
© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012

1

CS/EE 217

GPU Architecture and Parallel Programming

Lecture 15: Atomic Operations and
Histogramming - Part 2

2

Objective

•  To learn practical histogram programming techniques
–  Basic histogram algorithm using atomic operations
–  Privatization

Review: A Histogram Example

•  In phrase “Programming Massively Parallel
Processors” build a histogram of frequencies of each
letter

•  A(4), C(1), E(1), G(1), …

3

•  How do you do this in parallel?
–  Have each thread to take a section of the input
–  For each input letter, use atomic operations to build the

histogram

Iteration #1 – 1st letter in each section

4

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E
1

F G H I J K L M
2

N O P
1

Q R S T U V

Iteration #2 – 2nd letter in each section

5

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G H I J K L
1

M
3

N O P
1

Q R
1

S T U V

Iteration #3

6

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G H I
1

J K L
1

M
3

N O
1

P
1

Q R
1

S
1

T U V

Iteration #4

7

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G
1

H I
1

J K L
1

M
3

N
1

O
1

P
1

Q R
1

S
2

T U V

Iteration #5

8

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G
1

H I
1

J K L
1

M
3

N
1

O
1

P
2

Q R
2

S
2

T U V

What is wrong with the algorithm?
•  Reads from the input array are not coalesced

–  Assign inputs to each thread in a strided pattern
–  Adjacent threads process adjacent input letters

9

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E F G
1

H I J K L M N O
1

P
1

Q R
1

S T U V

Iteration 2

10

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E F G
1

H I J K L M
2

N O
1

P
1

Q R
2

S T U V

•  All threads move to the next section of input

A Histogram Kernel

•  The kernel receives a pointer to the input buffer
•  Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,
 long size, unsigned int *histo)

{
 int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
 int stride = blockDim.x * gridDim.x;
 11

More on the Histogram Kernel

 // All threads handle blockDim.x * gridDim.x
 // consecutive elements
 while (i < size) {
 atomicAdd(&(histo[buffer[i]]), 1);
 i += stride;
 }
}

12

Atomic Operations on DRAM

•  An atomic operation
starts with a read, with a
latency of a few hundred
cycles

13

Atomic Operations on DRAM

•  An atomic operation
starts with a read, with a
latency of a few hundred
cycles

•  The atomic operation
ends with a write, with a
latency of a few hundred
cycles

•  During this whole time,
no one else can access
the location 14

Atomic Operations on DRAM

•  Each Load-Modify-Store has two full memory access
delays
–  All atomic operations on the same variable (RAM location)

are serialized

DRAM delay DRAM delay

transfer delay

internal routing
DRAM delay

transfer delay

internal routing

..

atomic operation N atomic operation N+1

time

15

Latency determines throughput of
atomic operations

•  Throughput of an atomic operation is the rate at which
the application can execute an atomic operation on a
particular location.

•  The rate is limited by the total latency of the read-
modify-write sequence, typically more than 1000
cycles for global memory (DRAM) locations.

•  This means that if many threads attempt to do atomic
operation on the same location (contention), the
memory bandwidth is reduced to < 1/1000!

16

You may have a similar experience in
supermarket checkout

•  Some customers realize that they missed an item after
they started to check out

•  They run to the isle and get the item while the line
waits
–  The rate of check is reduced due to the long latency of

running to the isle and back.

•  Imagine a store where every customer starts the check
out before they even fetch any of the items
–  The rate of the checkout will be 1 / (entire shopping time of

each customer)

17

Hardware Improvements (cont.)

•  Atomic operations on Fermi L2 cache
–  medium latency, but still serialized
–  Global to all blocks
–  “Free improvement” on Global Memory atomics

internal routing

..

atomic operation N atomic operation N+1

time

data transfer data transfer

18

Hardware Improvements

•  Atomic operations on Shared Memory
–  Very short latency, but still serialized
–  Private to each thread block
–  Need algorithm work by programmers (more later)

internal routing

..

atomic operation N atomic operation N+1

time

data transfer

19

Atomics in Shared Memory Requires
Privatization

•  Create private copies of the histo[] array for each
thread block

__global__ void histo_kernel(unsigned char *buffer,
 long size, unsigned int *histo)

{
 __shared__ unsigned int histo_private[256];
 if (threadIdx.x < 256) histo_private[threadidx.x] = 0;
 __syncthreads();

20

Build Private Histogram

 int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
 int stride = blockDim.x * gridDim.x;
 while (i < size) {
 atomicAdd(&(histo_private[buffer[i]), 1);
 i += stride;
 }

21

Build Final Histogram

 // wait for all other threads in the block to finish
 __syncthreads();

 if (threadIdx.x < 256)
 atomicAdd(&(histo[threadIdx.x]),

 histo_private[threadIdx.x]);

}

22

More on Privatization
•  Privatization is a powerful and frequently used

techniques for parallelizing applications

•  The operation needs to be associative and
commutative
–  Histogram add operation is associative and commutative

•  The histogram size needs to be small
–  Fits into shared memory

•  What if the histogram is too large to privatize?
23

Other Atomic operations

•  atomicCAS (int *p, int cmp, int val)
–  CAS = compare and swap

//atomically	perform	the	following	
int	old	=	*p;	
if(cmp	==	old)	*p	=	v;	
return	old;

•  AtomicExch – unconditional version of CAS
int	old	=	*p;	
*p	=	v;	
return	old	

•  What are these used for?
24

Locking causes control divergence in
GPUs

25

Divergence deadlock if locking thread idles

Alternatives to locking?

•  Lock-free algorithms/data structures
–  Update a private copy
–  Try to atomically update a global data structure using

compare and swap or similar
–  Retry if failed
–  Need data structures that support this kind of operation

•  Wait-free algorithms/data structures
–  Similar to histogramming – don’t wait, but atomic update
–  But applies only to some algorithms

26

Lock free vs. locking

27
Example from Nvidia presentation at GTC 2013

Parallel Linked List Example

28

29

30

31

ANY MORE QUESTIONS?

32

