
CS/EE 217
GPU Architecture and Parallel

Programming

Lecture 17:
Data Transfer and CUDA Streams

Objective
•  To learn more advanced features of the CUDA APIs

for data transfer and kernel launch
–  Task parallelism for overlapping data transfer with kernel

computation
–  CUDA streams

Serialized Data Transfer and GPU
computation

•  So far, the way we use cudaMemcpy
serializes data transfer and GPU computation

Trans. A Trans. B Vector Add Tranfer C

time

Only use one direction,
GPU idle PCIe Idle Only use one direction,

GPU idle

Device Overlap
•  Some CUDA devices support device overlap

–  Simultaneously execute a kernel while performing
a copy between device and host memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for (int i = 0; i < dev_count; i++) {
 cudaGetDeviceProperties(&prop, i);

 if (prop.deviceOverlap) …

Overlapped (Pipelined) Timing
•  Divide large vectors into segments
•  Overlap transfer and compute of adjacent

segments
Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

Using CUDA Streams and
Asynchronous MemCpy

•  CUDA supports parallel execution of kernels
and cudaMemcpy with “Streams”

•  Each stream is a queue of operations (kernel
launches and cudaMemcpy’s)

•  Operations (tasks) in different streams can go
in parallel
–  “Task parallelism”

7

Streams
•  Device requests made

from the host code are
put into a queue
–  Queue is read and processed

asynchronously by the driver
and device

–  Driver ensures that
commands in the queue are
processed in sequence.
Memory copies end before
kernel launch, etc.

host thread

cudaMemcpy
Kernel launch
sync

fifo

device driver

8

Streams cont.
•  To allow concurrent

copying and kernel
execution, you need
to use multiple
queues, called
“streams”
–  CUDA “events” allow

the host thread to query
and synchronize with the
individual queues.

host thread

device driver

Stream 1 Stream 2

Event

Conceptual View of Streams

MemCpy A.1

MemCpy B.1

Kernel 1

MemCpy C.1

MemCpy A.2

MemCpy B.2

Kernel 2

MemCpy C.2

Stream 0 Stream 1

Copy
Engine

PCIe
UP

PCIe
Down

Kernel
Engine

Operations (Kernels, MemCpys)

A Simple Multi-Stream Host Code
cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here

continued

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),..,
stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),..,
stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0>>> (…);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),..,
stream0);

A Simple Multi-Stream Host Code
(Cont.)

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0);

 cudaMemCpyAsync(d_A1, h_A+i+SegSize;

 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize;

 SegSize*sizeof(float),.., stream1);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize;

 SegSize*sizeof(float),.., stream1);
}

A View Closer to Reality

MemCpy A.1

MemCpy B.1

MemCpy C.1

MemCpy A.2

MemCpy B.2

Kernel 1

Kernel 2

Stream 0 Stream 1

Copy
Engine

PCI
UP

PCI
Down

Kernel
Engine

Operations (Kernels, MemCpys)

MemCpy C.2

Not quite the overlap we want
•  C.1 blocks A.2 and B.2 in the copy engine

queue

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.
2 + B.2

A Better Multi-Stream Host Code
(Cont.)

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_A1, h_A+i+SegSize;

 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize;

 SegSize*sizeof(float),.., stream1);

 vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize;

 SegSize*sizeof(float),.., stream1);
}

A View Closer to Reality

MemCpy A.1

MemCpy B.1

MemCpy A.2

MemCpy B.2

MemCpy C.1

Kernel 1

Kernel 2

Stream 0 Stream 1

Copy
Engine

PCI
UP

PCI
Down

Kernel
Engine

Operations (Kernels, MemCpys)

MemCpy C.2

Overlapped (Pipelined) Timing
•  Divide large vectors into segments
•  Overlap transfer and compute of adjacent

segments
Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

Hyper Queue
•  Provide multiple real queues for each engine
•  Allow much more concurrency by allowing

some streams to make progress for an engine
while others are blocked

Fermi (and older) Concurrency

Fermi allows 16-way concurrency
–  Up to 16 grids can run at once
–  But CUDA streams multiplex into a single queue
–  Overlap only at stream edges

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Hardware Work Queue

A--B--C P--Q--R X--Y--Z

Kepler Improved Concurrency

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z

Kepler allows 32-way concurrency

 One work queue per stream
 Concurrency at full-stream level
 No inter-stream dependencies

ANY QUESTIONS?

Synchronization
•  cudaStreamSynchronize(stream_id)

–  Used in host code
–  Takes a stream identifier parameter
–  Waits until all tasks in the stream have completed

•  This is different from cudaDeviceSynchronize()
–  Also used in host code
–  No parameter
–  Waits until all tasks in all streams have completed for

current device

