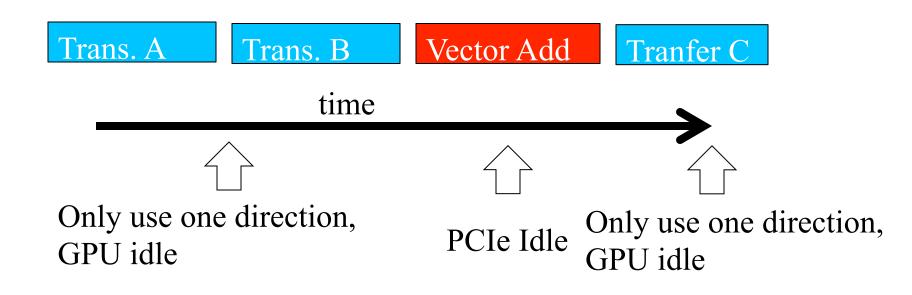
CS/EE 217 GPU Architecture and Parallel Programming


Lecture 17: Data Transfer and CUDA Streams

Objective

- To learn more advanced features of the CUDA APIs for data transfer and kernel launch
 - Task parallelism for overlapping data transfer with kernel computation
 - CUDA streams

Serialized Data Transfer and GPU computation

• So far, the way we use cudaMemcpy serializes data transfer and GPU computation

Device Overlap

• Some CUDA devices support *device overlap*

- Simultaneously execute a kernel while performing a copy between device and host memory

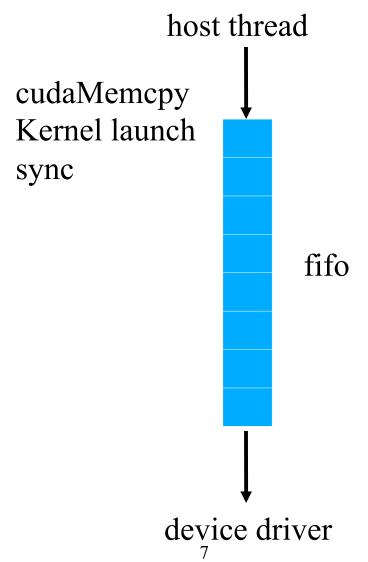
int dev_count; cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for (int i = 0; i < dev_count; i++) {
 cudaGetDeviceProperties(&prop, i);</pre>

if (prop.deviceOverlap) ...

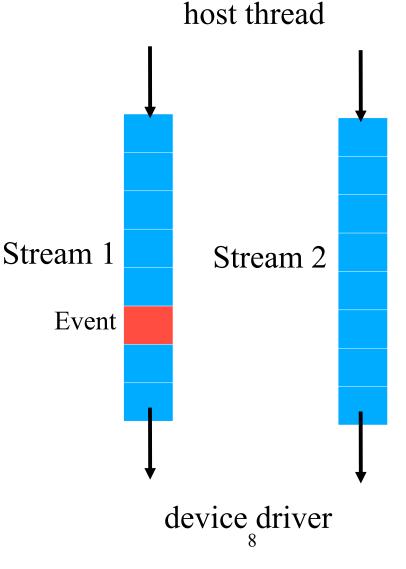
Overlapped (Pipelined) Timing

- Divide large vectors into segments
- Overlap transfer and compute of adjacent segments

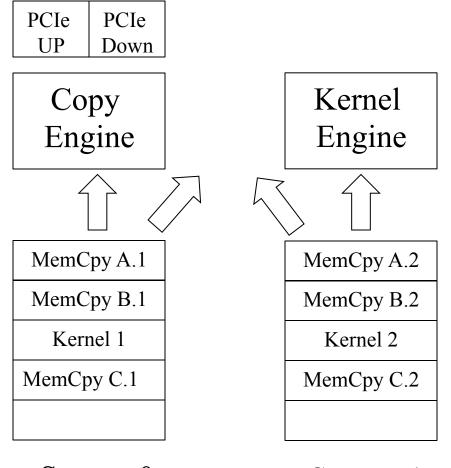


Using CUDA Streams and Asynchronous MemCpy

- CUDA supports parallel execution of kernels and cudaMemcpy with "Streams"
- Each stream is a queue of operations (kernel launches and cudaMemcpy's)
- Operations (tasks) in different streams can go in parallel
 - "Task parallelism"


Streams

- Device requests made from the host code are put into a queue
 - Queue is read and processed asynchronously by the driver and device
 - Driver ensures that
 commands in the queue are
 processed in sequence.
 Memory copies end before
 kernel launch, etc.



Streams cont.

- To allow concurrent copying and kernel execution, you need to use multiple queues, called "streams"
 - CUDA "events" allow the host thread to query and synchronize with the individual queues.

Conceptual View of Streams

Stream 0 Stream 1 Stream 1 Operations (Kernels, MemCpys)

A Simple Multi-Stream Host Code

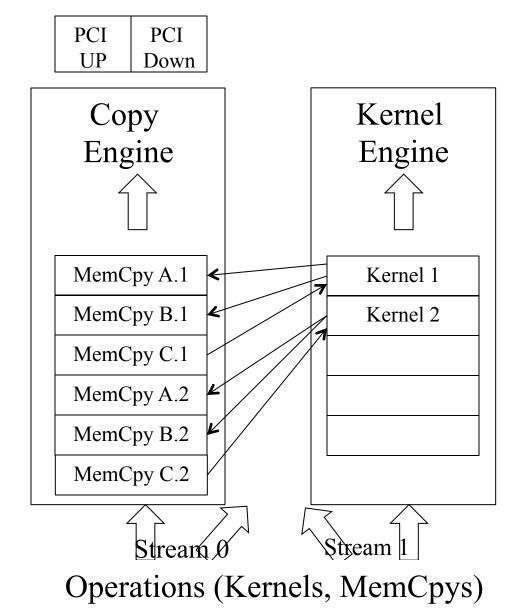
cudaStream_t stream0, stream1; cudaStreamCreate(&stream0); cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0 float *d_A1, *d_B1, *d_C1; // device memory for stream 1

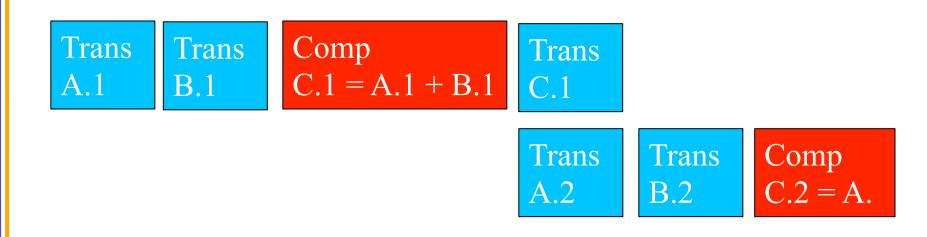
// cudaMalloc for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here

continued

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),...,
stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),...,
stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0>>> (...);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),...,
stream0);


A Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {


cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),..., stream0); cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),..., stream0); vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, ...); cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),..., stream0);

cudaMemCpyAsync(d_A1, h_A+i+SegSize; SegSize*sizeof(float),.., stream1); cudaMemCpyAsync(d_B1, h_B+i+SegSize; SegSize*sizeof(float),.., stream1); vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, ...); cudaMemCpyAsync(d_C1, h_C+i+SegSize; SegSize*sizeof(float),.., stream1);

A View Closer to Reality

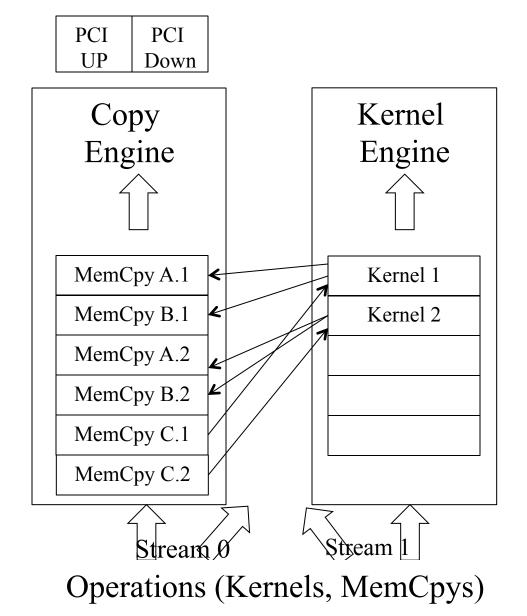
Not quite the overlap we want C.1 blocks A.2 and B.2 in the copy engine queue

A Better Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {

cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0); cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0); cudaMemCpyAsync(d_A1, h_A+i+SegSize;

SegSize*sizeof(float),.., stream1);

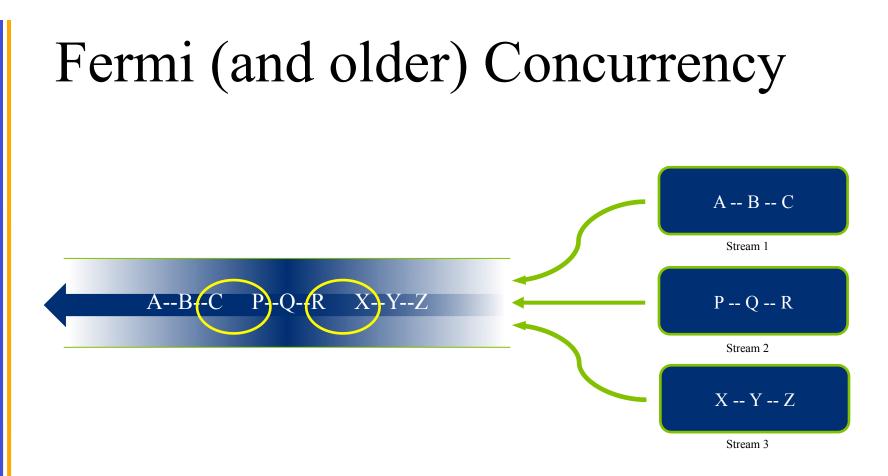

cudaMemCpyAsync(d_B1, h_B+i+SegSize;

SegSize*sizeof(float),.., stream1);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, ...); vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, ...); cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0); cudaMemCpyAsync(d_C1, h_C+i+SegSize;

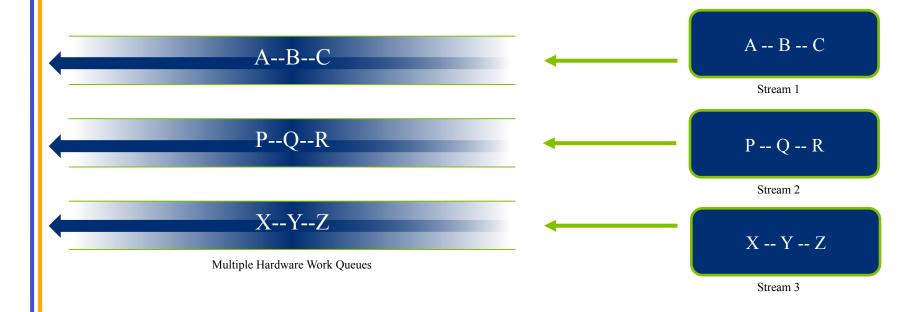
SegSize*sizeof(float),.., stream1);

A View Closer to Reality


Overlapped (Pipelined) Timing

- Divide large vectors into segments
- Overlap transfer and compute of adjacent segments

Hyper Queue


- Provide multiple real queues for each engine
- Allow much more concurrency by allowing some streams to make progress for an engine while others are blocked

Fermi allows 16-way concurrency

- Up to 16 grids can run at once
- But CUDA streams multiplex into a single queue
- Overlap only at stream edges

Kepler Improved Concurrency

Kepler allows 32-way concurrency

- One work queue per stream
- Concurrency at full-stream level
- No inter-stream dependencies

ANY QUESTIONS?

Synchronization

- cudaStreamSynchronize(stream_id)
 - Used in host code
 - Takes a stream identifier parameter
 - Waits until all tasks in the stream have completed
- This is different from cudaDeviceSynchronize()
 - Also used in host code
 - No parameter
 - Waits until all tasks in all streams have completed for current device