 Icnt.	
Network	SMem	 L1	D$	 Tex	$	 Const$	

Reg	
File	
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SIMT	Front	End	

Inside	an	“NVIDIA-style”	SIMT	Core	
SIMD	Datapath	

ALU	ALU	ALU	

I-Cache	 Decode	
I-Buffer	

Score	
Board	

Issue	 Operand	
Collector	

MEM	

ALU	
Fetch	 SIMT-Stack	

Done	(WID)	

Valid[1:N]	

Branch	Target	PC	

Pred.	Ac?ve	
Mask	

•  Three	decoupled	warp	schedulers	
•  Scoreboard	
•  Large	register	file	
•  Mul?ple	SIMD	func?onal	units	

Scheduler	1	

Scheduler	2	

Scheduler	3	
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Fetch	+	Decode	
•  Arbitrate	the	I-cache	
among	warps	
–  Cache	miss	handled	by	
fetching	again	later	

•  Fetched	instruc?on	is	
decoded	and	then	stored	
in	the	I-Buffer	
–  1	or	more	entries	/	warp	
–  Only	warp	with	vacant	
entries	are	considered	in	
fetch	

Inst.	W1	 r	
Inst.	W2	
Inst.	W3	

v	
r	v	
r	v	

To	
Fetch	

Issue	

Decode	
Score-	
Board	

Issue	
ARB	

PC	1	
PC	2	
PC	3	

A	
R	
B	

Selec?on	T	o
			I	-
	C	 a
	c	 h
	e	

Valid[1:N]	

I-Cache	 Decode	
I-Buffer	

Fetch	
Valid[1:N]	
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Instruc?on	Issue	
•  Select	a	warp	and	issue	an	instruc?on	from	its		
I-Buffer	for	execu?on	
–  Scheduling:	Greedy-Then-Oldest	(GTO)	
–  GT200/later	Fermi/Kepler:		
Allow	dual	issue	(superscalar)	

–  Fermi:	Odd/Even	scheduler	
–  To	avoid	stalling	pipeline	might	
				keep	instruc?on	in	I-buffer	un?l	
				know	it	can	complete	(replay)	

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB
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Review: In-order Scoreboard 
 

•  Scoreboard: a bit-array, 1-bit for each register 
–  If the bit is not set: the register has valid data 
–  If the bit is set: the register has stale data 

i.e., some outstanding instruction is going to change it 

•  Issue in-order: RD ß Fn (RS, RT) 
–  If SB[RS] or SB[RT] is set à RAW, stall 
–  If SB[RD] is set à WAW, stall 
–  Else, dispatch to FU (Fn) and set SB[RD] 

•  Complete out-of-order 
–  Update GPR[RD], clear SB[RD] 

22

Regs[R1]	
Regs[R2]	
Regs[R3]	

Regs[R31]	

1	
0	

0	

0	

Register	File	Scoreboard	

[Gabriel	Loh]	
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In-Order	Scoreboard	for	GPUs?	
•  Problem 1:  32 warps, each with up to 128 (vector) 

registers per warp means scoreboard is 4096 bits.  
•  Problem 2: Warps waiting in I-buffer needs to have 

dependency updated every cycle. 
•  Solu?on?	

–  Flag	instruc?ons	with	hazards	as	not	ready	in	I-Buffer	
so	not	considered	by	scheduler	

–  Track	up	to	6	registers	per	warp	(out	of	128)	
–  I-buffer	6-entry	bitvector:	1b	per	register	dependency	
–  Lookup	source	operands,	set	bitvector	in	I-buffer.	As	
results	wripen	per	warp,	clear	corresponding	bit	

23	
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Example 

-	 -	 -	 -	

-	 -	 -	 -	
Warp 0
Warp 1

ld		r7,	[r0]	
mul	r6,	r2,	r5	
add	r8,	r6,	r7	

Index	0	 Index	1	

Scoreboard	
Index	2	

Warp 0

Warp 1

Instruc?on	Buffer	
i0		i1		i2		i3	Index	3	

r7	 -	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

r7	 r6	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

r7	 r6	 r8	 -	

-	 -	 -	 -	

r7	 r6	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	

add	r8,	r6,	r7	 0 0 0 0

-	 -	 r8	 -	

-	 -	 -	 -	

Code	

+	
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-	 G	 1111	TOS	

B	

C	 D	

E	

F	

A	

G	

SIMT Using a Hardware Stack 

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
E	 D	 0110	
E	 C	 1001	TOS	

-	 E	 1111	
E	 D	 0110	TOS	
-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 Ac?ve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Stack	approach	invented	at	Lucafilm,	Ltd	in	early	1980’s	

SIMT = SIMD Execution of Scalar Threads	

Version	here	from	[Fung	et	al.,	MICRO	2007]	



SIMT	Notes	

•  Execu?on	mask	stack	implemented	with	
special	instruc?ons	to	push/pop.		Descrip?ons	
can	be	found	in	AMD	ISA	manual	and	NVIDIA	
patents.	

•  In	prac?ce	augment	stack	with	predica?on	
(lower	overhead).	

26	



How	is	this	done?	

•  Consider	the	following	code:	
	if(X[i]	!=	0)	

X[i]	=	X[i]	–	Y[i];	
else	X[i]	=	Z[i];	

•  What	does	this	compile	to?	

27	

Example	from	Paperson	and	Hennesy’s	Computer	Architecture:	A	Quan?ta?ve		
approach,	fiyh	edi?on	page	302	



Implementa?on	through	predica?on	
ld.global.f64					RD0,	[X+R8]						;	RD0	=	X[i]	
setp.neq.s32				P1,	RD0,	#0							;	P1	is	predicate	register	1	
@!P1,	bra	ELSE1,	*Push												;	Push	old	mask,	set	new	mask	bits	
																																																							;	if	P1	false,	go	to	ELSE1	
ld.global.f64					RD2,	[Y+R8]							;	RD2	=	Y[i]	
sub.f64						RD0,	RD0,	RD2										;	RD0	=	X[i]	–	Y[i]	
st.global.f64				[X+R8],	RD0								;	X[i]	=	RD0	
@P1,	bra	ENDIF1,	*Comp										;	complement	mask	bits	
																																																							;	if	P1	true,	go	to	ENDIF1	
ELSE1:		
ld.global.f64		RD0,	[Z+R8]										;	RD0	=	Z[i]	
st.global.f64		[X+R8],	RD0										;	X[i]	=	RD0	
ENDIF1:		
<next	instruc?on>,	*Pop											;	pop	to	restore	old	mask	

28	



SIMT	outside	of	GPUs?	

•  ARM	Research	looking	at	SIMT-ized	ARM	ISA.		
	
•  Intel	MIC	implements	SIMT	on	top	of	vector	
hardware	via	compiler	(ISPC)	

•  Possibly	other	industry	players	in	future	

29	



Register File 

30

•  32 warps, 32 threads per 
warp, 16 x 32-bit registers 
per thread = 64KB register 
file. 

•  Need “4 ports” (e.g., FMA) 
greatly increase area. 

•  Alternative: banked single 
ported register file.  How to 
avoid bank conflicts?   



Banked Register File 
Strawman microarchitecture: 

31

Register	layout:	



Register Bank Conflicts 

•  warp 0, instruction 2 has two source operands in bank 
1: takes two cycles to read. 

•  Also, warp 1 instruction 2 is same and is also stalled. 
•  Can use warp ID as part of register layout to help.  
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Operand	Collector	

•  Term	“Operand	Collector”	appears	in	figure	in	NVIDIA	Fermi	Whitepaper	
•  Operand	Collector	Architecture	(US	Patent:	7834881)	

–  Interleave	operand	fetch	from	different	threads	to	achieve	full	u?liza?on	

Bank	0	 Bank	1	 Bank	2	 Bank	3	

R0	 R1	 R2	 R3	
R4	 R5	 R6	 R7	
R8	 R9	 R10	 R11	
…	 …	 …	 …	

add.s32		R3,	R1,	R2;	 No	Conflict	

mul.s32		R3,	R0,	R4;	 Conflict	at	bank	0	

4a.33	



Operand Collector (1) 

•  Issue instruction to collector unit.   
•  Collector unit similar to reservation station in tomasulo’s algorithm. 
•  Stores source register identifiers.   
•  Arbiter selects operand accesses that do not conflict on a given cycle. 
•  Arbiter needs to also consider writeback (or need read+write port) 
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Operand Collector (2) 
•  Combining swizzling and 

access scheduling can give 
up to ~ 2x improvement in 
throughput 
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AMD	Southern	Islands	

•  SIMT	processing	oyen	includes	redundant	
computa?on	across	threads.		

	thread	0…31:	
	for(	i=0;	i	<	run?me_constant_N;	i++	{	
		 	/*	do	something	with	“i”	*/	
	}	

36	



AMD	Southern	Islands	SIMT-Core	
	ISA	visible	scalar	unit	executes	computa?on	
iden?cal	across	SIMT	threads	in		a	wavefront	
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Example	

[Southern	Islands	Series	Instruc?on	Set	Architecture,	Aug.	2012]	

float fn0(float a,float b) 
{ 
   if(a>b)   
      return (a * a – b); 
   else 
      return (b * b – a); 
} 

// Registers r0 contains “a”, r1 contains “b” 
// Value is returned in r2 
    v_cmp_gt_f32 r0, r1 // a>b 
    s_mov_b64 s0, exec  // Save current exec mask 
    s_and_b64 exec, vcc, exec // Do “if” 
    s_cbranch_vccz label0 // Branch if all lanes fail 
    v_mul_f32 r2, r0, r0 // result = a * a 
    v_sub_f32 r2, r2, r1 // result = result - b 
label0: 
    s_not_b64 exec, exec // Do “else” 
    s_and_b64 exec, s0, exec // Do “else” 
    s_cbranch_execz label1 // Branch if all lanes fail 
    v_mul_f32 r2, r1, r1 // result = b * b 
    v_sub_f32 r2, r2, r0 // result = result - a 
label1: 
    s_mov_b64 exec, s0   // Restore exec mask 
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Southern	Islands	SIMT	Stack?		

•  Instruc?ons:	S_CBRANCH_*_FORK;	S_CBRANCH_JOIN	
•  Use	for	arbitrary	(e.g.,	irreducible)	control	flow	
•  3-bit	control	stack	pointer	
•  Six	128-bit	stack	entries;	stored	in	scalar	general	
purpose	registers	holding	{exec[63:0],	PC[47:2]}	

•  S_CBRANCH_*_FORK	executes	path	with	fewer	ac?ve	
threads	first	

39	
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Part	3:	Research	Direc?ons	

40	
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Advancing	Computer	Systems	without	Technology	Progress	
DARPA/ISAT	Workshop,	March	26-27,	2012	
Mark	Hill	&	Christos	Kozyrakis	

Decreasing	cost	per	unit	computa?on	

1971:		Intel	4004	

2012:																	Datacenter		

1981:	IBM	5150	

2007:	iPhone	
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Ease	of		
Programming	

Hardware	Efficiency	

Single	Core	OoO	Superscalar	CPU	

Brawny	(OoO)	Mul?core	

ASIC	

BeWer	

16K	thread,	SIMT	Accelerator	

Wimpy	(In-order)	Mul?core	

(how	to	get	here?)	
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Ease	of		
Programming	

Hardware	Efficiency	

Start	by	using	right	tool	for	each	job…	



Amdahl’s	Law	Limits	this	Approach	
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Easy	to	accelerate	Hard	to	accelerate	

€ 

Improvementoverall =  
1

Fractionhard +  1- Fractionhard

Improvementeasy



Ques?on:		Can	dividing	line	be	moved?	
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easy	to	accelerate	(Acc.	Arch1)	

easy	to	accelerate	(Acc.	Arch2)	
	



Forward-Looking	GPU	Soyware	
•  S?ll	Massively	Parallel	
•  Less	Structured	

– Memory	access	and	control	flow	paperns	are	less	
predictable	

46	

Execute	efficiently	
on	a	GPU	today	

Graphics	
Shaders	

Matrix	
Mul6ply	

…	

Less	efficient	on	
today’s	GPU	

Raytracing	
Molecular	
Dynamics	

Object	
Classifica6on	

…	

[Tim	Rogers]	
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Ease	of		
Programming	

Energy	Efficiency	

BeWer	

Two	Routes	to	“Beper”	



Research	Direc1on	1:	
Mi?ga?ng	SIMT	Control	Divergence	
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Research	Direc1on	2:	
Mi?ga?ng	High	GPGPU	Memory	

Bandwidth	Demands	
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Reducing	Off-Chip	Access	/	Divergence	

•  Re-wri?ng	soyware	to	use	“shared	memory”	
and	avoid	uncoalesced	global	accesses	is	bane	
of	GPU	programmer	existence.	

•  Recent	GPUs	introduce	caches,	but	large	
number	of	warps/wavefronts	lead	to	
thrashing.			
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•  NVIDIA:	Register	file	cache	(ISCA	2011,	MICRO)	
–  Register	file	burns	significant	energy	
– Many	values	read	once	soon	ayer	wripen	
–  Small	register	file	cache	captures	locality	and	saves	
energy	but	does	not	help	performance	

–  Recent	follow	on	work	from	academia	

•  Prefetching	(Kim,	MICRO	2010)	
•  Interconnect	(Bakhoda,	MICRO	2010)	
•  Lee	&	Kim	(HPCA	2012)	CPU/GPU	cache	sharing	
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Thread	Scheduling	Analogy	
[MICRO	2012]	

•  Human	Mul?tasking	
–  Humans	have	limited	aWen6on	capacity	

	
–  GPUs	have	limited	cache	capacity	
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Use	Memory	System	Feedback	
[MICRO	2012]	
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Scheduler	

Feedback	



Research	Direc1on	3:	
Coherent	Memory	for	Accelerators	
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Why	GPU	Coding	Difficult?	

•  Manual	data	movement	CPU	ó	GPU	
•  Lack	of	generic	I/O	,	system	support	on	GPU	
•  Need	for	performance	tuning	to	reduce	

–  off-chip	accesses		
– memory	divergence	
–  control	divergence	

•  For	complex	algorithms,	synchroniza?on	
•  Non-determinis?c	behavior	for	buggy	code		
•  Lack	of	good	performance	analysis	tools	
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Manual	CPU	ó	GPU	Data	Movement	
•  Problem	#1:	Programmer	needs	to	iden?fy	data	
needed	in	a	kernel	and	insert	calls	to	move	it	to	GPU	

•  Problem	#2:	Pointer	on	CPU	does	not	work	on	GPU	
since	different	address	spaces	

•  Problem	#3:	Bandwidth	connec?ng	CPU	and	GPU	is	
order	of	magnitude	smaller	than	GPU	off-chip	

•  Problem	#4:	Latency	to	transfer	data	from	CPU	to	
GPU	is	order	of	magnitude	higher	than	GPU	off-chip	

•  Problem	#5:	Size	of	GPU	DRAM	memory	much	
smaller	than	size	of	CPU	main	memory	
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Iden?fying	data	to	move	CPU	ó	GPU	

•  CUDA/OpenCL:		Job	of	programmer	L	

•  C++AMP	passes	job	to	compiler.			

•  OpenACC	uses	pragmas	to	indicate	loops	that	
should	be	offloaded	to	GPU.	
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Memory	Model	

Rapid	change	(making	programming	easier)	
•  Late	1990’s:	fixed	func?on	graphics	only	
•  2003:	programmable	graphics	shaders	
•  2006:	+	global/local/shared		(GeForce	8)	
•  2009:	+	caching	of	global/local		
•  2011:	+	unified	virtual	addressing	
•  2014:	+	unified	memory	/	coherence	
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Caching	

•  Scratchpad	uses	explicit	data	movement.	Extra	
work.	Beneficial	when	reuse	papern	sta?cally	
predictable.	

•  NVIDIA	Fermi	/	AMD	Southern	Island	add	
caches	for	accesses	to	global	memory	space.				
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CPU	memory	vs.	GPU	global	memory	

•  Prior	to	CUDA:	input	data	is	texture	map.	
•  CUDA	1.0	introduces	cudaMemcpy	

– Allows	copy	of	data	between	CPU	memory	space	to	
global	memory	on	GPU	

•  S?ll	has	problems:	
–  #1:	Programmer	s?ll	has	to	think	about	it!	
–  #2:	Communicate	only	at	kernel	grid	boundaries	
–  #3:	Different	virtual	address	space		

•  pointer	on	CPU	not	a	pointer	on	GPU	=>	cannot	easily	share	
complex	data	structures	between	CPU	and	GPU	
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Fusion	/	Integrated	GPUs	

•  Why	integrate?	
– One	chip	versus	two	(cf.	Moore’s	Law,	VLSI)	
– Latency	and	bandwidth	of	communica?on:	shared	
physical	address	space,	even	if	off-chip,	eliminates	
copy:	AMD	Fusion.	1st	itera?on	2011.		Same	
DRAM	

– Shared	virtual	address	space?	(AMD	Kavari	2014)	
– Reduce	latency	to	spawn	kernel	means	kernel	
needs	to	do	less	to	jus?fy	cost	of	launching	
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CPU	Pointer	not	a	GPU	Pointer	

•  NVIDIA	Unified	Virtual	Memory	par?ally	
solves	the	problem	but	in	a	bad	way:			
– GPU	kernel	reads	from	CPU	memory	space	

•  NVIDIA	Uniform	Memory	(CUDA	6)	improves	
by	enabling	automa?c	migra?on	of	data	

•  Limited	academic	work.	Gelado	et	al.	ASPLOS	
2010.	
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CPU	ó	GPU	Bandwidth	

•  Shared	DRAM	as	found	in	AMD	Fusion	(recent	
Core	i7)	enables	the	elimina?on	of	copies	from	
CPU	to	GPU.		Painful	coding	as	of	2013.	

•  One	ques?on	how	much	benefit	versus	good	
coding.		Our	limit	study	(WDDD	2008)	found	only	
~50%	gain.		Lus?g	&	Martonosi	HPCA	2013.	

•  Algorithm	design—MummerGPU++	
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CPU	ó	GPU	Latency	

•  NVIDIA’s	solu?on:	CUDA	Streams.		Overlap	
GPU	kernel	computa?on	with	memory	
transfer.	Stream	=	ordered	sequence	of	data	
movement	commands	and	kernels.		Streams	
scheduled	independently.		Very	painful	
programming.	

•  Academic	work:		Limit	Study	(WDDD	2008),	
Lus?g	&	Martonosi	HPCA	2013,	Compiler	data	
movement	(August,	PLDI	2011).	
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GPU	Memory	Size	

•  CUDA	Streams	

•  Academic	work:	Treat	GPU	memory	as	cache	
on	CPU	memory	(Kim	et	al.,	ScaleGPU,	IEEE	
CAL	early	access).	
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Solu?on	to	all	these	sub-issues?	

•  Heterogeneous	System	Architecture:	
Integrated	CPU	and	GPU	with	coherence	
memory	address	space.	

•  Need	to	figure	out	how	to	provide	coherence	
between	CPU	and	GPU.			

•  Really	two	problems:	Coherence	within	GPU	
and	then	between	CPU	and	GPU.	
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Research	Direc1on	4:	
Easier	Programming	with	

Synchroniza?on	
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Synchroniza?on		
•  Locks	are	not	encouraged	in	current	GPGPU	
programming	manuals.			

•  Interac?on	with	SIMT	stack	can	easily	cause	deadlocks:	

		while(	atomicCAS(&lock[a[tid]],0,1)	!=	0	)	
				;		//	deadlock	here	if	a[i]	=	a[j]	for	any	i,j	=	tid	in	warp	
			
		//	critical	section	goes	here	
	
		atomicExch	(&lock[a[tid]],	0)	;	
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Correct	way	to	write	cri?cal	sec?on	for	GPGPU:	

	done	=	false;	
	while(	!done	)	{	
			if(	atomicCAS	(&lock[a[tid]],	0	,	1	)==0	)	{	
	
					//	critical	section	goes	here	
	
					atomicExch(&lock[a[tid]],	0	)	;	
			}	
	}	

			
Most	current	GPGPU	programs	use	barriers	within	
thread	blocks	and/or	lock-free	data	structures.	
	
This	leads	to	the	following	picture…	
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•  Life?me	of	GPU	Applica?on	Development	

Time	

Func6onality		
Performance		

Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	

?	

Time	

Fine-Grained	Locking/Lock-Free	

Time	

Transac?onal	Memory	

E.g.	N-Body	with	5M	bodies		
CUDA	SDK:	O(n2)	–	1640	s	(barrier)	
Barnes	Hut:	O(nLogn)	–	5.2	s	(locks)	
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Transac?onal	Memory	
•  Programmer	specifies	atomic	code	blocks	
called	transac?ons	[Herlihy’93]	

TM Version: 
atomic { 
  X[c] = X[a]+X[b]; 
} 

Lock Version: 
Lock(X[a]); 
Lock(X[b]); 
Lock(X[c]); 
  X[c] = X[a]+X[b]; 
Unlock(X[c]); 
Unlock(X[b]); 
Unlock(X[a]); 

Poten?al	Deadlock!	
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Transac?onal	Memory	

Commit	 Commit	

TX1	

Non-conflic?ng	transac?ons	
may	run	in	parallel	

TX2	
A	
B	
C	
D	

Memory	

Conflic?ng	transac?ons	
automa?cally	serialized	

TX1	
A	
B	
C	
D	

Memory	

TX2	

Commit	 Abort	

Commit	

TX2	

Programmers’	View:		

TX1	

TX2	 TX1	

TX2	
OR	

Tim
e	

Tim
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73 Hardware	TM	for	GPU	Architectures	 73	

Are	TM	and	GPUs	Incompa?ble?	
GPU	uarch	very	different	from	mul?core	CPU…	

KILO	TM	[MICRO’11,	IEEE	Micro	Top	Picks]	

•  Hardware	TM	for	GPUs	
•  Half	performance	of	fine	grained	locking	

n  Chip	area	overhead	of	0.5%	



Research	Direc1on	5:	
GPU	Power	Efficiency	
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GPU	power	

•  More	efficient	than	CPU	but	
– Consumes	a	lot	of	power	
– Much	less	efficient	than	ASIC	or	FPGAs	
– What	can	be	done	to	reduce	power	consump?on?	

•  Look	at	the	most	power	hungry	components	
– What	can	be	duty	cycled/power	gated?	
– GPUWapch	to	evaluate	ideas	

75	



Other	Research	Direc?ons….	
•  Non-determinis?c	behavior	for	buggy	code		

– GPUDet	ASPLOS	2013	
	
	
	
	

•  Lack	of	good	performance	analysis	tools	
– NVIDIA	Profiler/Parallel	NSight	
– AerialVision	[ISPASS	2010]	
– GPU	analy?cal	perf/power	models	(Hyesoon	Kim)	 76	
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Lack	of	I/O	and	System	Support…	
•  Support	for	prin�,	malloc	from	kernel	in	CUDA	
•  File	system	I/O?	
•  GPUfs	(ASPLOS	2013):	

– POSIX-like	file	system	API	
– One	file	per	warp	to	avoid	control	divergence	
– Weak	file	system	consistency	model	(close->open)	
– Performance	API:	O_GWRONCE,	O_GWRONCE	
– Eliminate	seek	pointer	

•  GPUnet	(OSDI	2014):	Posix	like	API	for	sockets	
programming	on	GPGPU.	
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Conclusions	

•  GPU	Compu?ng	is	growing	in	importance	due	
to	energy	efficiency	concerns		

•  GPU	architecture	has	evolved	quickly	and	
likely	to	con?nue	to	do	so	

•  We	discussed	some	of	the	important	
microarchitecture	boplenecks	and	recent	
research.	

•  Also	discussed	some	direc?ons	for	improving	
programming	model	
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