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CS/EE 217 
 

GPU Architecture and Parallel Programming 
 
 

Lecture 15: Atomic Operations and 
Histogramming - Part 2 
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Objective 

•  To learn practical histogram programming techniques 
–  Basic histogram algorithm using atomic operations 
–  Privatization 
 



Review: A Histogram Example 

•  In phrase “Programming Massively Parallel 
Processors” build a histogram of frequencies of each 
letter 

•  A(4), C(1), E(1), G(1), … 
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•  How do you do this in parallel? 
–  Have each thread to take a section of the input 
–  For each input letter, use atomic operations to build the 

histogram 



Iteration #1 – 1st letter in each section 
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Iteration #2 – 2nd letter in each section 
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Iteration #3 
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Iteration #4 
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Iteration #5 
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What is wrong with the algorithm? 
•  Reads from the input array are not coalesced 

–  Assign inputs to each thread in a strided pattern 
–  Adjacent threads process adjacent input letters 
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Iteration 2 
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•  All threads move to the next section of input 



A Histogram Kernel 

•  The kernel receives a pointer to the input buffer  
•  Each thread process the input  in a strided pattern 

__global__ void histo_kernel(unsigned char *buffer, 
   long size, unsigned int *histo)  

{ 
    int i = threadIdx.x + blockIdx.x * blockDim.x; 
 

// stride is total number of threads 
    int stride = blockDim.x * gridDim.x; 
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More on the Histogram Kernel 

   // All threads handle blockDim.x * gridDim.x 
   // consecutive elements 
   while (i < size) { 
       atomicAdd( &(histo[buffer[i]]), 1); 
       i += stride; 
   } 
} 
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Atomic Operations on DRAM 

•  An atomic operation 
starts with a read, with a 
latency of a few hundred 
cycles 
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Atomic Operations on DRAM 

•  An atomic operation 
starts with a read, with a 
latency of a few hundred 
cycles 

•  The atomic operation 
ends with a write, with a 
latency of a few hundred 
cycles 

•  During this whole time, 
no one else can access 
the location 14 



Atomic Operations on DRAM 

•  Each Load-Modify-Store has two full memory access 
delays  
–  All atomic operations on the same variable (RAM location) 

are serialized 

DRAM delay DRAM delay 

transfer delay 

internal routing 
DRAM delay 

transfer delay 

internal routing 

.. 

atomic operation N atomic operation N+1 

time 

15 



Latency determines throughput of 
atomic operations 

•  Throughput of an atomic operation is the rate at which 
the application can execute an atomic operation on a 
particular location. 

•  The rate is limited by the total latency of the read-
modify-write sequence, typically more than 1000 
cycles for global memory (DRAM) locations. 

•  This means that if many threads attempt to do atomic 
operation on the same location (contention), the 
memory bandwidth is reduced to < 1/1000! 
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You may have a similar experience in 
supermarket checkout 

•  Some customers realize that they missed an item after 
they started to check out 

•  They run to the isle and get the item while the line 
waits 
–  The rate of check is reduced due to the long latency of 

running to the isle and back. 

•  Imagine a store where every customer starts the check 
out before they even fetch any of the items 
–  The rate of the checkout will be 1 / (entire shopping time of 

each customer)  
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Hardware Improvements (cont.) 

•  Atomic operations on Fermi L2 cache 
–  medium latency, but still serialized 
–  Global to all blocks 
–  “Free improvement” on Global Memory atomics 

internal routing 

.. 

atomic operation N atomic operation N+1 

time 

data transfer  data transfer  
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Hardware Improvements 

•  Atomic operations on Shared Memory 
–  Very short latency, but still serialized 
–  Private to each thread block 
–  Need algorithm work by programmers (more later) 

internal routing 

.. 

atomic operation N atomic operation N+1 

time 

data transfer  
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Atomics in Shared Memory Requires 
Privatization 

•  Create private copies of the histo[] array for each 
thread block 

__global__ void histo_kernel(unsigned char *buffer, 
   long size, unsigned int *histo)  

{ 
    __shared__ unsigned int histo_private[256]; 
   if (threadIdx.x < 256) histo_private[threadidx.x] = 0; 
   __syncthreads(); 
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Build Private Histogram 

   
    int i = threadIdx.x + blockIdx.x * blockDim.x; 

// stride is total number of threads 
    int stride = blockDim.x * gridDim.x; 
    while (i < size) { 
         atomicAdd( &(histo_private[buffer[i]), 1); 
         i += stride; 
    } 
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Build Final Histogram 

   // wait for all other threads in the block to finish 
  __syncthreads(); 
 
  if (threadIdx.x < 256)  
     atomicAdd( &(histo[threadIdx.x]),         

    histo_private[threadIdx.x] ); 
 
} 
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More on Privatization 
•  Privatization is a powerful and frequently used 

techniques for parallelizing applications 

•  The operation needs to be associative and 
commutative 
–  Histogram add operation is associative and commutative 

•  The histogram size needs to be small 
–  Fits into shared memory 

 

•  What if the histogram is too large to privatize? 
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Other Atomic operations 

•  atomicCAS (int *p, int cmp, int val)  
–  CAS = compare and swap 

//atomically	perform	the	following	
int	old	=	*p;	
if(cmp	==	old)	*p	=	v;	
return	old; 

•  AtomicExch – unconditional version of CAS 
int	old	=	*p;	
*p	=	v;	
return	old	

•  What are these used for? 
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Locking causes control divergence in 
GPUs 
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Divergence deadlock if locking thread idles



Alternatives to locking? 

•  Lock-free algorithms/data structures 
–  Update a private copy 
–  Try to atomically update a global data structure using 

compare and swap or similar 
–  Retry if failed 
–  Need data structures that support this kind of operation 

•  Wait-free algorithms/data structures 
–  Similar to histogramming – don’t wait, but atomic update 
–  But applies only to some algorithms 
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Lock free vs. locking 
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Example from Nvidia presentation at GTC 2013



Parallel Linked List Example 
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ANY MORE QUESTIONS? 
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